Skip to main content
Log in

Versatile sensing devices for self-driven designated therapy based on robust breathable composite films

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Flexible wearable electronics were developed for applications such as electronic skins, human-machine interactions, healthcare monitoring, and anti-infection therapy. But conventional materials showed impermeability, single sensing ability, and no designated therapy, which hindered their applications. Thus it was still a great challenge to develop electronic devices with multifunctional sensing properties and self-driven anti-infection therapy. Herein, flexible and breathable on-skin electronic devices for multifunctional fabric based sensing and self-driven designated anti-infection therapy were prepared successfully with cellulose nanocrystals/iron(III) ion/polyvinyl alcohol (CNC/Fe3+/PVA) composite. The resultant composite films possessed robust mechanical performances, outstanding conductivity, and distinguished breathability (3.03 kg/(m2·d)), which benefited from the multiple interactions of weak hydrogen bonds and Fe3+ chelation and synergistic effects among CNC, polyaniline (PANI), and PVA. Surprisingly, the film could be assembled as a multifunctional sensor to actively monitor real-time physical and infection related signals such as temperature, moisture, pH, NH3, and human movements even at sweat states. More importantly, this multifunctional device could act as a self-driven therapist to eliminate bacterial by the release of Fe3+, which was driven by the damage of metal coordination Fe-O bonds due to the high temperature caused by infection at wound sites. Thus, the composite films had potential versatile applications in electronic skins, smart wound dressings, human-machine interactions, and self-driven anti-infection therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, G. R.; Li, Y. Z.; Bick, M.; Chen, J. Smart textiles for electricity generation. Chem. Rev. 2020, 120, 3668–3720.

    Article  CAS  Google Scholar 

  2. Zhang, N. N.; Huang, F.; Zhao, S. L.; Lv, X. H.; Zhou, Y. H.; Xiang, S. W.; Xu, S. M.; Li, Y. Z.; Chen, G. R.; Tao, C. Y. et al. Photorechargeable fabrics as sustainable and robust power sources for wearable bioelectronics. Matter 2020, 2, 1260–1269.

    Article  Google Scholar 

  3. Chen, J.; Huang, Y.; Zhang, N. N.; Zou, H. Y.; Liu, R. Y.; Tao, C. Y.; Fan, X.; Wang, Z. L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138.

    Article  CAS  Google Scholar 

  4. Meng, K. Y.; Zhao, S. L.; Zhou, Y. H.; Wu, Y. F.; Zhang, S. L.; He, Q.; Wang, X.; Zhou, Z. H.; Fan, W. J.; Tan, X. L. et al. A wireless textile-based sensor system for self-powered personalized health care. Matter 2020, 2, 896–907.

    Article  Google Scholar 

  5. Zhou, Z. H.; Padgett, S.; Cai, Z. X.; Conta, G.; Wu, Y. F.; He, Q.; Zhang, S. L.; Sun, C. C.; Liu, J.; Fan, E. D. et al. Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep. Biosens. Bioelectron. 2020, 155, 112064.

    Article  CAS  Google Scholar 

  6. Xie, Y. S.; Xie, R.; Yang, H. C.; Chen, Z. W.; Hou, J. W.; López-Barrón, C. R.; Wagner, N. J.; Gao, K. Z. Iono-elastomer-based wearable strain sensor with real-time thermomechanical dual response. ACS Appl. Mater. Interfaces 2018, 10, 32435–32443.

    Article  CAS  Google Scholar 

  7. Xiao, X.; Chen, G. R.; Libanori, A.; Chen, J. Wearable triboelectric nanogenerators for therapeutics. Trends Chem. 2021, 3, 279–290.

    Article  CAS  Google Scholar 

  8. Zhang, S. L.; Bick, M.; Xiao, X.; Chen, G. R.; Nashalian, A.; Chen, J. Leveraging triboelectric nanogenerators for bioengineering. Matter 2021, 4, 845–887.

    Article  CAS  Google Scholar 

  9. Zhou, Z. H.; Chen, K.; Li, X. S.; Zhang, S. L.; Wu, Y. F.; Zhou, Y. H.; Meng, K. Y.; Sun, C. C.; He, Q.; Fan, W. J. et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 2020, 3, 571–578.

    Article  Google Scholar 

  10. Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z. N.; Park, S. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019, 31, 1904765.

    Article  CAS  Google Scholar 

  11. Wu, H. X.; Su, Z. M.; Shi, M. Y.; Miao, L. M.; Song, Y.; Chen, H. T.; Han, M. D.; Zhang, H. X. Self-powered noncontact electronic skin for motion sensing. Adv. Funct. Mater. 2018, 28, 1704641.

    Article  Google Scholar 

  12. Wang, X. W.; Gu, Y.; Xiong, Z. P.; Cui, Z.; Zhang, T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 2014, 26, 1336–1342.

    Article  CAS  Google Scholar 

  13. Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D. H. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 2016, 28, 4203–4218.

    Article  CAS  Google Scholar 

  14. Pang, Q.; Lou, D.; Li, S. J.; Wang, G. M.; Qiao, B. B.; Dong, S. R.; Ma, L.; Gao, C. Y.; Wu, Z. H. Smart flexible electronics-integrated wound dressing for real-time monitoring and on-demand treatment of infected wounds. Adv. Sci. 2020, 7, 1902673.

    Article  CAS  Google Scholar 

  15. Wang, X. D.; Zhang, Y. F.; Zhang, X. J.; Huo, Z. H.; Li, X. Y.; Que, M. L.; Peng, Z. C.; Wang, H.; Pan, C. F. A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics. Adv. Mater. 2018, 30, 1706738.

    Article  Google Scholar 

  16. Guo, S. Z.; Qiu, K. Y.; Meng, F. B.; Park, S. H.; McAlpine, M. C. 3D printed stretchable tactile sensors. Adv. Mater. 2017, 29, 1701218.

    Article  Google Scholar 

  17. He, J. H.; Shi, M. T.; Liang, Y. P.; Guo, B. L. Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds. Chem. Eng. J. 2020, 394, 124888.

    Article  CAS  Google Scholar 

  18. Tavakoli, S.; Klar, A. S. Advanced hydrogels as wound dressings. Biomolecules 2020, 10, 1169.

    Article  CAS  Google Scholar 

  19. Pan, N.; Qin, J. R.; Feng, P. P.; Li, Z. K.; Song, B. T. Color-changing smart fibrous materials for naked eye real-time monitoring of wound pH. J. Mater. Chem. B 2019, 7, 2626–2633.

    Article  CAS  Google Scholar 

  20. Gamerith, C.; Luschnig, D.; Ortner, A.; Pietrzik, N.; Guse, J. H.; Burnet, M.; Haalboom, M.; van der Palen, J.; Heinzle, A.; Sigl, E. et al. pH-responsive materials for optical monitoring of wound status. Sens. Actuator B: Chem. 2019, 301, 126966.

    Article  CAS  Google Scholar 

  21. Huang, J. N.; Xu, Z. J.; Qiu, W.; Chen, F.; Meng, Z. H.; Hou, C.; Guo, W. X.; Liu, X. Y. Stretchable and heat-resistant protein-based electronic skin for human thermoregulation. Adv. Funct. Mater. 2020, 30, 1910547.

    Article  CAS  Google Scholar 

  22. Song, M. L.; Yu, H. Y.; Zhu, J. Y.; Ouyang, Z. F.; Abdalkarim, S. Y. H.; Tam, K. C.; Li, Y. Z. Constructing stimuli-free self-healing, robust and ultrasensitive biocompatible hydrogel sensors with conductive cellulose nanocrystals. Chem. Eng. J. 2020, 398, 125547.

    Article  CAS  Google Scholar 

  23. Zhu, M. H.; Yu, H. Y.; Tang, F.; Li, Y. Z.; Liu, Y. N.; Yao, J. M. Robust natural biomaterial based flexible artificial skin sensor with high transparency and multiple signals capture. Chem. Eng. J. 2020, 394, 124855.

    Article  CAS  Google Scholar 

  24. Wang, D. C.; Yu, H. Y.; Qi, D. M.; Ramasamy, M.; Yao, J. M.; Tang, F.; Tam, K. C.; Ni, Q. Q. Supramolecular self-assembly of 3D conductive cellulose nanofiber aerogels for flexible supercapacitors and ultrasensitive sensors. ACS Appl. Mater. Interfaces 2019, 11, 24435–24446.

    Article  CAS  Google Scholar 

  25. Xiao, G.; He, J.; Chen, X. D.; Qiao, Y.; Wang, F.; Xia, Q. Y.; Yu, L.; Lu, Z. S. A wearable, cotton thread/paper-based microfluidic device coupled with smartphone for sweat glucose sensing. Cellulose 2019, 26, 4553–4562.

    Article  CAS  Google Scholar 

  26. Heo, J. S.; Hossain, M. F.; Kim, I. Challenges in design and fabrication of flexible/stretchable carbon- and textile-based wearable sensors for health monitoring: A critical review. Sensors 2020, 20, 3927.

    Article  CAS  Google Scholar 

  27. Yang, Y.; Huang, Q. B.; Payne, G. F.; Sun, R. C.; Wang, X. H. A highly conductive, pliable and foldable Cu/cellulose paper electrode enabled by controlled deposition of copper nanoparticles. Nanoscale 2019, 11, 725–732.

    Article  CAS  Google Scholar 

  28. Gao, L.; Zhu, C. X.; Li, L.; Zhang, C. W.; Liu, J. H.; Yu, H. D.; Huang, W. All paper-based flexible and wearable piezoresistive pressure sensor. ACS Appl. Mater. Interfaces 2019, 11, 25034–25042.

    Article  CAS  Google Scholar 

  29. Sala de Medeiros, M.; Chanci, D.; Martinez, R. V. Moisture-insensitive, self-powered paper-based flexible electronics. Nano Energy 2020, 78, 105301.

    Article  CAS  Google Scholar 

  30. Zheng, S. D.; Wu, X. T.; Huang, Y. H.; Xu, Z. W.; Yang, W.; Liu, Z. Y.; Yang, M. B. Multifunctional and highly sensitive piezoresistive sensing textile based on a hierarchical architecture. Compos. Sci. Technol. 2020, 197, 108255.

    Article  CAS  Google Scholar 

  31. Lin, X. Z.; Gao, S.; Fei, T.; Liu, S.; Zhao, H. R.; Zhang, T. Study on a paper-based piezoresistive sensor applied to monitoring human physiological signals. Sens. Actuators A: Phys. 2019, 292, 66–70.

    Article  CAS  Google Scholar 

  32. Lin, Z. M.; Yang, J.; Li, X. S.; Wu, Y. F.; Wei, W.; Liu, J.; Chen, J.; Yang, J. Large-scale and washable smart textiles based on triboelectric nanogenerator arrays for self-powered sleeping monitoring. Adv. Funct. Mater. 2018, 28, 1704112.

    Article  Google Scholar 

  33. Meng, K. Y.; Chen, J.; Li, X. S.; Wu, Y. F.; Fan, W. J.; Zhou, Z. H.; He, Q.; Wang, X.; Fan, X.; Zhang, Y. X. et al. Flexible weaving constructed self-powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure. Adv. Funct. Mater. 2019, 29, 1806388.

    Google Scholar 

  34. Mostafalu, P.; Tamayol, A.; Rahimi, R.; Ochoa, M.; Khalilpour, A.; Kiaee, G.; Yazdi, I. K.; Bagherifard, S.; Dokmeci, M. R.; Ziaie, B. et al. Smart bandage for monitoring and treatment of chronic wounds. Small 2018, 14, 1703509.

    Article  Google Scholar 

  35. Widmer, S.; Dorrestijn, M.; Camerlo, A.; Urek, Š. K.; Lobnik, A.; Housecroft, C. E.; Constable, E. C.; Scherer, L. J. Coumarin meets fluorescein: A förster resonance energy transfer enhanced optical ammonia gas sensor. Analyst 2014, 139, 4335–4342.

    Article  CAS  Google Scholar 

  36. Chen, W.; Laiho, S.; Vaittinen, O.; Halonen, L.; Ortiz, F.; Forsblom, C.; Groop, P. H.; Lehto, M.; Metsälä, M. Biochemical pathways of breath ammonia (NH3) generation in patients with end-stage renal disease undergoing hemodialysis. J. Breath Res. 2016, 10, 036011.

    Article  CAS  Google Scholar 

  37. Yu, H. Y.; Abdalkarim, S. Y. H.; Zhang, H.; Wang, C.; Tam, K. C. Simple process to produce high-yield cellulose nanocrystals using recyclable citric/hydrochloric acids. ACS Sustain. Chem. Eng. 2019, 7, 4912–4923.

    Article  CAS  Google Scholar 

  38. Azizi, S.; Ahmad, M.; Mahdavi, M.; Abdolmohammadi, S. Preparation, characterization, and antimicrobial activities of ZnO nanoparticles/cellulose nanocrystal nanocomposites. BioResources 2013, 8, 1841–1851.

    Article  Google Scholar 

  39. Shao, C. Y.; Wang, M.; Meng, L.; Chang, H. L.; Wang, B.; Xu, F.; Yang, J.; Wan, P. B. Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem. Mater. 2018, 30, 3110–3121.

    Article  CAS  Google Scholar 

  40. Liu, Y. J.; Cao, W. T.; Ma, M. G.; Wan, P. B. Ultrasensitive wearable soft strain sensors of conductive, self-healing, and elastic hydrogels with synergistic “soft and hard” hybrid networks. ACS Appl. Mater. Interfaces 2017, 9, 25559–25570.

    Article  CAS  Google Scholar 

  41. Zhang, G. Y.; Liu, Y.; Morikawa, H.; Chen, Y. Y. Application of ZnO nanoparticles to enhance the antimicrobial activity and ultraviolet protective property of bamboo pulp fabric. Cellulose 2013, 20, 1877–1884.

    Article  CAS  Google Scholar 

  42. Yu, H. Y.; Chen, G. Y.; Wang, Y. B.; Yao, J. M. A facile one-pot route for preparing cellulose nanocrystal/zinc oxide nanohybrids with high antibacterial and photocatalytic activity. Cellulose 2015, 22, 261–273.

    Article  CAS  Google Scholar 

  43. Fang, Y. C.; Liu, X. H.; Tao, X. C. Intumescent flame retardant and anti-dripping of pet fabrics through layer-by-layer assembly of chitosan and ammonium polyphosphate. Prog. Org. Coat. 2019, 134, 162–168.

    Article  CAS  Google Scholar 

  44. Lu, J.; Wang, T.; Drzal, L. T. Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos. Part A: Appl. Sci. Manuf. 2008, 39, 738–746.

    Article  Google Scholar 

  45. Han, L.; Cui, S. B.; Yu, H. Y.; Song, M. L.; Zhang, H. Y.; Grishkewich, N.; Huang, C. G.; Kim, D.; Tam, K. M. C. Self-healable conductive nanocellulose nanocomposites for biocompatible electronic skin sensor systems. ACS Appl. Mater. Interfaces 2019, 11, 44642–44651.

    Article  CAS  Google Scholar 

  46. Chen, Y. X.; Zhu, J. Y.; Yu, H. Y.; Li, Y. Z. Fabricating robust soft-hard network of self-healable polyvinyl alcohol composite films with functionalized cellulose nanocrystals. Compos. Sci. Technol. 2020, 194, 108165.

    Article  CAS  Google Scholar 

  47. Xu, H. Y.; Xie, Y. Y.; Zhu, E. W.; Liu, Y.; Shi, Z. Q.; Xiong, C. X.; Yang, Q. L. Supertough and ultrasensitive flexible electronic skin based on nanocellulose/sulfonated carbon nanotube hydrogel films. J. Mater. Chem. A 2020, 8, 6311–6318.

    Article  CAS  Google Scholar 

  48. Dong, L. B.; Xu, C. J.; Li, Y.; Pan, Z. Z.; Liang, G. M.; Zhou, E. L.; Kang, F. Y.; Yang, Q. H. Breathable and wearable energy storage based on highly flexible paper electrodes. Adv. Mater. 2016, 28, 9313–9319.

    Article  CAS  Google Scholar 

  49. Qiu, Q.; Zhu, M. M.; Li, Z. L.; Qiu, K. L.; Liu, X. Y.; Yu, J. Y.; Ding, B. Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics. Nano Energy 2019, 58, 750–758.

    Article  CAS  Google Scholar 

  50. Li, Y.; Yang, F. F.; Yu, J. Y.; Ding, B. Hydrophobic fibrous membranes with tunable porous structure for equilibrium of breathable and waterproof performance. Adv. Mater. Interfaces 2016, 3, 1600516.

    Article  Google Scholar 

  51. Sheng, J. L.; Zhang, M.; Xu, Y.; Yu, J. Y.; Ding, B. Tailoring water-resistant and breathable performance of polyacrylonitrile nanofibrous membranes modified by polydimethylsiloxane. ACS Appl. Mater. Interfaces 2016, 8, 27218–27226.

    Article  CAS  Google Scholar 

  52. Li, W.; Zeng, X. P.; Wang, H.; Wang, Q.; Yang, Y. J. Polyaniline-poly(styrene sulfonate) conducting hydrogels reinforced by supramolecular nanofibers and used as drug carriers with electric-driven release. Eur. Polym. J. 2015, 66, 513–519.

    Article  CAS  Google Scholar 

  53. Ouyang, Z. F.; Yu, H. Y.; Song, M. L.; Zhu, J. Y.; Wang, D. C. Ultrasensitive and robust self-healing composite films with reinforcement of multi-branched cellulose nanocrystals. Compos. Sci. Technol. 2020, 198, 108300.

    Article  CAS  Google Scholar 

  54. Zheng, Y. J.; Li, Y. L.; Dai, K.; Wang, Y.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y. A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring. Compos. Sci. Technol. 2018, 156, 276–286.

    Article  CAS  Google Scholar 

  55. Li, Z.; Qi, X. M.; Xu, L.; Lu, H. H.; Wang, W. J.; Jin, X. X.; Islam, Z.; Zhu, Y. F.; Fu, Y. Q.; Ni, Q. Q. et al. Self-repairing, large linear working range shape memory carbon nanotubes/ethylene vinyl acetate fiber strain sensor for human movement monitoring. ACS Appl. Mater. Interfaces 2020, 12, 42179–42192.

    Article  CAS  Google Scholar 

  56. Kim, H. W.; Kim, T. Y.; Park, H. K.; You, I.; Kwak, J.; Kim, J. C.; Hwang, H.; Kim, H. S.; Jeong, U. Hygroscopic auxetic on-skin sensors for easy-to-handle repeated daily use. ACS Appl. Mater. Interfaces 2018, 10, 40141–40148.

    Article  CAS  Google Scholar 

  57. Wu, R. H.; Ma, L. Y.; Hou, C.; Meng, Z. H.; Guo, W. X.; Yu, W. D.; Yu, R.; Hu, F.; Liu, X. Y. Silk composite electronic textile sensor for high space precision 2D combo temperature-pressure sensing. Small 2019, 15, 1901558.

    Article  Google Scholar 

  58. Jeong, W.; Song, J.; Bae, J.; Nandanapalli, K. R.; Lee, S. Breathable nanomesh humidity sensor for real-time skin humidity monitoring. ACS Appl. Mater. Interfaces 2019, 11, 44758–44763.

    Article  CAS  Google Scholar 

  59. Liu, C. H.; Tai, H. L.; Zhang, P.; Yuan, Z.; Du, X. S.; Xie, G. Z.; Jiang, Y. D. A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sens. Actuator B: Chem. 2018, 261, 587–597.

    Article  CAS  Google Scholar 

  60. Liu, C. H.; Tai, H. L.; Zhang, P.; Ye, Z. B.; Su, Y. J.; Jiang, Y. D. Enhanced ammonia-sensing properties of PANI-TiO2-Au ternary self-assembly nanocomposite thin film at room temperature. Sens. Actuator B: Chem. 2017, 246, 85–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Zhejiang Provincial Natural Science Key Foundation of China (No. LZ20E030003), the Fundamental Research Funds of Zhejiang Sci-Tech University (No. 2019Q001), and the Young Elite Scientists Sponsorship Program by CAST (No. 2018QNRC001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houyong Yu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, Z., Cui, S., Yu, H. et al. Versatile sensing devices for self-driven designated therapy based on robust breathable composite films. Nano Res. 15, 1027–1038 (2022). https://doi.org/10.1007/s12274-021-3591-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3591-9

Keywords

Navigation