Skip to main content
Log in

Pearling and helical nanostructures of model protocell membranes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The diversity of protocell membrane structures is crucial for the regulation of cell activities and indispensable to the origin of life. Prior to the evolution of complex cellular machinery, spontaneous protocell membrane evolution results from the intrinsic physicochemical properties of simple molecules under specific environmental conditions. Here, we report the evolution of the morphology of cell-sized model protocell membranes from giant vesicles to pearling and helical nanostructures, resembling morphologies of eukaryocytes, nostoc, and spirilla. This evolution occurs in a single binary aqueous system composed of an achiral single-chain amphiphile and a biogenic polyamine (spermidine or spermine) upon evaporating water, feeding amphiphiles, or increasing pH in response to various primitive fluctuating conditions. In contrast, nonbiogenic polyamines (triamine, triethylenetetramine, and hexamethyltriethylenetetramine) with slight differences in the number of methylene groups or protonated amine groups do not induce such a kind of evolution. The evolution of the shape transformation strongly relies on the balance between electrostatic attraction and hydrogen bonding, attributed to the odd/even effect of polyamines in the assembly. Strikingly, both pearling and helical structures emerge from multilamellar vesicles undergoing different processes, where the helix shows stronger permeability and encapsulation capability due to its multicompartmentalized structure. Thus, subtle adjustment of weak intramolecular interactions not only yields significant changes in the morphological evolution of protocell membranes but also brings new insights into the natural inevitability of biogenic small molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Szostak, J. W.; Bartel, D. P.; Luisi, P. L. Synthesizing life. Nature 2001, 409, 387–390.

    Article  CAS  Google Scholar 

  2. Dzieciol, A. J.; Mann, S. Designs for life: Protocell models in the laboratory. Chem. Soc. Rev. 2012, 41, 79–85.

    Article  CAS  Google Scholar 

  3. Hanczyc, M. M.; Fujikawa, S. M.; Szostak, J. W. Experimental models of primitive cellular compartments: Encapsulation, growth, and division. Science 2003, 302, 618–622.

    Article  CAS  Google Scholar 

  4. Ruiz-Mirazo, K.; Briones, C.; de la Escosura, A. Prebiotic systems chemistry: New perspectives for the origins of life. Chem. Rev. 2014, 114, 285–366.

    Article  CAS  Google Scholar 

  5. Mann, S. The origins of life: Old problems, new chemistries. Angew. Chem., Int. Ed. 2013, 52, 155–162.

    Article  CAS  Google Scholar 

  6. Dewey, D. C.; Strulson, C. A.; Cacace, D. N.; Bevilacqua, P. C.; Keating, C. D. Bioreactor droplets from liposome-stabilized all-aqueous emulsions. Nat. Commun. 2014, 5, 4670.

    Article  CAS  Google Scholar 

  7. Schwille, P. How simple could life be? Angew. Chem., Int. Ed. 2017, 56, 10998–11002.

    Article  CAS  Google Scholar 

  8. Bhattacharya, A.; Brea, R. J.; Niederholtmeyer, H.; Devaraj, N. K. A minimal biochemical route towards de novo formation of synthetic phospholipid membranes. Nat. Commun. 2019, 10, 300.

    Article  Google Scholar 

  9. Shi, J. Y.; Clayton, C.; Tian, B. Z. Nano-enabled cellular engineering for bioelectric studies. Nano Res. 2020, 13, 1214–1227.

    Article  Google Scholar 

  10. Dora Tang, T. Y.; Rohaida Che Hak, C.; Thompson, A. J.; Kuimova, M. K.; Williams, D. S.; Perriman, A. W.; Mann, S. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nat. Chem. 2014, 6, 527–533.

    Article  CAS  Google Scholar 

  11. Schreiber, A.; Huber, M. C.; Schiller, S. M. Prebiotic protocell model based on dynamic protein membranes accommodating anabolic reactions. Langmuir 2019, 35, 9593–9610.

    Article  CAS  Google Scholar 

  12. Garenne, D.; Beven, L.; Navailles, L.; Nallet, F.; Dufourc, E. J.; Douliez, J. P. Sequestration of proteins by fatty acid coacervates for their encapsulation within vesicles. Angew. Chem., Int. Ed. 2016, 55, 13475–13479.

    Article  CAS  Google Scholar 

  13. Deamer, D. Membranes and the origin of life: A century of conjecture. J. Mol. Evol. 2016, 83, 159–168.

    Article  CAS  Google Scholar 

  14. Milshteyn, D.; Damer, B.; Havig, J.; Deamer, D. Amphiphilic compounds assemble into membranous vesicles in hydrothermal hot spring water but not in seawater. Life 2018, 8, 11.

    Article  Google Scholar 

  15. de Souza, T. P.; Bossa, G. V.; Stano, P.; Steiniger, F.; May, S.; Luisi, P. L.; Fahr, A. Vesicle aggregates as a model for primitive cellular assemblies. Phys. Chem. Chem. Phys. 2017, 19, 20082–20092.

    Article  CAS  Google Scholar 

  16. Bhattacharya, A.; Devaraj, N. K. Tailoring the shape and size of artificial cells. ACS Nano 2019, 13, 7396–7401.

    Article  CAS  Google Scholar 

  17. Zhu, T. F.; Szostak, J. W. Coupled growth and division of model protocell membranes. J. Am. Chem. Soc. 2009, 131, 5705–5713.

    Article  CAS  Google Scholar 

  18. Budin, I.; Debnath, A.; Szostak, J. W. Concentration-driven growth of model protocell membranes. J. Am. Chem. Soc. 2012, 134, 20812–20819.

    Article  CAS  Google Scholar 

  19. Zhu, T. F.; Adamala, K.; Zhang, N.; Szostak, J. W. Photochemically driven redox chemistry induces protocell membrane pearling and division. Proc. Natl. Acad. Sci. USA 2012, 109, 9828–9832.

    Article  CAS  Google Scholar 

  20. Hentrich, C.; Szostak, J. W. Controlled growth of filamentous fatty acid vesicles under flow. Langmuir 2014, 30, 14916–14925.

    Article  CAS  Google Scholar 

  21. Jin, L.; Kamat, N. P.; Jena, S.; Szostak, J. W. Fatty acid/phospholipid blended membranes: A potential intermediate state in protocellular evolution. Small 2018, 14, 1704077.

    Article  Google Scholar 

  22. Budin, I.; Szostak, J. W. Physical effects underlying the transition from primitive to modern cell membranes. Proc. Natl. Acad. Sci. USA 2011, 108, 5249–5254.

    Article  CAS  Google Scholar 

  23. Chen, Z. D.; Chen, Y.; Zhu, L. Y.; Fan, Y. X.; Wang, Y. L. Partition and solubilization of phospholipid vesicles by noncovalently constructed oligomeric-like surfactants. Langmuir 2020, 36, 8733–8744.

    Article  CAS  Google Scholar 

  24. Mansy, S. S.; Schrum, J. P.; Krishnamurthy, M.; Tobé, S.; Treco, D. A.; Szostak, J. W. Template-directed synthesis of a genetic polymer in a model protocell. Nature 2008, 454, 122–125.

    Article  CAS  Google Scholar 

  25. Izgu, E. C.; Björkbom, A.; Kamat, N. P.; Lelyveld, V. S.; Zhang, W. C.; Jia, T. Z.; Szostak, J. W. N-carboxyanhydride-mediated fatty acylation of amino acids and peptides for functionalization of protocell membranes. J. Am. Chem. Soc. 2016, 138, 16669–16676.

    Article  CAS  Google Scholar 

  26. Wright, T. H.; Giurgiu, C.; Zhang, W.; Radakovic, A.; O’Flaherty, D. K.; Zhou, L. J.; Szostak, J. W. Prebiotically plausible “patching” of RNA backbone cleavage through a 3′–5′ pyrophosphate linkage. J. Am. Chem. Soc. 2019, 141, 18104–18112.

    Article  CAS  Google Scholar 

  27. Singh, S. P.; Häder, D.; Sinha, R. P. Cyanobacteria and ultraviolet radiation (UVR) stress: Mitigation strategies. Ageing Res. Rev. 2010, 9, 79–90.

    Article  CAS  Google Scholar 

  28. Prasad, A.; Alizadeh, E. Cell form and function: Interpreting and controlling the shape of adherent cells. Trends Biotechnol. 2019, 37, 347–357.

    Article  CAS  Google Scholar 

  29. Chaiyasitdhi, A.; Miphonpanyatawichok, W.; Riehle, M. O.; Phatthanakun, R.; Surareungchai, W.; Kundhikanjana, W.; Kuntanawat, P. The biomechanical role of overall-shape transformation in a primitive multicellular organism: A case study of dimorphism in the filamentous cyanobacterium Arthrospira platensis. PLoS One 2018, 13, e0196383.

    Article  Google Scholar 

  30. Thomas, J. A.; Rana, F. R. The influence of environmental conditions, lipid composition, and phase behavior on the origin of cell membranes. Orig. Life Evol. Biosph. 2007, 37, 267–285.

    Article  CAS  Google Scholar 

  31. Singh, S. P.; Montgomery, B. L. Determining cell shape: Adaptive regulation of cyanobacterial cellular differentiation and morphology. Trends Microbiol. 2011, 19, 278–285.

    Article  CAS  Google Scholar 

  32. Kaplan-Levy, R. N.; Hadas, O.; Summers, M. L.; Rücker, J.; Sukenik, A. Akinetes: Dormant cells of cyanobacteria. In Dormancy and Resistance in Harsh Environments. Topics in Current Genetics, vol. 21. Lubzens, E.; Cerda, J.; Clark, M., Eds.; Springer: Heidelberg, Berlin, 2010; pp 5–27.

    Chapter  Google Scholar 

  33. Leaver, M.; Domínguez-Cuevas, P.; Coxhead, J. M.; Daniel, R. A.; Errington, J. Life without a wall or division machine in Bacillus subtilis. Nature 2009, 457, 849–853.

    Article  CAS  Google Scholar 

  34. Young, K. D. Bacterial morphology: Why have different shapes? Curr. Opin. Microbiol. 2007, 10, 596–600.

    Article  Google Scholar 

  35. Ehrenfreund, P.; Rasmussen, S.; Cleaves, J.; Chen, L. H. Experimentally tracing the key steps in the origin of life: The aromatic world. Astrobiology 2006, 6, 490–520.

    Article  CAS  Google Scholar 

  36. Maurer, S. E.; Deamer, D. W.; Boncella, J. M.; Monnard, P. A. Chemical evolution of amphiphiles: glycerol monoacyl derivatives stabilize plausible prebiotic membranes. Astrobiology 2009, 9, 979–987.

    Article  CAS  Google Scholar 

  37. Groen, J.; Deamer, D. W.; Kros, A.; Ehrenfreund, P. Polycyclic aromatic hydrocarbons as plausible prebiotic membrane components. Orig. Life Evol. Biosph. 2012, 42, 295–306.

    Article  CAS  Google Scholar 

  38. Yu, Y.; Granick, S. Pearling of lipid vesicles induced by nanoparticles. J. Am. Chem. Soc. 2009, 131, 14158–14159.

    Article  CAS  Google Scholar 

  39. Andes-Koback, M.; Keating, C. D. Complete budding and asymmetric division of primitive model cells to produce daughter vesicles with different interior and membrane compositions. J. Am. Chem. Soc. 2011, 133, 9545–9555.

    Article  CAS  Google Scholar 

  40. Pernpeintner, C.; Frank, J. A.; Urban, P.; Roeske, C. R.; Pritzl, S. D.; Trauner, D.; Lohmüller, T. Light-controlled membrane mechanics and shape transitions of photoswitchable lipid vesicles. Langmuir 2017, 33, 4083–4089.

    Article  CAS  Google Scholar 

  41. Bhatia, T.; Christ, S.; Steinkühler, J.; Dimova, R.; Lipowsky, R. Simple sugars shape giant vesicles into multispheres with many membrane necks. Soft Matter 2020, 16, 1246–1258.

    Article  CAS  Google Scholar 

  42. Nakashima, N.; Asakuma, S.; Kunitake, T. Optical microscopic study of helical superstructures of chiral bilayer membranes. J. Am. Chem. Soc. 1985, 107, 509–510.

    Article  CAS  Google Scholar 

  43. Yanagawa, H.; Ogawa, Y.; Furuta, H.; Tsuno, K. Spontaneous formation of superhelical strands. J. Am. Chem. Soc. 1989, 111, 4567–4570.

    Article  CAS  Google Scholar 

  44. Itojima, Y.; Ogawa, Y.; Tsuno, K.; Handa, N.; Yanagawa, H. Spontaneous formation of helical structures from phospholipid-nucleoside conjugates. Biochemistry 1992, 31, 4757–4765.

    Article  CAS  Google Scholar 

  45. Walde, P. Surfactant assemblies and their various possible roles for the origin(s) of life. Orig. Life Evol. Biosph. 2006, 36, 109–150.

    Article  CAS  Google Scholar 

  46. Yashima, E.; Ousaka, N.; Taura, D.; Shimomura, K.; Ikai, T.; Maeda, K. Supramolecular helical systems: Helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 2016, 116, 13752–13990.

    Article  CAS  Google Scholar 

  47. Wang, J.; Liu, K.; Xing, R. R.; Yan, X. H. Peptide self-assembly: Thermodynamics and kinetics. Chem. Soc. Rev. 2016, 45, 5589–5604.

    Article  CAS  Google Scholar 

  48. Qiao, F. L.; Wang, M. N.; Liu, Z.; Fan, Y. X.; Wang, Y. L. Transitions in the molecular configuration and aggregates for mixtures of a star-shaped hexameric cationic surfactant and a monomeric anionic surfactant. Chem. Asian J. 2016, 11, 2763–2772.

    Article  CAS  Google Scholar 

  49. Kornmueller, K.; Lehofer, B.; Leitinger, G.; Amenitsch, H.; Prassl, R. Peptide self-assembly into lamellar phases and the formation of lipid-peptide nanostructures. Nano Res. 2018, 11, 913–928.

    Article  CAS  Google Scholar 

  50. Chen, Z. D.; Penfold, J.; Li, P. X.; Doutch, J.; Fan, Y. X.; Wang, Y. L. Effects of length and hydrophilicity/hydrophobicity of diamines on self-assembly of diamine/SDS gemini-like surfactants. Soft Matter 2017, 13, 8980–8989.

    Article  CAS  Google Scholar 

  51. Luo, S. Q.; Chen, Z. D.; Dong, Z. C.; Fan, Y. X.; Chen, Y.; Liu, B.; Yu, C. L.; Li, C. X.; Dai, H. Y.; Li, H. F. et al. Uniform spread of highspeed drops on superhydrophobic surface by live-oligomeric surfactant jamming. Adv. Mater. 2019, 31, 1904475.

    Article  CAS  Google Scholar 

  52. Jin, J.; Yang, F.; Li, B.; Liu, D.; Wu, L. H.; Li, Y.; Gu, N. Temperature-regulated self-assembly of lipids at free bubbles interface: A green and simple method to prepare micro/nano bubbles. Nano Res. 2020, 13, 999–1007.

    Article  CAS  Google Scholar 

  53. Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593.

    Article  CAS  Google Scholar 

  54. Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E. M.; Mittal, J.; Feig, M.; MacKerell A. D., Jr. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory Comput. 2012, 8, 3257–3273.

    Article  CAS  Google Scholar 

  55. Yang, W. H.; Wu, R. L.; Kong, B.; Zhang, X. F.; Yang, X. Z. Molecular dynamics simulations of film rupture in water/surfactant systems. J. Phys. Chem. B 2009, 113, 8332–8338.

    Article  CAS  Google Scholar 

  56. Miyamoto, S.; Kollman, P. A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992, 13, 952–962.

    Article  CAS  Google Scholar 

  57. Cooper, G. W.; Onwo, W. M.; Cronin, J. R. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite. Geochim. Cosmochim. Acta 1992, 56, 4109–4115.

    Article  CAS  Google Scholar 

  58. Pegg, A. E. The function of spermine. IUBMB Life 2014, 66, 8–18.

    Article  CAS  Google Scholar 

  59. Lenis, Y. Y.; Elmetwally, M. A.; Maldonado-Estrada, J. G.; Bazer, F. W. Physiological importance of polyamines. Zygote 2017, 25, 244–255.

    Article  CAS  Google Scholar 

  60. Luzar, A.; Chandler, D. Hydrogen-bond kinetics in liquid water. Nature 1996, 379, 55–57.

    Article  CAS  Google Scholar 

  61. Luzar, A.; Chandler, D. Effect of environment on hydrogen bond dynamics in liquid water. Phys. Rev. Lett. 1996, 76, 928–931.

    Article  CAS  Google Scholar 

  62. Yuan, H. Y.; Huang, C. J.; Zhang, S. L. Dynamic shape transformations of fluid vesicles. Soft Matter 2010, 6, 4571–4579.

    Article  CAS  Google Scholar 

  63. Tsafrir, I.; Sagi, D.; Arzi, T.; Guedeau-Boudeville, M. A.; Frette, V.; Kandel, D.; Stavans, J. Pearling instabilities of membrane tubes with anchored polymers. Phys. Rev. Lett. 2001, 86, 1138–1141.

    Article  CAS  Google Scholar 

  64. He, C. Q.; Han, Y. C.; Fan, Y. X.; Deng, M. L.; Wang, Y. L. Self-assembly of Aβ-based peptide amphiphiles with double hydrophobic chains. Langmuir 2012, 28, 3391–3396.

    Article  CAS  Google Scholar 

  65. Ziserman, L.; Lee, H. Y.; Raghavan, S. R.; Mor, A.; Danino, D. Unraveling the mechanism of nanotube formation by chiral self-assembly of amphiphiles. J. Am. Chem. Soc. 2011, 133, 2511–2517.

    Article  CAS  Google Scholar 

  66. Huang, X.; Li, C.; Jiang, S. G.; Wang, X. S.; Zhang, B. W.; Liu, M. H. Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid. J. Am. Chem. Soc. 2004, 126, 1322–1323.

    Article  CAS  Google Scholar 

  67. Cui, Y.; Tao, D. L.; Huang, X. Y.; Lu, G. L.; Feng, C. Self- assembled helical and twisted nanostructures of a preferred handedness from achiral π-conjugated oligo(p-phenylenevinylene) derivatives. Langmuir 2019, 35, 3134–3142.

    Article  CAS  Google Scholar 

  68. Zhou, L. L.; Fan, Y. X.; Liu, Z.; Chen, L.; Spruijt, E.; Wang, Y. L. A multiresponsive transformation between surfactant-based coacervates and vesicles. CCS Chem. 2021, 3, 358–366.

    Article  Google Scholar 

  69. Vieregg, J. R.; Dora Tang, T. Y. Polynucleotides in cellular mimics: Coacervates and lipid vesicles. Curr. Opin. Colloid Interface Sci. 2016, 26, 50–57.

    Article  CAS  Google Scholar 

  70. Martin, N. Dynamic synthetic cells based on liquid-liquid phase separation. ChemBioChem 2019, 20, 2553–2568.

    Article  CAS  Google Scholar 

  71. Liu, B.; Fan, Y. X.; Li, H. F.; Zhao, W. W.; Luo, S. Q.; Wang, H.; Guan, B.; Li, Q. L.; Yue, J. L.; Dong, Z. C. et al. Control the entire journey of pesticide application on superhydrophobic plant surface by dynamic covalent trimeric surfactant coacervation. Adv. Funct. Mater. 2021, 31, 2006606.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21972149 and 21988102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaxun Fan, Rongliang Wu or Yilin Wang.

Electronic Supplementary Material

Pearling and helical nanostructures of model protocell membranes

Supplementary material, approximately 3.08 MB.

Supplementary material, approximately 4.00 MB.

Supplementary material, approximately 5.41 MB.

Supplementary material, approximately 3.45 MB.

Supplementary material, approximately 3.08 MB.

Supplementary material, approximately 20.0 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Fan, Y., Chen, Y. et al. Pearling and helical nanostructures of model protocell membranes. Nano Res. 15, 659–668 (2022). https://doi.org/10.1007/s12274-021-3541-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3541-6

Keywords

Navigation