Skip to main content
Log in

V-doped Ni3N/Ni heterostructure with engineered interfaces as a bifunctional hydrogen electrocatalyst in alkaline solution: Simultaneously improving water dissociation and hydrogen adsorption

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 19 May 2022

This article has been updated

Abstract

Alkali-water electrolyzers and hydroxide exchange membrane fuel cells are emerging as promising technologies to realize hydrogen economy. Developing cost-effective electrode materials with high activities towards corresponding hydrogen evolution (HER) and oxidation (HOR) reactions plays a crucial role in commercial hydrogen production and utilization. Herein, we fabricated a V-doped Ni3N/Ni heterostructure (V-Ni3N/Ni) through a controlled nitridation treatment on a V-incorporated nickel hydroxide precursor. The resultant catalyst exhibits comparable catalytic activity and durability to commercial Pt/C in terms of both HER (a low overpotential of 44 mV at the current density of 10 mA·cm−2) and HOR (a high current density of 1.54 mA·cm−2 at 0.1 V versus reversible hydrogen electrode) under alkaline conditions. The superior activity of V-Ni3N/Ni grown on different substrates further implies its intrinsic performance. Density functional theory (DFT) calculations reveal that the coupled metallic Ni and doped V can promote the water adsorption, accelerate the Volmer step of alkaline HER, as well as optimize the adsorption and desorption of hydrogen intermediate (H*) to reach a balanced ΔGH* value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

    Article  CAS  Google Scholar 

  2. Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.

    Article  CAS  Google Scholar 

  3. Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

    Article  CAS  Google Scholar 

  4. Mazloomi, K.; Gomes, C. Hydrogen as an energy carrier: Prospects and challenges. Renew. Sust. Energ. Rev. 2012, 16, 3024–3033.

    Article  CAS  Google Scholar 

  5. Zhou, H. Q.; Yu, F.; Zhu, Q.; Sun, J. Y.; Qin, F.; Yu, L.; Bao, J. M.; Yu, Y.; Chen, S.; Ren, Z. F. Water splitting by electrolysis at high current densities under 1.6 volts. Energy Environ. Sci. 2018, 11, 2858–2864.

    Article  CAS  Google Scholar 

  6. Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Wang, Y.; Dong, J. C.; Wu, K. L.; Cheong, W. C.; Mao, J. J. et al. Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1800396.

    Article  CAS  Google Scholar 

  7. Pan, Y.; Zhang, C.; Lin, Y.; Liu, Z.; Wang, M. M.; Chen, C. Electrocatalyst engineering and structure-activity relationship in hydrogen evolution reaction: From nanostructures to single atoms. Sci. China Mater. 2020, 63, 921–948.

    Article  CAS  Google Scholar 

  8. Ye, W.; Ren, C. C.; Liu, D. B.; Wang, C. M.; Zhang, N.; Yan, W. S.; Song, L.; Xiong, Y. J. Maneuvering charge polarization and transport in 2H-MoS2 for enhanced electrocatalytic hydrogen evolution reaction. Nano Res. 2016, 9, 2662–2671.

    Article  CAS  Google Scholar 

  9. Hunt, S. T.; Milina, M.; Wang, Z. S.; Román-Leshkov, Y. Activating earth-abundant electrocatalysts for efficient, low-cost hydrogen evolution/oxidation: Sub-monolayer platinum coatings on titanium tungsten carbide nanoparticles. Energy Environ. Sci. 2016, 9, 3290–3301.

    Article  CAS  Google Scholar 

  10. Huang, G. J.; Liang, W. L.; Wu, Y. L.; Li, J. W.; Jin, Y. Q.; Zeng, H. B.; Zhang, H.; Xie, F. Y.; Chen, J.; Wang, N. et al. Co2P/CoP hybrid as a reversible electrocatalyst for hydrogen oxidation/evolution reactions in alkaline medium. J. Catal. 2020, 390, 23–29.

    Article  CAS  Google Scholar 

  11. Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541.

    Article  CAS  Google Scholar 

  12. Lin, F.; Dong, Z. H.; Yao, Y. H.; Yang, L.; Fang, F.; Jiao, L. F. Electrocatalytic hydrogen evolution of ultrathin Co-Mo5N6 heterojunction with interfacial electron redistribution. Adv. Energy Mater. 2020, 10, 2002176.

    Article  CAS  Google Scholar 

  13. Wang, Y. H.; Chen, L.; Yu, X. M.; Wang, Y. G.; Zheng, G. F. Superb alkaline hydrogen evolution and simultaneous electricity generation by Pt-decorated Ni3N nanosheets. Adv. Energy Mater. 2017, 7, 1601390.

    Article  CAS  Google Scholar 

  14. Zhang, B.; Wang, J. S.; Liu, J.; Zhang, L. S.; Wan, H. Z.; Miao, L.; Jiang, J. J. Dual-descriptor tailoring: The hydroxyl adsorption energy-dependent hydrogen evolution kinetics of high-valance state doped Ni3N in alkaline media. ACS Catal. 2019, 9, 9332–9338.

    Article  CAS  Google Scholar 

  15. Sheng, W. C.; Bivens, A. P.; Myint, M. N. Z.; Zhuang, Z. B.; Forest, R. V.; Fang, Q. R.; Chen, J. G.; Yan, Y. S. Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes. Energy Environ. Sci. 2014, 7, 1719–1724.

    Article  CAS  Google Scholar 

  16. Zhuang, Z. B.; Giles, S. A.; Zheng, J.; Jenness, G. R.; Caratzoulas, S.; Vlachos, D. G.; Yan, Y. S. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte. Nat. Commun. 2016, 7, 10141.

    Article  CAS  Google Scholar 

  17. Duan, Y.; Yu, Z. Y.; Yang, L.; Zheng, L. R.; Zhang, C. T.; Yang, X. T.; Gao, F. Y.; Zhang, X. L.; Yu, X. X.; Liu, R. et al. Bimetallic nickel-molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes. Nat. Commun. 2020, 11, 4789.

    Article  CAS  Google Scholar 

  18. Zhang, S. L.; Zhai, D.; Sun, T. T.; Han, A. J.; Zhai, Y. L.; Cheong, W. C.; Liu, Y.; Su, C. L.; Wang, D. S.; Li, Y. D. In situ embedding Co9S8 into nitrogen and sulfur codoped hollow porous carbon as a bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. Appl. Catal. B: Environ. 2019, 254, 186–193.

    Article  CAS  Google Scholar 

  19. Huang, L. L.; Chen, D. W.; Luo, G.; Lu, Y. R.; Chen, C.; Zou, Y. Q.; Dong, C. L.; Li, Y. F.; Wang, S. Y. Zirconium-regulation-induced bifunctionality in 3D cobalt-iron oxide nanosheets for overall water splitting. Adv. Mater. 2019, 31, 1901439.

    Article  CAS  Google Scholar 

  20. Song, J. F.; Xiang, J. Y.; Mu, C. P.; Wang, B. C.; Wen, F. S.; Su, C.; Wang, C.; Liu, Z. Y. Facile synthesis and excellent electrochemical performance of CoP nanowire on carbon cloth as bifunctional electrode for hydrogen evolution reaction and supercapacitor. Sci. China Mater. 2017, 60, 1179–1186.

    Article  CAS  Google Scholar 

  21. Wu, J. D.; Wang, D. P.; Wan, S.; Liu, H. L.; Wang, C.; Wang, X. An efficient cobalt phosphide electrocatalyst derived from cobalt phosphonate complex for all-pH hydrogen evolution reaction and overall water splitting in alkaline solution. Small 2020, 16, 1900550.

    Article  CAS  Google Scholar 

  22. Kuang, M.; Wang, Q. H.; Ge, H. T.; Han, P.; Gu, Z. X.; Al-Enizi, A. M.; Zheng, G. F. CuCoOX/FeOOH core-shell nanowires as an efficient bifunctional oxygen evolution and reduction catalyst. ACS Energy Lett. 2017, 2, 2498–2505.

    Article  CAS  Google Scholar 

  23. Yang, X.; Nash, J.; Anibal, J.; Dunwell, M.; Kattel, S.; Stavitski, E.; Attenkofer, K.; Chen, J. G.; Yan, Y. S.; Xu, B. J. Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles. J. Am. Chem. Soc. 2018, 140, 13387–13391.

    Article  CAS  Google Scholar 

  24. Jin, H. Y.; Li, L. Q.; Liu, X.; Tang, C.; Xu, W. J.; Chen, S. M.; Song, L.; Zheng, Y.; Qiao, S. Z. Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction. Adv. Mater. 2019, 31, 1902709.

    Article  CAS  Google Scholar 

  25. Sun, X. F.; Chen, C. J.; Liu, S. J.; Hong, S.; Zhu, Q. G.; Qian, Q. L.; Han, B. X.; Zhang, J.; Zheng, L. R. Aqueous CO2 reduction with high efficiency using α-Co(OH)2-supported atomic Ir electrocatalysts. Angew. Chem., Int. Ed. 2019, 58, 4669–4673.

    Article  CAS  Google Scholar 

  26. Yin, Z. Y.; Yu, C.; Zhao, Z. L.; Guo, X. F.; Shen, M. Q.; Li, N.; Muzzio, M.; Li, J. R.; Liu, H.; Lin, H. H. et al. Cu3N nanocubes for selective electrochemical reduction of CO2 to ethylene. Nano Lett. 2019, 19, 8658–8663.

    Article  CAS  Google Scholar 

  27. Tan, D. X.; Zhang, J. L.; Yao, L.; Tan, X. N.; Cheng, X. Y.; Wan, Q.; Han, B. X.; Zheng, L. R.; Zhang, J. Multi-shelled CuO microboxes for carbon dioxide reduction to ethylene. Nano Res. 2020, 13, 768–774.

    Article  CAS  Google Scholar 

  28. Song, F. Z.; Li, W.; Yang, J. Q.; Han, G. Q.; Liao, P. L.; Sun, Y. J. Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nat. Commun. 2018, 9, 4531.

    Article  CAS  Google Scholar 

  29. Sun, K. X.; Zhang, T.; Tan, L. M.; Zhou, D. X.; Qian, Y. Q.; Gao, X. X.; Song, F. H.; Bian, H. T.; Lu, Z.; Dang, J. S. et al. Interface catalysts of Ni/Co2N for hydrogen electrochemistry. ACS Appl. Mater. Interfaces 2020, 12, 29357–29364.

    CAS  Google Scholar 

  30. Mao, J. J.; He, C. T.; Pei, J. J.; Liu, Y.; Li, J.; Chen, W. X.; He, D. S.; Wang, D. S.; Li, Y. D. Isolated Ni atoms dispersed on Ru nanosheets: High-performance electrocatalysts toward hydrogen oxidation reaction. Nano Lett. 2020, 20, 3442–3448.

    Article  CAS  Google Scholar 

  31. Liu, E. S.; Jiao, L.; Li, J. K.; Stracensky, T.; Sun, Q.; Mukerjee, S.; Jia, Q. Y. Interfacial water shuffling the intermediates of hydrogen oxidation and evolution reactions in aqueous media. Energy Environ. Sci. 2020, 13, 3064–3074.

    Article  CAS  Google Scholar 

  32. Oshchepkov, A. G.; Braesch, G.; Bonnefont, A.; Savinova, E. R.; Chatenet, M. Recent advances in the understanding of nickel-based catalysts for the oxidation of hydrogen-containing fuels in alkaline media. ACS Catal. 2020, 10, 7043–7068.

    Article  CAS  Google Scholar 

  33. Wang, T. T.; Wang, M.; Yang, H.; Xu, M. Q.; Zuo, C. D.; Feng, K.; Xie, M.; Deng, J.; Zhong, J.; Zhou, W. et al. Weakening hydrogen adsorption on nickel via interstitial nitrogen doping promotes bifunctional hydrogen electrocatalysis in alkaline solution. Energy Environ. Sci. 2019, 12, 3522–3529.

    Article  CAS  Google Scholar 

  34. Huang, J. Z.; Han, J. C.; Wu, T.; Feng, K.; Yao, T.; Wang, X. J.; Liu, S. W.; Zhong, J.; Zhang, Z. H.; Zhang, Y. M. et al. Boosting hydrogen transfer during volmer reaction at oxides/metal nanocomposites for efficient alkaline hydrogen evolution. ACS Energy Lett. 2019, 4, 3002–3010.

    Article  CAS  Google Scholar 

  35. Zhang, J.; Wang, T.; Liu, P.; Liu, S. H.; Dong, R. H.; Zhuang, X. D.; Chen, M. W.; Feng, X. L. Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production. Energy Environ. Sci. 2016, 9, 2789–2793.

    Article  CAS  Google Scholar 

  36. Chen, G. B.; Wang, T.; Zhang, J.; Liu, P.; Sun, H. J.; Zhuang, X. D.; Chen, M. W.; Feng, X. L. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv. Mater. 2018, 30, 1706279.

    Article  CAS  Google Scholar 

  37. Yin, J.; Jin, J.; Zhang, H.; Lu, M.; Peng, Y.; Huang, B. L.; Xi, P. X.; Yan, C. H. Atomic arrangement in metal-doped NiS2 boosts the hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2019, 58, 18676–18682.

    Article  CAS  Google Scholar 

  38. Chen, P. Z.; Zhou, T. P.; Wang, S. B.; Zhang, N.; Tong, Y.; Ju, H. X.; Chu, W. S.; Wu, C. Z.; Xie, Y. Dynamic migration of surface fluorine anions on cobalt-based materials to achieve enhanced oxygen evolution catalysis. Angew. Chem., Int. Ed. 2018, 57, 15471–15475.

    Article  CAS  Google Scholar 

  39. Kou, T. Y.; Chen, M. P.; Wu, F.; Smart, T. J.; Wang, S. W.; Wu, Y. S.; Zhang, Y.; Li, S. T.; Lall, S.; Zhang, Z. H. et al. Carbon doping switching on the hydrogen adsorption activity of NiO for hydrogen evolution reaction. Nat. Commun. 2020, 11, 590.

    Article  CAS  Google Scholar 

  40. Liu, B.; He, B.; Peng, H. Q.; Zhao, Y. F.; Cheng, J. Y.; Xia, J.; Shen, J. H.; Ng, T. W.; Meng, X. M.; Lee, C. S. et al. Unconventional nickel nitride enriched with nitrogen vacancies as a high-efficiency electrocatalyst for hydrogen evolution. Adv. Sci. 2018, 5, 1800406.

    Article  CAS  Google Scholar 

  41. Wu, Y. S.; Cai, J. Y.; Xie, Y. F.; Niu, S. W.; Zang, Y. P.; Wu, S. Y.; Liu, Y.; Lu, Z.; Fang, Y. Y.; Guan, Y. et al. Regulating the interfacial electronic coupling of Fe2N via orbital steering for hydrogen evolution catalysis. Adv. Mater. 2020, 32, 1904346.

    Article  CAS  Google Scholar 

  42. Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12, 441–446.

    Article  CAS  Google Scholar 

  43. Chen, Z. Y.; Song, Y.; Cai, J. Y.; Zheng, X. S.; Han, D. D.; Wu, Y. S.; Zang, Y. P.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis. Angew. Chem., Int. Ed. 2018, 57, 5076–5080.

    Article  CAS  Google Scholar 

  44. Zhu, C. R.; Wang, A. L.; Xiao, W.; Chao, D. L.; Zhang, X.; Tiep, N. H.; Chen, S.; Kang, J. N.; Wang, X.; Ding, J. et al. In situ grown epitaxial heterojunction exhibits high-performance electrocatalytic water splitting. Adv. Mater. 2018, 30, 1705516.

    Article  CAS  Google Scholar 

  45. Gao, M.; Chen, L. L.; Zhang, Z. H.; Sun, X. P.; Zhang, S. S. Interface engineering of the Ni(OH)2-Ni3N nanoarray heterostructure for the alkaline hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 833–836.

    Article  CAS  Google Scholar 

  46. Sun, H. M.; Tian, C. Y.; Fan, G. L.; Qi, J. N.; Liu, Z. T.; Yan, Z. H.; Cheng, F. Y.; Chen, J.; Li, C. P.; Du, M. Boosting activity on Co4N porous nanosheet by coupling CeO2 for efficient electrochemical overall water splitting at high current densities. Adv. Funct. Mater. 2020, 30, 1910596.

    Article  CAS  Google Scholar 

  47. Liu, X. L.; Guo, Y. H.; Wang, P.; Wu, Q.; Zhang, Q. Q.; Rozhkova, E. A.; Wang, Z. Y.; Liu, Y. Y.; Zheng, Z. K.; Dai, Y. et al. Synthesis of synergistic nitrogen-doped NiMoO4/Ni3N heterostructure for implementation of an efficient alkaline electrocatalytic hydrogen evolution reaction. ACS Appl. Energy Mater. 2020, 3, 2440–2449.

    Article  CAS  Google Scholar 

  48. Zhao, Y. Q.; Jin, B.; Vasileff, A.; Jiao, Y.; Qiao, S. Z. Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis. J. Mater. Chem. A 2019, 7, 8117–8121.

    Article  CAS  Google Scholar 

  49. Wu, T.; Zhang, S. N.; Bu, K. J.; Zhao, W.; Bi, Q. Y.; Lin, T. Q.; Huang, J.; Li, Y. S.; Huang, F. Q. Nickel nitride-black phosphorus heterostructure nanosheets for boosting the electrocatalytic activity towards the oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 22063–22069.

    Article  CAS  Google Scholar 

  50. Wu, A. P.; Xie, Y.; Ma, H.; Tian, C. G.; Gu, Y.; Yan, H. J.; Zhang, X. M.; Yang, G. Y.; Fu, H. G. Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting. Nano Energy 2018, 44, 353–363.

    Article  CAS  Google Scholar 

  51. Gajbhiye, N. S.; Ningthoujam, R. S.; Weissmüller, J. Synthesis and magnetic studies of nanocrystalline nickel nitride material. Phys. Status Solidi A 2002, 189, 691–695.

    Article  CAS  Google Scholar 

  52. Gao, X. R.; Liu, X. M.; Zang, W. J.; Dong, H. L.; Pang, Y. J.; Kou, Z. K.; Wang, P. Y.; Pan, Z. H.; Wei, S. T.; Mu, S. C. et al. Synergizing in-grown Ni3N/Ni heterostructured core and ultrathin Ni3N surface shell enables self-adaptive surface reconfiguration and efficient oxygen evolution reaction. Nano Energy 2020, 78, 105355.

    Article  CAS  Google Scholar 

  53. Gao, D. Q.; Zhang, J. Y.; Wang, T. T.; Xiao, W.; Tao, K.; Xue, D. S.; Ding, J. Metallic Ni3N nanosheets with exposed active surface sites for efficient hydrogen evolution. J. Mater. Chem. A 2016, 4, 17363–17369.

    Article  CAS  Google Scholar 

  54. Zhou, P.; Zhai, G. Y.; Lv, X. S.; Liu, Y. Y.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Cheng, H. F.; Dai, Y.; Huang, B. B. Boosting the electrocatalytic HER performance of Ni3N-V2O3 via the interface coupling effect. Appl. Catal. B: Environ. 2021, 283, 119590.

    Article  CAS  Google Scholar 

  55. Zhang, N. N.; Zou, Y. Q.; Tao, L.; Chen, W.; Zhou, L.; Liu, Z. J.; Zhou, B.; Huang, G.; Lin, H. Z.; Wang, S. Y. Electrochemical oxidation of 5-hydroxymethylfurfural on nickel nitride/carbon nanosheets: Reaction pathway determined by in situ sum frequency generation vibrational spectroscopy. Angew. Chem., Int. Ed. 2019, 58, 15895–15903.

    Article  CAS  Google Scholar 

  56. Wang, P. Y.; Qin, R.; Ji, P. X.; Pu, Z. H.; Zhu, J. W.; Lin, C.; Zhao, Y. F.; Tang, H. L.; Li, W. Q.; Mu, S. C. Synergistic coupling of Ni nanoparticles with Ni3C nanosheets for highly efficient overall water splitting. Small 2020, 16, 2001642.

    Article  CAS  Google Scholar 

  57. Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876–3879.

    Article  CAS  Google Scholar 

  58. Zhang, J. T.; Dai, L. M. Heteroatom-doped graphitic carbon catalysts for efficient electrocatalysis of oxygen reduction reaction. ACS Catal. 2015, 5, 7244–7253.

    Article  CAS  Google Scholar 

  59. Zhou, P.; Xing, D. N.; Liu, Y. Y.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.; Huang, B. B. Accelerated electrocatalytic hydrogen evolution on non-noble metal containing trinickel nitride by introduction of vanadium nitride. J. Mater. Chem. A 2019, 7, 5513–5521.

    Article  CAS  Google Scholar 

  60. Wang, Z. Y.; Xu, L.; Huang, F. Z.; Qu, L. B.; Li, J. T.; Owusu, K. A.; Liu, Z. A.; Lin, Z. F.; Xiang, B. H.; Liu, X. et al. Copper-nickel nitride nanosheets as efficient bifunctional catalysts for hydrazine-assisted electrolytic hydrogen production. Adv. Energy Mater. 2019, 9, 1900390.

    Article  CAS  Google Scholar 

  61. Zhang, N.; Cao, L. Y.; Feng, L. L.; Huang, J. F.; Kajiyoshi, K.; Li, C. Y.; Liu, Q. Q.; Yang, D.; He, J. J. Co,N-codoped porous vanadium nitride nanoplates as superior bifunctional electrocatalysts for hydrogen evolution and oxygen reduction reactions. Nanoscale 2019, 11, 11542–11549.

    Article  CAS  Google Scholar 

  62. Zhou, P.; Lv, X. S.; Xing, D. N.; Ma, F. H.; Liu, Y. Y.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Dai, Y.; Huang, B. B. High-efficient electrocatalytic overall water splitting over vanadium doped hexagonal Ni0.2Mo0.8N. Appl. Catal. B: Environ. 2020, 263, 118330.

    Article  CAS  Google Scholar 

  63. Pan, Y.; Sun, K. A.; Liu, S. J.; Cao, X.; Wu, K. L.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y. Q. et al. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610–2618.

    Article  CAS  Google Scholar 

  64. Zhang, B.; Zhang, L. S.; Tan, Q. Y.; Wang, J. S.; Liu, J.; Wan, H. Z.; Miao, L.; Jiang, J. J. Simultaneous interfacial chemistry and inner helmholtz plane regulation for superior alkaline hydrogen evolution. Energy Environ. Sci. 2020, 13, 3007–3013.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2017YFA0700104), the National Natural Science Foundation of China (NSFC, Nos. 21701124 and 21911530255), Tianjin Municipal Science and Technology Commission (Nos. 18TCQNJC71500 and 17JCZDJC38000) and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry (2019-6).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huiling Liu or Cheng Wang.

Electronic Supplementary Material

12274_2021_3559_MOESM1_ESM.pdf

V-doped Ni3N/Ni heterostructure with engineered interfaces as a bifunctional hydrogen electrocatalyst in alkaline solution: Simultaneously improving water dissociation and hydrogen adsorption

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wang, J., Qin, F. et al. V-doped Ni3N/Ni heterostructure with engineered interfaces as a bifunctional hydrogen electrocatalyst in alkaline solution: Simultaneously improving water dissociation and hydrogen adsorption. Nano Res. 14, 3489–3496 (2021). https://doi.org/10.1007/s12274-021-3559-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3559-9

Keywords

Navigation