Skip to main content
Log in

Evolution of stellated gold nanoparticles: New conceptual insights into controlling the surface processes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Understanding the surface processes (deposition and surface diffusion) that occur at or close to the surface of growing nanoparticles is important for fabricating reproducibly stellated or branched gold nanoparticles with precise control over arm length and spatial orientation of arms around the core. By employing a simple seed-mediated strategy, we investigate the key synthetic variables for precise tuning of in situ surface processes (competition between the deposition and surface diffusion). These variables include the reduction rate of a reaction, the packing density of molecules/ions on the high surface energy facets, and temperature. As a result, the thermodynamically stabilized nanoparticles (cuboctahedron and truncated cube) and kinetic products (cube, concave cube, octapod, stellated octahedron, and rhombic dodecahedron) in different sizes with high quantitative shape yield (> 80%) can be obtained depending on the reduction rate of reaction and the packing density of molecules/ions. With computer simulation, we studied the stability of stellated (branched structure) and non-stellated (non-branched structure) gold nanoparticles at high temperature. We construct a morphology phase diagram by varying different synthetic parameters, illustrating the formation of both stellated and non-stellated gold nanoparticles in a range of reaction conditions. The stellated gold nanoparticles display shape-dependent optical properties and can be self-assembled into highly ordered superstructures to achieve an enhanced plasmonic response. Our strategy can be applied to other metal systems, allowing for the rational design of advanced new stellated metal nanoparticles with fascinating symmetry dependent plasmonic, catalytic, and electronic properties for technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bandyopadhyay, S.; McDonagh, B. H.; Singh, G.; Raghunathan, K.; Sandvig, A.; Sandvig, I.; Andreassen, J. P.; Glomm, W. R. Growing gold nanostructures for shape-selective cellular uptake. Nanoscale Res. Lett. 2018, 13, 254.

    Article  Google Scholar 

  2. Dong, Y. C.; Hajfathalian, M.; Maidment, P. S. N.; Hsu, J. C.; Naha, P. C.; Si-Mohamed, S.; Breuilly, M.; Kim, J.; Chhour, P.; Douek, P. et al. Effect of gold nanoparticle size on their properties as contrast agents for computed tomography. Sci. Rep. 2019, 9, 14912.

    Article  Google Scholar 

  3. Fleury, B.; Cortes-Huerto, R.; Tache, O.; Testard, F.; Menguy, N.; Spalla, O. Gold nanoparticle internal structure and symmetry probed by unified small-angle X-ray scattering and X-ray diffraction coupled with molecular dynamics analysis. Nano Lett. 2015, 15, 6088–6094.

    Article  CAS  Google Scholar 

  4. Gong, N. Q.; Chen, S. Z.; Jin, S. B.; Zhang, J. C.; Wang, P. C.; Liang, X. J. Effects of the physicochemical properties of gold nanostructures on cellular internalization. Regen. Biomater. 2015, 2, 273–280.

    Article  CAS  Google Scholar 

  5. He, Y.; Liu, J. C.; Luo, L. L.; Wang, Y. G.; Zhu, J. F.; Du, Y. G.; Li, J.; Mao, S. X.; Wang, C. M. Size-dependent dynamic structures of supported gold nanoparticles in CO oxidation reaction condition. Proc. Natl. Acad. Sci. USA 2018, 115, 7700–7705.

    Article  CAS  Google Scholar 

  6. Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2008, 48, 60–103.

    Article  Google Scholar 

  7. Priecel, P.; Salami, H. A.; Padilla, R. H.; Zhong, Z. Y.; Lopez-Sanchez, J. A. Anisotropic gold nanoparticles: Preparation and applications in catalysis. Chin. J. Catal. 2016, 37, 1619–1650.

    Article  CAS  Google Scholar 

  8. Lim, W. Q.; Gao, Z. Q. Plasmonic nanoparticles in biomedicine. Nano Today 2016, 11, 168–188.

    Article  CAS  Google Scholar 

  9. Kohout, C.; Santi, C.; Polito, L. Anisotropic gold nanoparticles in biomedical applications. Int. J. Mol. Sci. 2018, 19, 3385.

    Article  Google Scholar 

  10. Toy, R.; Hayden, E.; Shoup, C.; Baskaran, H.; Karathanasis, E. The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology 2011, 22, 115101.

    Article  Google Scholar 

  11. Gentile, F.; Chiappini, C.; Fine, D.; Bhavane, R. C.; Peluccio, M. S.; Cheng, M. M. C.; Liu, X.; Ferrari, M.; Decuzzi, P. The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J. Biomech. 2008, 41, 2312–2318.

    Article  CAS  Google Scholar 

  12. Kolhar, P.; Anselmo, A. C.; Gupta, V.; Pant, K.; Prabhakarpandian, B.; Ruoslahti, E.; Mitragotri, S. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc. Natl. Acad. Sci. USA 2013, 110, 10753–10758.

    Article  CAS  Google Scholar 

  13. Muro, S.; Garnacho, C.; Champion, J. A.; Leferovich, J.; Gajewski, C.; Schuchman, E. H.; Mitragotri, S.; Muzykantov, V. R. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol. Therapy 2008, 16, 1450–1458.

    Article  CAS  Google Scholar 

  14. Geng, Y.; Dalhaimer, P.; Cai, S. S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2007, 2, 249–255.

    Article  CAS  Google Scholar 

  15. Arnida; Janát-Amsbury, M. M.; Ray, A.; Peterson, C. M.; Ghandehari, H. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur. J. Pharma. Biopharma. 2011, 77, 417–423.

    Article  Google Scholar 

  16. Champion, J. A.; Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. USA 2006, 103, 4930–4934.

    Article  CAS  Google Scholar 

  17. Yue, J.; Feliciano, T. J.; Li, W.; Lee, A.; Odom, T. W. Gold nano-particle size and shape effects on cellular uptake and intracellular distribution of siRNA nanoconstructs. Bioconjugate Chem. 2017, 28, 1791–1800.

    Article  CAS  Google Scholar 

  18. Smith, B. R.; Kempen, P.; Bouley, D.; Xu, A.; Liu, Z.; Melosh, N.; Dai, H. J.; Sinclair, R.; Gambhir, S. S. Shape matters: Intravital microscopy reveals surprising geometrical dependence for nanoparticles in tumor models of extravasation. Nano Lett. 2012, 12, 3369–3377.

    Article  CAS  Google Scholar 

  19. Peiris, P. M.; Toy, R.; Doolittle, E.; Pansky, J.; Abramowski, A.; Tam, M.; Vicente, P.; Tran, E.; Hayden, E.; Camann, A. et al. Imaging metastasis using an integrin-targeting chain-shaped nanoparticle. ACS Nano 2012, 6, 8783–8795.

    Article  CAS  Google Scholar 

  20. Peiris, P. M.; Bauer, L.; Toy, R.; Tran, E.; Pansky, J.; Doolittle, E.; Schmidt, E.; Hayden, E.; Mayer, A.; Keri, R. A. et al. Enhanced delivery of chemotherapy to tumors using a multicomponent nanochain with radio-frequency-tunable drug release. ACS Nano 2012, 6, 4157- 4168.

    Article  CAS  Google Scholar 

  21. Barua, S.; Yoo, J. W.; Kolhar, P.; Wakankar, A.; Gokarn, Y. R.; Mitragotri, S. Particle shape enhances specificity of antibody-displaying nanoparticles. Proc. Natl. Acad. Sci. USA 2013, 110, 3270–3275.

    Article  CAS  Google Scholar 

  22. Toy, R.; Peiris, P. M.; Ghaghada, K. B.; Karathanasis, E. Shaping cancer nanomedicine: The effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine 2014, 9, 121–134.

    Article  CAS  Google Scholar 

  23. Singh, G.; Van Helvoort, A. T. J.; Bandyopadhyay, S.; Volden, S.; Andreassen, J. P.; Glomm, W. R. Synthesis of Au nanowires with controlled morphological and structural characteristics. Appl. Surf. Sci. 2014, 311, 780–788.

    Article  CAS  Google Scholar 

  24. Chang, Y. X.; Zhang, N. N.; Xing, Y. C.; Zhang, Q. F.; Oh, A.; Gao, H. M.; Zhu, Y.; Baik, H.; Kim, B.; Yang, Y. et al. Gold nanotetrapods with unique topological structure and ultranarrow plasmonic band as multifunctional therapeutic agents. J. Phys. Chem. Lett. 2019, 10, 4505–4510.

    Article  CAS  Google Scholar 

  25. Chen, S. H; Wang, Z. L.; Ballato, J.; Foulger, S. H.; Carroll, D. L. Monopod, bipod, tripod, and tetrapod gold nanocrystals. J. Am. Chem. Soc. 2003, 125, 16186–16187.

    Article  CAS  Google Scholar 

  26. Sánchez-Iglesias, A.; Winckelmans, N.; Altantzis, T.; Bals, S.; Grzelczak, M.; Liz-Marzán, L. M. High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning. J. Am. Chem. Soc. 2017, 139, 107–110.

    Article  Google Scholar 

  27. Zheng, Y. Q.; Liu, W. Y.; Lv, T.; Luo, M.; Hu, H. F.; Lu, P.; Choi, S. I.; Zhang, C.; Tao, J.; Zhu, Y. M. et al. Seed-mediated synthesis of gold tetrahedra in high purity and with tunable, well-controlled sizes. Chem. Asian J. 2014, 9, 2635–2640.

    Article  CAS  Google Scholar 

  28. Chen, L.; Ji, F.; Xu, Y.; He, L.; Mi, Y. F.; Bao, F.; Sun, B. Q.; Zhang, X. H.; Zhang, Q. High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 2014, 14, 7201–7206.

    Article  CAS  Google Scholar 

  29. Kuo, B. H.; Hsia, C. F.; Chen, T. N.; Huang, M. H. Systematic shape evolution of gold nanocrystals achieved through adjustment in the amount of HAuCl4 solution used. J. Phys. Chem. C 2018, 122, 25118–25126.

    Article  CAS  Google Scholar 

  30. Bandyopadhyay, S.; Singh, G.; Glomm, W. R. Shape tunable synthesis of anisotropic gold nanostructures through binary surfactant mixtures. Mater. Today Chem. 2017, 3, 1–9.

    Article  Google Scholar 

  31. Langille, M. R.; Personick, M. L.; Zhang, J.; Mirkin, C. A. Defining rules for the shape evolution of gold nanoparticles. J. Am. Chem. Soc. 2012, 134, 14542–14554.

    Article  CAS  Google Scholar 

  32. Personick, M.L.; Langille, M. R.; Wu, J.; Mirkin C. A. Synthesis of gold hexagonal bipyramids directed by planar-twinned silver triangular nanoprisms. J. Am. Soc. Chem. 2013, 135, 3800–3803.

    Article  CAS  Google Scholar 

  33. Harper-Harris, J.; Kant, K.; Singh, G. Oleic acid-assisted synthesis of tunable high-aspect-ratio multiply-twinned gold nanorods for bioimaging. ACS Appl. Nano Mater. 2021, 4, 3325–3330.

    Article  CAS  Google Scholar 

  34. Ahn, H. Y.; Lee, H. E.; Jin, K.; Nam, K. T. Extended gold nanomorphology diagram: Synthesis of rhombic dodecahedra using CTAB and ascorbic acid. J. Mater. Chem. C 2013, 1, 6861–6868.

    Article  CAS  Google Scholar 

  35. Ye, E. Y.; Regulacio, M. D.; Zhang, S. Y.; Loh, X. J.; Han, M. Y. Anisotropically branched metal nanostructures. Chem. Soc. Rev. 2015, 44, 6001–6017.

    Article  CAS  Google Scholar 

  36. Chang, Y. X.; Gao, H. M.; Zhang, N. N.; Tao, X. F.; Sun, T.; Zhang, J.; Lu, Z. Y.; Liu, K.; Yang, B. Synergistic reducing effect for synthesis of well-defined au nanooctopods with ultra-narrow plasmon band width and high photothermal conversion efficiency. Front. Chem. 2018, 6, 335.

    Article  Google Scholar 

  37. Weiner, R. G.; Kunz, M. R.; Skrabalak, S. E. Seeding a new kind of garden: Synthesis of architecturally defined multimetallic nanostructures by seed-mediated co-reduction. Acc. Chem. Res. 2015, 48, 2688–2695.

    Article  CAS  Google Scholar 

  38. Desantis, C. J.; Peverly, A. A.; Peters, D. G.; Skrabalak, S. E. Octopods versus concave nanocrystals: Control of morphology by manipulating the kinetics of seeded growth via co-reduction. Nano Lett. 2011, 11, 2164–2168.

    Article  CAS  Google Scholar 

  39. DeSantis, C. J.; Sue, A. C.; Bower, M. M.; Skrabalak, S. E. Seed-mediated co-reduction: A versatile route to architecturally controlled bimetallic nanostructures. ACS Nano 2012, 6, 2617–2628.

    Article  CAS  Google Scholar 

  40. Iavicoli, I.; Farina, M.; Fontana, L.; Lucchetti, D.; Leso, V.; Fanali, C.; Cufino, V.; Boninsegna, A.; Leopold, K.; Schindl, R. et al. In vitro evaluation of the potential toxic effects of palladium nanoparticles on fibroblasts and lung epithelial cells. Toxicol. Vitro 2017, 42, 191–199.

    Article  CAS  Google Scholar 

  41. Leso, V.; Iavicoli, I. Palladium nanoparticles: Toxicological effects and potential implications for occupational risk assessment. Int. J. Mol. Sci. 2018, 19, 503.

    Article  Google Scholar 

  42. Walsh, M. J.; Barrow, S. J.; Tong, W. M.; Funston, A. M.; Etheridge, J. Symmetry breaking and silver in gold nanorod growth. ACS Nano 2015, 9, 715–724.

    Article  CAS  Google Scholar 

  43. Njoki, P. N.; Luo, J.; Kamundi, M. M.; Lim, S.; Zhong, C. J. Aggregative growth in the size-controlled growth of monodispersed gold nanoparticles. Langmuir 2010, 26, 13622–13629.

    Article  CAS  Google Scholar 

  44. Barmparis, G. D.; Lodziana, Z.; Lopez, N.; Remediakis, I. N. Nanoparticle shapes by using Wulff constructions and first-principles calculations. Beilstein J. Nanotechnol. 2015, 6, 361–368.

    Article  Google Scholar 

  45. Wen, Y. N.; Zhang, J. M. Surface energy calculation of the fcc metals by using the MAEAM. Solid State Commun. 2007, 144, 163–167.

    Article  CAS  Google Scholar 

  46. Noguez, C. Surface plasmons on metal nanoparticles: The influence of shape and physical environment. J. Phys. Chem. C 2007, 111, 3806–3819.

    Article  CAS  Google Scholar 

  47. Marqués-González, S.; Matsushita, R.; Kiguchi, M. Surface enhanced Raman scattering of molecules in metallic nanogaps. J. Optics 2015, 17, 114001.

    Article  Google Scholar 

  48. Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Australian Research Council and the Australian National Health and Medical Research Council. The authors acknowledge the Australian Centre for Microscopy and Microanalysis, and the Sydney Nano, University of Sydney with technical support for the materials characterization. Authors would like to thank IITM-UniSyd Global alliance for partial research support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gurvinder Singh or Hala Zreiqat.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Jami, H., Lesani, P. et al. Evolution of stellated gold nanoparticles: New conceptual insights into controlling the surface processes. Nano Res. 15, 1260–1268 (2022). https://doi.org/10.1007/s12274-021-3635-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3635-1

Keywords

Navigation