Skip to main content
Log in

Hydrophobic 1-octadecanethiol functionalized copper catalyst promotes robust high-current CO2 gas-diffusion electrolysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The electrocatalytic reduction of CO2 presents a promising strategy in addressing environmental and energy crisis. Significant progress has been achieved via CO2 gas diffusion electrolysis, to react at high selectivity and high rate. However, the gas diffusion layer (GDL) of the gas diffusion electrode (GDE) still suffers from low tolerance and limited active sites. Here, the hydrophobic 1-octadecanethiol molecular was functionalized over the Cu catalyst layer of the GDE, which simultaneously stabilizes the GDL and exposes abundant active solid-liquid-gas three-phase interfaces. The resultant GDE exhibits multi-carbon (C2+) product selectivity over faradaic efficiency (FE) of 70.0% in the range of 100 to 800 mA·cm−2, with the peak FEC2+ of 85.2% at 800 mA·cm−2. Notably, the strengthened GDE could continuously drive high-current electrolysis for more than 100 h without flooding. This work opens a new way to improve CO2 gas diffusion electrolysis via surface molecular engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng, Y.; Vasileff, A.; Zhou, X. L.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 2019, 141, 7676–7659.

    Google Scholar 

  2. Fan, L.; Xia, C.; Yang, F. Q.; Wang, J.; Wang, H. T.; Lu, Y. Y. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 2020, 6, eaay3111.

    Article  CAS  Google Scholar 

  3. Zhong, H. X.; Meng, F. L.; Zhang, Q.; Liu, K. H.; Zhang, X. B. Highly efficient and selective CO2 electro-reduction with atomic Fe-C-N hybrid coordination on porous carbon nematosphere. Nano Res. 2019, 12, 2318–2323.

    Article  CAS  Google Scholar 

  4. De Luna, P.; Quintero-Bermudez, R.; Dinh, C. T.; Ross, M. B.; Bushuyev, O. S.; Todorović, P.; Regier, T.; Kelley, S. O.; Yang, P. D.; Sargent, E. H. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 2018, 1, 103–110.

    Article  CAS  Google Scholar 

  5. Cai, Z.; Zhang, Y. S.; Zhao, Y. X.; Wu, Y. S.; Xu, W. W; Wen, X. M.; Zhong, Y.; Zhang, Y.; Liu, W.; Wang, H. L. et al. Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes. Nano Res. 2019, 12, 345–349.

    Article  CAS  Google Scholar 

  6. Lee, S. Y.; Jung, H.; Kim, N. K.; Oh, H. S.; Min, B. K.; Hwang, Y. J. Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction. J. Am. Chem. Soc. 2018, 140, 8681–8689.

    Article  CAS  Google Scholar 

  7. Lum, Y.; Ager, J. W. Stability of residual oxides in oxide-derived copper catalysts for electrochemical CO2 reduction investigated with 18O labeling. Angew. Chem., Int. Ed. 2018, 130, 560–563.

    Article  Google Scholar 

  8. Tang, C.; Shi, J. J.; Bai, X. W.; Hu, A. Q.; Xuan, N. N.; Yue, Y. W.; Ye, T.; Liu, B.; Li, P. X.; Zhuang, P. Y. et al. CO2 reduction on copper’s twin boundary. ACS Catal. 2020, 10, 2026–2032.

    Article  CAS  Google Scholar 

  9. Yang, Y.; Luo, M. C.; Zhang, W. Y.; Sun, Y. J.; Chen, X.; Guo, S. J. Metal surface and interface energy electrocatalysis: Fundamentals, performance engineering, and opportunities. Chem 2018, 4, 2054–2083.

    Article  CAS  Google Scholar 

  10. Wang, W.; Shang, L.; Chang, G. J.; Yan, C. Y.; Shi, R.; Zhao, Y. X.; Waterhouse, G. I. N.; Yang, D. J.; Zhang, T. R. Intrinsic carbon-defect-driven electrocatalytic reduction of carbon dioxide. Adv. Mater. 2019, 31, 1808276.

    Article  Google Scholar 

  11. Higgins, D.; Hahn, C.; Xiang, C. X.; Jaramillo, T. F.; Weber, A. Z. Gas-diffusion electrodes for carbon dioxide reduction: A new paradigm. ACS Energy Lett. 2019, 4, 317–324.

    Article  CAS  Google Scholar 

  12. Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.; Marcus, P.; Fontecave, M.; Mougel, V. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 2019, 18, 1222–1227.

    Article  CAS  Google Scholar 

  13. Ren, W. H.; Zhao, C. Paths towards enhanced electrochemical CO2 reduction. Nat. Sci. Rev. 2020, 7, 7–9.

    Article  Google Scholar 

  14. Weekes, D. M.; Salvatore, D. A.; Reyes, A.; Huang, A. X.; Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 2018, 51, 910–918.

    Article  CAS  Google Scholar 

  15. Lu, X.; Zhu, C. Q.; Wu, Z. S.; Xuan, J.; Francisco, J. S.; Wang, H. L. In situ observation of the pH gradient near the gas diffusion electrode of CO2 reduction in alkaline electrolyte. J. Am. Chem. Soc. 2020, 142, 15438–15444.

    Article  CAS  Google Scholar 

  16. Yang, K. L.; Kas, R.; Smith, W. A.; Burdyny, T. Role of the carbon-based gas diffusion layer on flooding in a gas diffusion electrode cell for electrochemical CO2 reduction. ACS Energy Lett. 2021, 6, 33–40.

    Article  CAS  Google Scholar 

  17. Forner-Cuenca, A.; Biesdorf, J.; Gubler, L.; Kristiansen, P. M.; Schmidt, T. J.; Boillat, P. Engineered water highways in fuel cells: Radiation grafting of gas diffusion layers. Adv. Mater. 2015, 27, 6317–6322.

    Article  CAS  Google Scholar 

  18. Jeanty, P.; Scherer, C.; Magori, E.; Wiesner-Fleischer, K.; Hinrichsen, O.; Fleischer, M. Upscaling and continuous operation of electrochemical CO2 to CO conversion in aqueous solutions on silver gas diffusion electrodes. J. CO2 Util. 2018, 24, 454–462.

    Article  CAS  Google Scholar 

  19. De Mot, B.; Hereijgers, J.; Duarte, M.; Breugelmans, T. Influence of flow and pressure distribution inside a gas diffusion electrode on the performance of a flow-by CO2 electrolyzer. Chem. Eng. J. 2019, 378, 122224.

    Article  CAS  Google Scholar 

  20. Leonard, M. E.; Clarke, L. E.; Forner-Cuenca, A.; Brown, S. M.; Brushett, F. R. Investigating electrode flooding in a flowing electrolyte, gas-fed carbon dioxide electrolyzer. ChemSusChem 2020, 13, 400–411.

    Article  CAS  Google Scholar 

  21. Shi, R.; Guo, J. H.; Zhang, X. R.; Waterhouse, G. I. N.; Han, Z. J.; Zhao, Y. X.; Shang, L.; Zhou, C.; Jiang, L.; Zhang, T. R. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat. Commun. 2020, 11, 3028.

    Article  CAS  Google Scholar 

  22. Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; de Arquer, F. P. G.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018, 360, 783–787.

    Article  CAS  Google Scholar 

  23. Xing, Z.; Hu, L.; Ripatti, D. S.; Hu, X.; Feng, X. F. Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment. Nat. Commun. 2021, 12, 136.

    Article  CAS  Google Scholar 

  24. Wicks, J.; Jue, M. L.; Beck, V. A.; Oakdale, J. S.; Dudukovic, N. A.; Clemens, A. L.; Liang, S. W.; Ellis, M. E.; Lee, G.; Baker, S. E. et al. 3D-printable fluoropolymer gas diffusion layers for CO2 electroreduction. Adv. Mater. 2021, 33, 2003855.

    Article  CAS  Google Scholar 

  25. Ma, W. C.; Xie, S. J.; Liu, T. T.; Fan, Q. Y.; Ye, J. Y.; Sun, F. F.; Jiang, Z.; Zhang, Q. H.; Cheng, J.; Wang, Y. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper. Nat. Catal. 2020, 3, 478–487.

    Article  CAS  Google Scholar 

  26. Yang, W. J.; Li, T. Q.; Zhou, H. H.; Huang, Z.; Fu, C. P.; Chen, L.; Li, M. B.; Kuang, Y. F. Electrochemical and anti-corrosion properties of octadecanethiol and benzotriazole binary self-assembled monolayers on copper. Electrochim. Acta 2016, 220, 245–251.

    Article  CAS  Google Scholar 

  27. Zhao, H. Y.; Jin, J.; Tian, W. J.; Li, R.; Yu, Z.; Song, W.; Cong, Q.; Zhao, B.; Ozaki, Y. Three-dimensional superhydrophobic surface-enhanced Raman spectroscopy substrate for sensitive detection of pollutants in real environments. J. Mater. Chem. A 2015, 3, 4330–4337.

    Article  CAS  Google Scholar 

  28. Ying, T. An advanced anti-tarnish process for silver coins and silverware—monomolecular octadecanethiol protective film. Tribol. Trans. 2021, 64, 341–349.

    Article  CAS  Google Scholar 

  29. Tetzner, K.; Schroder, K. A.; Bock, K. Photonic curing of sol-gel derived HfO2 dielectrics for organic field-effect transistors. Ceram. Int. 2014, 40, 15753–15761.

    Article  CAS  Google Scholar 

  30. Liu, J. H.; Yang, L. M.; Ganz, E. Electrochemical reduction of CO2 by single atom catalyst TM-TCNQ monolayers. J. Mater. Chem. A 2019, 7, 3805–3814.

    Article  CAS  Google Scholar 

  31. Shinagawa, T.; Larrazábal, G. O.; Martín, A. J.; Krumeich, F.; Pérez-Ramírez, J. Sulfur-modified copper catalysts for the electrochemical reduction of carbon dioxide to formate. ACS Catal. 2018, 8, 837–844.

    Article  CAS  Google Scholar 

  32. Ahn, S.; Klyukin, K.; Wakeham, R. J.; Rudd, J. A.; Lewis, A. R.; Alexander, S.; Carla, F.; Alexandrov, V.; Andreoli, E. Poly-amide modified copper foam electrodes for enhanced electrochemical reduction of carbon dioxide. ACS Catal. 2018, 8, 4132–4142.

    Article  CAS  Google Scholar 

  33. Wei, X.; Yin, Z. L.; Lyu, K. J.; Li, Z.; Gong, J.; Wang, G. W.; Xiao, L.; Lu, J. T.; Zhuang, L. Highly selective reduction of CO2 to C2+ hydrocarbons at copper/polyaniline interfaces. ACS Catal. 2020, 10, 4103–4111.

    Article  CAS  Google Scholar 

  34. Zhu, M. H.; Chen, J. C.; Huang, L. B.; Ye, R. Q.; Xu, J.; Han, Y. F. Covalently grafting cobalt porphyrin onto carbon nanotubes for efficient CO2 electroreduction. Angew. Chem., Int. Ed. 2019, 131, 6667–66671.

    Article  Google Scholar 

  35. Peykov, V.; Quinn, A.; Ralston, J. Electrowetting: A model for contact-angle saturation. Colloid Polym. Sci. 2000, 278, 789–793.

    Article  CAS  Google Scholar 

  36. Löwe, A.; Rieg, C.; Hierlemann, T.; Salas, N.; Kopljar, D.; Wagner, N.; Klemm, E. Influence of temperature on the performance of gas diffusion electrodes in the CO2 reduction reaction. ChemElectroChem 2019, 6, 4497–4506.

    Article  Google Scholar 

  37. Zhong, M.; Tran, K.; Min, Y. M.; Wang, C. H.; Wang, Z. Y.; Dinh, C. T.; De Luna, P.; Yu, Z. Q.; Rasouli, A. S.; Brodersen, P. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 2020, 581, 178–183.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the International (Regional) Cooperation and Exchange Projects of the National Natural Science Foundation of China (No. 51920105003), the National Natural Science Funds for Distinguished Young Scholars (No. 51725201), the Innovation Program of Shanghai Municipal Education Commission (No. E00014), the National Natural Science Foundation of China (Nos. 51902105 and 22072045), the Shanghai Engineering Research Center of Hierarchical Nanomaterials (No. 18DZ2252400) and the Shanghai Sailing Program (No. 19YF1411600). The authors acknowledge the support by Shanghai Rising-star and Shuguang Programs (Nos. 20QA1402400 and 17SG30), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. Additional support was provided by the Feringa Nobel Prize Scientist Joint Research Center. The authors thank the Frontiers Science Center for Materiobiology and Dynamic Chemistry. The authors also thank the crew of the 1W1B beamline of Beijing Synchrotron Radiation Facility (BSRF) for their constructive assistance with the XAFS measurements and data analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Dai, Pengfei Liu or Huagui Yang.

Electronic supplementary material

12274_2021_3675_MOESM1_ESM.pdf

Hydrophobic 1-octadecanethiol functionalized copper catalyst promotes robust high-current CO2 gas-diffusion electrolysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, L., Wu, X., Liu, Y. et al. Hydrophobic 1-octadecanethiol functionalized copper catalyst promotes robust high-current CO2 gas-diffusion electrolysis. Nano Res. 15, 1393–1398 (2022). https://doi.org/10.1007/s12274-021-3675-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3675-6

Keywords

Navigation