Skip to main content
Log in

Construction of hierarchical FeNi3@(Fe,Ni)S2 core-shell heterojunctions for advanced oxygen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The investigation of earth-abundant electrocatalysts for efficient water electrolysis is of central importance in renewable energy system, which is currently impeded by the large overpotential of oxygen evolution reaction (OER). NiFe sulfides show promising OER activity but are troubled by their low intrinsic conductivities. Herein, we demonstrate the construction of the porous core-shell heterojunctions of FeNi3@(Fe,Ni)S2 with tunable shell thickness via the reduction of hierarchical NiFe(OH)x nanosheets followed by a partial sulfidization. The conductive FeNi3 core provides the highway for electron transport, and the (Fe,Ni)S2 shell offers the exposed surface for in situ generation of S-doped NiFe-oxyhydroxides with high intrinsic OER activity, which is supported by the combined experimental and theoretical studies. In addition, the porous hierarchical morphology favors the electrolyte access and O2 liberation. Consequently, the optimized catalyst achieves an excellent OER performance with a low overpotential of 288 mV at 100 mA·cm−2, a small Tafel slope of 48 mV·dec−1, and a high OER durability for at least 1,200 h at 200 mA·cm−2. This study provides an effective way to explore the advanced earth-abundant OER electrocatalysts by constructing the heterojunctions between metal and corresponding metal-compounds via the convenient post treatment, such as nitridation and sulfidization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Du, P. W.; Eisenberg, R. Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges. Energy Environ. Sci. 2012, 5, 6012–6021.

    Article  CAS  Google Scholar 

  2. Ismail, M. S.; Moghavvemi, M.; Mahlia, T. M. I.; Muttaqi, K. M.; Moghavvemi, S. Effective utilization of excess energy in standalone hybrid renewable energy systems for improving comfort ability and reducing cost of energy: A review and analysis. Renew. Sust. Energ. Rev. 2015, 42, 726–734.

    Article  Google Scholar 

  3. Liu, Y. K.; Jiang, S.; Li, S. J.; Zhou, L.; Li, Z. H.; Li, J. M.; Shao, M. F. Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting. Appl. Catal. B: Environ. 2019, 247, 107–114.

    Article  CAS  Google Scholar 

  4. Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

    Article  CAS  Google Scholar 

  5. Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

    Article  CAS  Google Scholar 

  6. Zhou, D. J.; Wang, S. Y.; Jia, Y.; Xiong, X. Y.; Yang, H. B.; Liu, S.; Tang, J. L.; Zhang, J. M.; Liu, D.; Zheng, L. R. et al. NiFe hydroxide lattice tensile strain: Enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis. Angew. Chem., Int. Ed. 2019, 58, 736–740.

    Article  CAS  Google Scholar 

  7. Wang, Y. Q.; Chen, S.; Zhang, J. T. Hierarchical assembly of prussian blue derivatives for superior oxygen evolution reaction. Adv. Funct. Mater. 2019, 29, 1904955.

    Article  CAS  Google Scholar 

  8. Peng, X.; Yan, Y. J.; Jin, X.; Huang, C.; Jin, W. H.; Gao, B.; Chu, P. K. Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 2020, 78, 105234.

    Article  CAS  Google Scholar 

  9. Yang, M. Q.; Wang, J.; Wu, H.; Ho, G. W. Noble metal-free nanocatalysts with vacancies for electrochemical water splitting. Small 2018, 14, 1703323.

    Article  CAS  Google Scholar 

  10. Yan, Y.; Xia, B. Y.; Zhao, B.; Wang, X. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A 2016, 4, 17587–17603.

    Article  CAS  Google Scholar 

  11. Wang, Y. Q.; Ma, J. Z.; Wang, J.; Chen, S.; Wang, H. S.; Zhang, J. T. Interfacial scaffolding preparation of hierarchical PBA-based derivative electrocatalysts for efficient water splitting. Adv. Energy Mater. 2019, 9, 1802939.

    Article  CAS  Google Scholar 

  12. Guo, D. Y.; Qi, J.; Zhang, W.; Cao, R. Surface electrochemical modification of a nickel substrate to prepare a NiFe-based electrode for water oxidation. ChemSusChem 2017, 10, 394–400.

    Article  CAS  Google Scholar 

  13. Edison, T. A. Electrolyte for alkaline storage batteries. U.S. Patent 0,876,445, Jan. 14, 1908.

  14. Duan, Y.; Yu, Z. Y.; Hu, S. J.; Zheng, X. S.; Zhang, C. T.; Ding, H. H.; Hu, B. C.; Fu, Q. Q.; Yu, Z. L.; Zheng, X. et al. Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis. Angew. Chem., Int. Ed. 2019, 58, 15772–15777.

    Article  CAS  Google Scholar 

  15. Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876–3879.

    Article  CAS  Google Scholar 

  16. Xiao, H.; Shin, H.; Goddard III, W. A. Synergy between Fe and Ni in the optimal performance of (Ni,Fe)OOH catalysts for the oxygen evolution reaction. Proc. Natl. Acad. Sci. USA 2018, 115, 5872–5877.

    Article  CAS  Google Scholar 

  17. Saad, A.; Shen, H. J.; Cheng, Z. X.; Arbi, R.; Guo, B. B.; Hui, L. S.; Liang, K. Y.; Liu, S. Q.; Attfield, J. P.; Turak, A. et al. Mesoporous ternary nitrides of earth-abundant metals as oxygen evolution electrocatalyst. Nano-Micro Lett. 2020, 12, 79.

    Article  CAS  Google Scholar 

  18. Yin, X. C.; Sun, G.; Wang, L. X.; Bai, L.; Su, L.; Wang, Y. Z.; Du, Q. H.; Shao, G. J. 3D hierarchical network NiCo2S4 nanoflakes grown on Ni foam as efficient bifunctional electrocatalysts for both hydrogen and oxygen evolution reaction in alkaline solution. Int. J. Hydrogen Energy 2017, 42, 25267–25276.

    Article  CAS  Google Scholar 

  19. Lv, J. J.; Wu, S. J.; Qiao, M.; Li, L. L.; Zhu, J. J. Mesoporous NiCoPx nanoplates as highly efficient electrocatalysts for overall water splitting. J. Power Sources 2018, 400, 434–440.

    Article  CAS  Google Scholar 

  20. Li, J. W.; Song, J. D.; Huang, B. Y.; Liang, G. F.; Liang, W. L.; Huang, G. J.; Qi Jin, Y.; Zhang, H.; Xie, F. Y.; Chen, J. et al. Enhancing the oxygen evolution reaction performance of NiFeOOH electrocatalyst for Zn-air battery by N-doping. J. Catal. 2020, 389, 375–381.

    Article  CAS  Google Scholar 

  21. Niu, S.; Jiang, W. J.; Wei, Z. X.; Tang, T.; Ma, J. M.; Hu, J. S.; Wan, L. J. Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation. J. Am. Chem. Soc. 2019, 141, 7005–7013.

    Article  CAS  Google Scholar 

  22. Yan, M. L.; Mao, K.; Cui, P. X.; Chen, C.; Zhao, J.; Wang, X. Z.; Yang, L. J.; Yang, H.; Wu, Q.; Hu, Z. In situ construction of porous hierarchical (Ni3−xFex)FeN/Ni heterojunctions toward efficient electrocatalytic oxygen evolution. Nano Res. 2020, 13, 328–334.

    Article  CAS  Google Scholar 

  23. Liang, H. F.; Gandi, A. N.; Xia, C.; Hedhili, M. N.; Anjum, D. H.; Schwingenschlögl, U.; Alshareef, H. N. Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications. ACS Energy Lett. 2017, 2, 1035–1042.

    Article  CAS  Google Scholar 

  24. Mahala, C.; Sharma, M. D.; Basu, M. 2D nanostructures of CoFe2O4 and NiFe2O4: Efficient oxygen evolution catalyst. Electrochim. Acta 2018, 273, 462–473.

    Article  CAS  Google Scholar 

  25. Peng, X.; Wang, L.; Hu, L. S.; Li, Y.; Gao, B.; Song, H.; Huang, C.; Zhang, X. M.; Fu, J. J.; Huo, K. F. et al. In situ segregation of cobalt nanoparticles on VN nanosheets via nitriding of Co2V2O7 nanosheets as efficient oxygen evolution reaction electrocatalysts. Nano Energy 2017, 34, 1–7.

    Article  CAS  Google Scholar 

  26. Sun, F. Z.; Wang, G.; Ding, Y. Q.; Wang, C.; Yuan, B. B.; Lin, Y. Q. NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1800584.

    Article  CAS  Google Scholar 

  27. Yu, X. W.; Zhang, M.; Tong, Y.; Li, C.; Shi, G. Q. A large-scale graphene-bimetal film electrode with an ultrahigh mass catalytic activity for durable water splitting. Adv. Energy Mater. 2018, 8, 1800403.

    Article  CAS  Google Scholar 

  28. Tao, L.; Qiao, M.; Jin, R.; Li, Y.; Xiao, Z. H.; Wang, Y. Q.; Zhang, N. N.; Xie, C.; He, Q. G.; Jiang, D. C. et al. Bridging the surface charge and catalytic activity of a defective carbon electrocatalyst. Angew. Chem., Int. Ed. 2019, 58, 1019–1024.

    Article  CAS  Google Scholar 

  29. Yang, J. L.; Xiao, Y. G.; Zhao, Q. H.; Zhang, G. X.; Wang, R.; Teng, G. G.; Chen, X.; Weng, M.; He, D.; Mu, S. et al. Synergistic effect of charge transfer and short H-bonding on nanocatalyst surface for efficient oxygen evolution reaction. Nano Energy 2019, 59, 443–452.

    Article  CAS  Google Scholar 

  30. Wu, D.; Wei, Y. C.; Ren, X.; Ji, X. Q.; Liu, Y. W.; Guo, X. D.; Liu, Z. A.; Asiri, A. M.; Wei, Q.; Sun, X. P. Co(OH)2 nanoparticleencapsulating conductive nanowires array: Room-temperature electrochemical preparation for high-performance water oxidation electrocatalysis. Adv. Mater. 2018, 30, 1705366.

    Article  CAS  Google Scholar 

  31. Pintado, S.; Goberna-Ferrón, S.; Escudero-Adán, E. C.; Galán-Mascarós, J. R. Fast and persistent electrocatalytic water oxidation by Co-Fe prussian blue coordination polymers. J. Am. Chem. Soc. 2013, 135, 13270–13273.

    Article  CAS  Google Scholar 

  32. Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517.

    Article  CAS  Google Scholar 

  33. Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.

    Article  CAS  Google Scholar 

  34. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.

    Article  CAS  Google Scholar 

  35. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  CAS  Google Scholar 

  36. Che, Q. J.; Li, Q.; Tan, Y.; Chen, X. H.; Xu, X.; Chen, Y. S. One-step controllable synthesis of amorphous (Ni-Fe)Sx/NiFe(OH)y hollow microtube/sphere films as superior bifunctional electrocatalysts for quasi-industrial water splitting at large-current-density. Appl. Catal. B: Environ. 2019, 246, 337–348.

    Article  CAS  Google Scholar 

  37. Wei, P. K.; Li, X. M.; Li, J.; Bai, J. W.; Jiang, C. J.; Liu, L. A facile synthesis of ternary nickel iron sulfide nanospheres as counter electrode in dye-sensitized solar cells. Chem.—Eur. J. 2018, 24, 19032–19037.

    Article  CAS  Google Scholar 

  38. Hao, S. Y.; Chen, L. H.; Yu, C. L.; Yang, B.; Li, Z. J.; Hou, Y.; Lei, L. C.; Zhang, X. W. NiCoMo hydroxide nanosheet arrays synthesized via chloride corrosion for overall water splitting. ACS Energy Lett. 2019, 4, 952–959.

    Article  CAS  Google Scholar 

  39. Wang, B. L.; Zhao, K. N.; Yu, Z.; Sun, C. L.; Wang, Z.; Feng, N. N.; Mai, L. Q.; Wang, Y. G.; Xia, Y. Y. In situ structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reaction. Energy Environ. Sci. 2020, 13, 2200–2208.

    Article  CAS  Google Scholar 

  40. Fang, Y. H.; Liu, Z. P. Tafel kinetics of electrocatalytic reactions: From experiment to first-principles. ACS Catal. 2014, 4, 4364–4376.

    Article  CAS  Google Scholar 

  41. Yu, M. Q.; Moon, G.; Bill, E.; Tüysüz, H. Optimizing Ni-Fe oxide electrocatalysts for oxygen evolution reaction by using hard templating as a toolbox. ACS Appl. Energy Mater. 2019, 2, 1199–1209.

    Article  CAS  Google Scholar 

  42. Zhang, J. F.; Hu, Y. C.; Liu, D. L.; Yu, Y.; Zhang, B. Enhancing oxygen evolution reaction at high current densities on amorphouslike Ni-Fe-S ultrathin nanosheets via oxygen incorporation and electrochemical tuning. Adv. Sci. 2017, 4, 1600343.

    Article  CAS  Google Scholar 

  43. Anantharaj, S.; Kundu, S. Do the evaluation parameters reflect intrinsic activity of electrocatalysts in electrochemical water splitting? ACS Energy Lett. 2019, 4, 1260–1264.

    Article  CAS  Google Scholar 

  44. Cai, Z.; Li, L. D.; Zhang, Y. W.; Yang, Z.; Yang, J.; Guo, Y. J.; Guo, L. Amorphous nanocages of Cu-Ni-Fe hydr(oxy)oxide prepared by photocorrosion for highly efficient oxygen evolution. Angew. Chem., Int. Ed. 2019, 58, 4189–4194.

    Article  CAS  Google Scholar 

  45. Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.

    Article  CAS  Google Scholar 

  46. Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 9351–9355.

    Article  CAS  Google Scholar 

  47. Jiang, J.; Lu, S.; Wang, W. K.; Huang, G. X.; Huang, B. C.; Zhang, F.; Zhang, Y. J.; Yu, H. Q. Ultrahigh electrocatalytic oxygen evolution by iron-nickel sulfide nanosheets/reduced graphene oxide nanohybrids with an optimized autoxidation process. Nano Energy 2018, 43, 300–309.

    Article  CAS  Google Scholar 

  48. Zhou, M.; Weng, Q. H.; Zhang, X. Y.; Wang, X.; Xue, Y. M.; Zeng, X. H.; Bando, Y.; Golberg, D. In situ electrochemical formation of core-shell nickel-iron disulfide and oxyhydroxide heterostructured catalysts for a stable oxygen evolution reaction and the associated mechanisms. J. Mater. Chem. A 2017, 5, 4335–4342.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Key Research and Development Program of China (Nos. 2017YFA0206500 and 2018YFA0209103), the National Natural Science Foundation of China (Nos. 52071174, 21832003, 21773111, and 21972061), and the Fundamental Research Funds for the Central Universities (No. 020514380126). The numerical calculations have been done on the computing facilities in the High Performance Computing Center (HPCC) of Nanjing University. We thank the staff of the BL14W1 beamline at Shanghai Synchrotron Radiation Facility for assistance with the X-ray absorption measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun Yang or Zheng Hu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, M., Zhao, Z., Cui, P. et al. Construction of hierarchical FeNi3@(Fe,Ni)S2 core-shell heterojunctions for advanced oxygen evolution. Nano Res. 14, 4220–4226 (2021). https://doi.org/10.1007/s12274-021-3531-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3531-8

Keywords

Navigation