Skip to main content
Log in

Solution-processed top-contact electrodes strategy for organic crystalline field-effect transistor arrays

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Organic crystals, especially ultra-thin two-dimensional (2D) ones such as monolayer molecular crystals, are fragile and vulnerable to traditional vacuum deposition. Up to now, most of the methods reported for fabricating organic field-effect transistors (OFETs) with top-electrodes on the 2D molecular crystals are based on mechanical-transfer method. Nondestructive method for large scale in-situ electrode deposition is urgent. In this work, the silver mirror reaction (SMR) is introduced to construct top-contact electrodes on 2D organic crystalline thin films. OFETs based on bilayer crystalline films with solution-processed silver electrodes show comparable performance to devices with transferred gold electrodes. In addition to that, OFETs with SMR fabricated silver electrodes show lower contact resistance than the ones with evaporated silver electrodes. Furthermore, the temperature under which SMR electrodes annealed is relatively low (60 °C), making this approach applicable to varies of organic semiconductors, such as spin-coated polymer films, vacuum evaporated films, 2D and even monolayer crystalline films. Besides, OFETs with sub-micrometer channel width and 25 µm channel length are realized which might find practical application in the ultra-small pixel mini/micro-LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Qian, J.; Jiang, S.; Li, S. L.; Wang, X. R.; Shi, Y.; Li, Y. Solution-processed 2D molecular crystals: fabrication techniques, transistor applications, and physics. Adv. Mater. Technol. 2019, 4, 1800182.

    Article  Google Scholar 

  2. Liu, J.; Jiang, L.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B. Monolayer organic field-effect transistors. Sci. China: Chem. 2019, 62, 313–330.

    Article  CAS  Google Scholar 

  3. Fan, Y. W.; Liu, J.; Hu, W. P.; Liu, Y. Q.; Jiang, L. The effect of thickness on the optoelectronic properties of organic field-effect transistors: Towards molecular crystals at monolayer limit. J. Mater. Chem. C 2020, 8, 13154–13168.

    Article  CAS  Google Scholar 

  4. Jiang, L.; Dong, H. L.; Meng, Q.; Li, H. X.; He, M.; Wei, Z. M.; He, Y. D.; Hu, W. P. Millimeter-sized molecular monolayer two-dimensional crystals. Adv. Mater. 2011, 23, 2059–2063.

    Article  CAS  Google Scholar 

  5. Li, H. Y.; Li, Y.; Li, H.; Brédas, J. L. Organic field-effect transistors: A 3D kinetic monte carlo simulation of the current characteristics in micrometer-sized devices. Adv. Funct. Mater. 2017, 27, 1605715.

    Article  Google Scholar 

  6. Jiang, L. F.; Liu, J.; Shi, Y. J.; Zhu, D. L.; Zhang, H. T.; Hu, Y. Y.; Yu, J. S.; Hu, W. P.; Jiang, L. Realizing low-voltage operating crystalline monolayer organic field-effect transistors with a low contact resistance. J. Mater. Chem. C 2019, 7, 3436–3442.

    Article  CAS  Google Scholar 

  7. Shi, Y. J.; Jiang, L.; Liu, J.; Tu, Z. Y.; Hu, Y. Y.; Wu, Q. H.; Yi, Y. P.; Gann, E.; McNeill, C. R.; Li, H. X. et al. Bottom-up growth of n-type monolayer molecular crystals on polymeric substrate for optoelectronic device applications. Nat. Commun. 2018, 9, 2933.

    Article  Google Scholar 

  8. Jiang, L. F.; Liu, J.; Lu, X. Q.; Fu, L. L.; Shi, Y. J.; Zhang, J.; Zhang, X.; Geng, H.; Hu, Y. Y.; Dong, H. L. et al. Controllable growth of C8-BTBT single crystalline microribbon arrays by a limited solvent vapor-assisted crystallization (LSVC) method. J. Mater. Chem. C 2018, 6, 2419–2423.

    Article  CAS  Google Scholar 

  9. Peng, B. Y.; Huang, S. Y.; Zhou, Z. W.; Chan, P. K. L. Solution-processed monolayer organic crystals for high-performance field-effect transistors and ultrasensitive gas sensors. Adv. Funct. Mater. 2017, 27, 1700999.

    Article  Google Scholar 

  10. Yamamura, A.; Watanabe, S.; Uno, M.; Mitani, M.; Mitsui, C.; Tsurumi, J.; Isahaya, N.; Kanaoka, Y.; Okamoto, T.; Takeya, J. Wafer-scale, layer-controlled organic single crystals for high-speed circuit operation. Sci. Adv. 2018, 4, eaao5758.

  11. Wang, Q. J.; Qian, J.; Li, Y.; Zhang, Y. H.; He, D. W.; Jiang, S.; Wang, Y.; Wang, X. R.; Pan, L. J.; Wang, J. Z. et al. 2D molecular semiconductors: 2D single-crystalline molecular semiconductors with precise layer definition achieved by floating-coffee-ring-driven assembly (Adv. Funct. Mater. 19/2016). Adv. Funct. Mater. 2016, 26, 3191–3198.

    Article  CAS  Google Scholar 

  12. Zhao, H. J.; Zhao, Y. B.; Song, Y. X.; Zhou, M.; Lv, W.; Tao, L.; Feng, Y. Z.; Song, B. Y.; Ma, Y.; Zhang, J. Q. et al. Strong optical response and light emission from a monolayer molecular crystal. Nat Commun. 2019, 10, 5589.

    Article  CAS  Google Scholar 

  13. He, D. W.; Qiao, J. S.; Zhang, L. L.; Wang, J. Y.; Lan, T.; Qian, J.; Li, Y.; Shi, Y.; Chai, Y.; Lan, W. et al. Ultrahigh mobility and efficient charge injection in monolayer organic thin-film transistors on boron nitride. Sci. Adv. 2017, 3, e1701186.

    Article  Google Scholar 

  14. Wang, Y.; Zhang, J. Y.; Zhang, S. Q.; Huang, J. OFET chemical sensors: Chemical sensors based on ultrathin organic field-effect transistors. Polym. Int. 2021, 70, 414–425.

    Article  CAS  Google Scholar 

  15. Fang, L.; Dai, S. L.; Zhao, Y. W.; Liu, D. P.; Huang, J. Light-stimulated artificial synapses based on 2D organic field-effect transistors. Adv. Electron. Mater. 2020, 6, 1901217.

    Article  CAS  Google Scholar 

  16. Wang, W.; Lu, B.; Deng, W.; Zhang, X. J.; Lu, Z. J.; Wu, D.; Jie, J. S.; Zhang, X. H. Controlled 2D growth of organic semiconductor crystals by suppressing “coffee-ring” effect. Nano Res. 2020, 13, 2478–2484.

    Article  CAS  Google Scholar 

  17. Wang, J. W.; Deng, W.; Wang, W.; Jia, R. F.; Xu, X. Z.; Xiao, Y. L.; Zhang, X. J.; Jie, J. S.; Zhang, X. H. External-force-driven solution epitaxy of large-area 2D organic single crystals for high-performance field-effect transistors. Nano Res. 2019, 12, 2796–2801.

    Article  CAS  Google Scholar 

  18. Shi, C. Y.; Zhang, Q.; Tian, H.; Qu, D. H. Supramolecular adhesive materials from small-molecule self-assembly. SmartMat. 2020, 1, e1012.

    Article  Google Scholar 

  19. Hu, D. B.; Wang, X. M.; Chen, H. P.; Guo, T. L. High performance flexible nonvolatile memory based on vertical organic thin film transistor. Adv. Funct. Mater. 2017, 27, 1703541.

    Article  Google Scholar 

  20. Zhong, J. F.; Wu, X. M.; Lan, S. Q.; Fang, Y.; Chen, H. P.; Guo, T. L. High performance flexible organic phototransistors with ultrashort channel length. ACS Photonics 2018, 5, 3712–3722.

    Article  CAS  Google Scholar 

  21. He, W.; Zang, H.; Cai, S. H.; Mu, Z. Y.; Liu, C.; Ding, M. N.; Wang, P.; Wang, X. R. Intercalation and hybrid heterostructure integration of two-dimensional atomic crystals with functional organic semiconductor molecules. Nano Res. 2020, 13, 2917–2924.

    Article  CAS  Google Scholar 

  22. Zhang, G. B.; Chen, R. K.; Sun, M. X.; Kim, M.; Wang, W. W.; Qiu, L. Z.; Cho, K.; Ding, Y. S. One-step synthesis of an acceptor-donor-acceptor small molecule based on indacenodithieno[3, 2-b]thiophene and benzothiadiazole units for high-performance solution-processed organic field-effect transistors. J. Mater. Chem. C 2020, 8, 14180–14185.

    Article  CAS  Google Scholar 

  23. Zhang, G. B.; Chen, R. K.; Sun, Y.; Kang, B.; Sun, M. X.; Lu, H. B.; Qiu, L. Z.; Cho, K.; Ding, Y. S. Improved charge transport in fused-ring bridged hemi-isoindigo-based small molecules by incorporating a thiophene unit for solution-processed organic field-effect transistors. J. Mater. Chem. C 2020, 8, 1398–1404.

    Article  CAS  Google Scholar 

  24. Li, H. Y.; Tee, B. C. K.; Cha, J. J.; Cui, Y.; Chung, J. W.; Lee, S. Y.; Bao, Z. N. High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals. J. Am. Chem. Soc. 2012, 134, 2760–2765.

    Article  CAS  Google Scholar 

  25. Li, H. B.; Wu, J. K.; Takahashi, K.; Ren, J.; Wu, R. H.; Cai, H. Y.; Wang, J. R.; Xin, H. L.; Miao, Q.; Yamada, H. et al. Organic heterojunctions formed by interfacing two single crystals from a mixed solution. J. Am. Chem. Soc. 2019, 141, 10007–10015.

    Article  CAS  Google Scholar 

  26. Wang, L.; Zhang, X. J.; Dai, G. L.; Deng, W.; Jie, J. S.; Zhang, X. H. High-mobility air-stable n-type field-effect transistors based on large-area solution-processed organic single-crystal arrays. Nano Res. 2018, 11, 882–891.

    Article  CAS  Google Scholar 

  27. Yang, F. X.; Sun, L. J.; Duan, Q. X.; Dong, H. L.; Jing, Z. K.; Yang, Y. C.; Li, R. J.; Zhang, X. T.; Hu, W. P.; Chua, L. Vertical-organic-nanocrystal-arrays for crossbar memristors with tuning switching dynamics toward neuromorphic computing. SmartMat 2021, 2, 99–108.

    Article  Google Scholar 

  28. Fang, Y.; Wu, X. M.; Lan, S. Q.; Zhong, J. F.; Sun, D. W.; Chen, H. P.; Guo, T. L. Inkjet-printed vertical organic field-effect transistor arrays and their image sensors. ACS Appl. Mater. Interfaces 2018, 10, 30587–30595.

    Article  CAS  Google Scholar 

  29. Yang, J.; Wang, H. L.; Chen, J. Y.; Huang, J. Y.; Jiang, Y. Y.; Zhang, J. Q.; Shi, L. X.; Sun, Y. L.; Wei, Z. X.; Yu, G. et al. Bisdiketopyrrolopyrrole moiety as a promising building block to enable balanced ambipolar polymers for flexible transistors. Adv. Mater. 2017, 29, 1606162.

    Article  Google Scholar 

  30. Yang, J.; Zhao, Z. Y.; Geng, H.; Cheng, C. L.; Chen, J. Y.; Sun, Y. L.; Shi, L. X.; Yi, Y.; Shuai, Z. G.; Guo, Y. L. et al. Isoindigo-based polymers with small effective masses for high-mobility ambipolar field-effect transistors. Adv. Mater. 2017, 29, 1702115.

    Article  Google Scholar 

  31. Yang, J.; Jiang, Y. Q.; Tu, Z. Y.; Zhao, Z. Y.; Chen, J. Y.; Yi, Z. R.; Li, Y. F.; Wang, S.; Yi, Y. P.; Guo, Y. L. et al. High-performance ambipolar polymers based on electron-withdrawing group substituted bay-annulated indigo. Adv. Funct. Mater. 2019, 29, 1804839.

    Article  Google Scholar 

  32. Tang, Q. X.; Tong, Y. H.; Li, H. X.; Ji, Z. Y.; Li, L. Q.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B. High-performance air-stable bipolar field-effect transistors of organic single-crystalline ribbons with an airgap dielectric. Adv. Mater. 2008, 20, 1511–1515.

    Article  CAS  Google Scholar 

  33. Peng, B. Y.; Cao, K.; Lau, A. H. Y.; Chen, M.; Lu, Y.; Chan, P. K. L. Crystallized monolayer semiconductor for ohmic contact resistance, high intrinsic gain, and high current density. Adv. Mater. 2020, 32, 2002281.

    Article  CAS  Google Scholar 

  34. Ji, D. Y.; Jiang, L.; Dong, H. L.; Meng, Q.; Zhen, Y. G.; Hu, W. P. Silver mirror reaction for organic electronics: towards high-performance organic field-effect transistors and circuits. J. Mater. Chem. C. 2014, 2, 4142–4146.

    Article  CAS  Google Scholar 

  35. Ji, D. Y.; Jiang, L.; Guo, Y. L.; Dong, H. L.; Wang, J. P.; Chen, H. J.; Meng, Q.; Fu, X. L.; Tian, G. F.; Wu, D. Z. et al. “Regioselective deposition” method to pattern silver electrodes facilely and efficiently with high resolution: Towards all-solution-processed, high-performance, bottom-contacted, flexible, polymer-based electronics. Adv. Funct. Mater. 2014, 24, 3783–3789.

    Article  CAS  Google Scholar 

  36. Ferreira, R. X. G.; Xie, E. Y.; McKendry, J. J. D.; Rajbhandari, S.; Chun, H.; Faulkner, G.; Watson, S.; Kelly, A. E.; Gu, E.; Penty, R. V. et al. High Bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications. IEEE Photonics Technol. Lett. 2016, 28, 2023–2026.

    Article  CAS  Google Scholar 

  37. Islim, M. S.; Ferreira, R. X.; He, X. Y.; Xie, E. Y.; Videv, S.; Viola, S.; Watson, S.; Bamiedakis, N.; Penty, R. V.; White, I. H. et al. Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED. Photonics Res. 2017, 5, A35–A43.

    Article  CAS  Google Scholar 

  38. Chun, H.; Rajbhandari, S.; Faulkner, G.; Tsonev, D.; Xie, E. Y.; McKendry, J. J. D.; Gu, E. D.; Dawson, M. D.; O’Brien, D. C.; Haas, H. LED Based wavelength division multiplexed 10 Gb/s visible light communications. J. Lightwave Technol. 2016, 34, 3047–3052.

    Article  Google Scholar 

  39. Chun, H.; Manousiadis, P.; Rajbhandari, S.; Vithanage, D. A.; Faulkner, G.; Tsonev, D.; McKendry, J. J. D.; Videv, S.; Xie, E. Y.; Gu, E. D. et al. Visible light communication using a blue GaN µ LED and fluorescent polymer color converter. IEEE Photonics Technol. Lett. 2014, 26, 2035–2038.

    Article  CAS  Google Scholar 

  40. Wu, T. Z.; Sher, C.-W.; Lin, Y.; Lee, C. F.; Liang, S. J.; Lu, Y. J.; Chen, S. W. H.; Guo, W. J.; Kuo, H. C.; Chen, Z. Mini-LED and micro-LED: Promising candidates for the next generation display technology. Appl. Sci. 2018, 8, 1557.

    Article  Google Scholar 

  41. Han, H. V.; Lin, H. Y.; Lin, C. C.; Chong, W. C.; Li, J. R.; Chen, K. J.; Yu, P.; Chen, T. M.; Chen, H. M.; Lau, K. M. et al. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology. Opt. Express 2015, 23, 32504–32515.

    Article  CAS  Google Scholar 

  42. McKendry, J. J. D.; Massoubre, D.; Zhang, S. L.; Rae, B. R.; Green, R. P.; Gu, E. D.; Henderson, R. K.; Kelly, A. E.; Dawson, M. D. Visible-light communications using a CMOS-controlled micro-light-emitting-diode array. J. Lightwave Technol. 2012, 30, 61–67.

    Article  CAS  Google Scholar 

  43. Meng, Q.; Zhang, F. J.; Zang, Y. P.; Huang, D. Z.; Zou, Y.; Liu, J.; Zhao, G. Y.; Wang, Z. R.; Ji, D. Y.; Di, C. A. et al. Solution-sheared ultrathin films for highly-sensitive ammonia detection using organic thin-film transistors. J. Mater. Chem. C Mater. 2014, 2, 1264–1269.

    Article  CAS  Google Scholar 

  44. Zhang, W. M.; Smith, J.; Watkins, S. E.; Gysel, R.; McGehee, M.; Salleo, A.; Kirkpatrick, J.; Ashraf, S.; Anthopoulos, T.; Heeney, M. et al. Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors. J. Am. Chem. Soc. 2010, 132, 11437–11439.

    Article  CAS  Google Scholar 

  45. Bronstein, H.; Leem, D. S.; Hamilton, R.; Woebkenberg, P.; King, S.; Zhang, W. M.; Ashraf, R. S.; Heeney, M.; Anthopoulos, T. D.; De Mello, J. et al. Indacenodithiophene-co-benzothiadiazole copolymers for high performance solar cells or transistors via alkyl chain optimization. Macromolecules 2011, 44, 6649–6652.

    Article  CAS  Google Scholar 

  46. Liu, J.; Zhang, H. T.; Dong, H. L.; Meng, L. Q.; Jiang, L. F.; Jiang, L.; Wang, Y.; Yu, J. S.; Sun, Y. M.; Hu, W. P. et al. High mobility emissive organic semiconductor. Nat. Commun. 2015, 6, 10032.

    Article  CAS  Google Scholar 

  47. Liu, J.; Dong, H. L.; Wang, Z. R.; Ji, D. Y.; Cheng, C. L.; Geng, H.; Zhang, H. T.; Zhen, Y. G.; Jiang, L.; Fu, H. B. et al. Thin film field-effect transistors of 2,6-diphenyl anthracene (DPA). Chem. Commun. 2015, 51, 11777–11779.

    Article  CAS  Google Scholar 

  48. Li, Y.; Liu, C.; Kumatani, A.; Darmawan, P.; Minari, T.; Tsukagoshi, K. Large plate-like organic crystals from direct spin-coating for solution-processed field-effect transistor arrays with high uniformity. Org. Electron. 2012, 13, 264–272.

    Article  CAS  Google Scholar 

  49. Liu, J.; Jiang, L. F.; Shi, J.; Li, C. L.; Shi, Y. J.; Tan, J. H.; Li, H. Y.; Jiang, H.; Hu, Y. Y.; Liu, X. F. et al. Relieving the photosensitivity of organic field-effect transistors. Adv. Mater. 2020, 32, 1906122.

    Article  CAS  Google Scholar 

  50. Chen, C. D.; Chen, Z. H.; Xu, K. J.; Zheng, J. W.; Ou, H.; Wang, Z. G.; Chen, H. J.; Liu, X. Y.; Wu, Q.; Chan, P. K. L. et al. Thin-film transistors with the fringe effect and the correction factor for mobility extraction. IEEE Electron Device Lett. 2019, 40, 897–900.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (Nos. 2017YFA0204704 and 2016YFB0401100), the National Natural Science Foundation of China (Nos. 21805284 and 21873108), the Chinese Academy of Sciences (Hundred Talents Plan), the China Postdoctoral Science Foundation funded project (No. 2019M660807), and the Strategic Priority Research Program (No. XDB30000000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Liu or Lang Jiang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhao, X., Rao, L. et al. Solution-processed top-contact electrodes strategy for organic crystalline field-effect transistor arrays. Nano Res. 15, 858–863 (2022). https://doi.org/10.1007/s12274-021-3563-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3563-0

Keywords

Navigation