Skip to main content
Log in

A facile solution phase synthesis of directly ordering monodisperse FePt nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The ordered Pt-based intermetallic nanoparticles (NPs) with small size show superior magnetic or catalytic properties, but the synthesis of these NPs still remains a great challenge due to the requirement of high temperature annealing for the formation of the ordered phase, which usually leads to sintering of the NPs. Here, we report a simple approach to directly synthesize monodisperse ordered L10-FePt NPs with average size 10.7 nm without further annealing or doping the third metal atoms, in which hexadecyltrimethylammonium chloride (CTAC) was found to be the key inducing agent for the thermodynamic growth of the Fe and Pt atoms into the ordered intermetallic structure in the synthetic process. In particular, 10.7 nm L10-FePt NPs synthesized by the proper amount of CTAC show a coercivity of 3.15 kOe and saturation magnetization of 45 emu/g at room temperature. The current CTAC-assisted synthetic strategy makes it possible to deeply understand the formation of the ordered Pt-based intermetallic NP in solution phase synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287, 1989–1992.

    Article  CAS  Google Scholar 

  2. Liu, F.; Zhu J. H.; Yang W. L.; Dong, Y. H.; Hou, Y. L.; Zhang, C. Z.; Yin, H.; Sun, S. H. Building nanocomposite magnets by coating a hard magnetic core with a soft magnetic shell. Angew. Chem., Int. Ed. 2014, 53, 2176–2180.

    Article  CAS  Google Scholar 

  3. Balasubramanian, B.; Skomski, R.; Li, X. Z.; Valloppilly, S. R.; Shield, J. E.; Hadjipanayis, G. C.; Sellmyer, D. J. Cluster synthesis and direct ordering of rare-earth transition-metal nanomagnets. Nano Lett. 2011, 11, 1747–1752.

    Article  CAS  Google Scholar 

  4. Zhang, S.; Hao, Y. Z.; Su, D.; Doan-Nguyen, V. V. T.; Wu, Y. T.; Li, J.; Sun, S. H.; Murray, C. B. Monodisperse core/shell Ni/FePt nanoparticles and their conversion to Ni/Pt to catalyze oxygen reduction. J. Am. Chem. Soc. 2014, 136, 15921–15924.

    Article  CAS  Google Scholar 

  5. Wu, L. H.; Mendoza-Garcia, A.; Li, Q.; Sun, S. H. Organic phase syntheses of magnetic nanoparticles and their applications. Chem. Rev. 2016, 116, 10473–10512.

    Article  CAS  Google Scholar 

  6. Zeng, H.; Li, J.; Liu, J. P.; Wang, Z. L.; Sun, S. H. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 2002, 420, 395–398.

    Article  CAS  Google Scholar 

  7. Guo, S. J.; Zhang, S.; Sun, S. H. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 8526–8544.

    Article  CAS  Google Scholar 

  8. Son, K.; Ryu, G.; Jeong, H. H.; Fink, L.; Merz, M.; Nagel, P.; Schuppler, S.; Richter, G.; Goering, E.; Schütz, G. Superior magnetic performance in FePt L10 nanomaterials. Small 2019, 15, 1902353.

    Article  Google Scholar 

  9. Sun, S. H. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv. Mater. 2006, 18, 393–403.

    Article  CAS  Google Scholar 

  10. Wang, H. B.; Shang, P. J.; Zhang, J.; Guo, M. W.; Mu, Y. P.; Li, Q.; Wang, H. One-step synthesis of high-coercivity L10-FePtAg nano-particles: Effects of Ag on the morphology and chemical ordering of FePt nanoparticles. Chem. Mater. 2013, 25, 2450–2454.

    Article  CAS  Google Scholar 

  11. Lei, W. J.; Yu, Y. S.; Yang, W. W.; Feng, M.; Li, H. B. A general strategy for synthesizing high-coercivity L10-FePt nanoparticles. Nanoscale 2017, 9, 12855–12861.

    Article  CAS  Google Scholar 

  12. Li, D. Y.; Wang, H.; Ma, Z. H.; Liu, X.; Dong, Y.; Liu, Z. Q.; Zhang, T. L.; Jiang, C. B. FePt/Co core/shell nanoparticle-based anisotropic nanocomposites and their exchange spring behavior. Nanoscale 2018, 10, 4061–4067.

    Article  CAS  Google Scholar 

  13. Kang, S. S.; Miao, G. X.; Shi, S.; Jia, Z.; Nikles, D. E.; Harrell, J. W. Enhanced magnetic properties of self-assembled FePt nanoparticles with MnO shell. J. Am. Chem. Soc. 2006, 128, 1042–1043.

    Article  CAS  Google Scholar 

  14. Kim, J.; Rong, C. B.; Lee, Y.; Liu, J. P.; Sun, S. H. From core/shell structured FePt/Fe3O4/MgO to ferromagnetic FePt nanoparticles. Chem. Mater. 2008, 20, 7242–7245.

    Article  CAS  Google Scholar 

  15. Chen, M.; Pica, T.; Jiang, Y. B.; Li, P.; Yano, K.; Liu, J. P.; Datye, A. K.; Fan, H. Y. Synthesis and self-assembly of fcc phase FePt nanorods. J. Am. Chem. Soc. 2007, 129, 6348–6349.

    Article  CAS  Google Scholar 

  16. Tamada, Y.; Yamamoto, S.; Takano, M.; Nasu, S.; Ono, T. Well-ordered L10-Fe Pt nanoparticles synthesized by improved SiO2-nanoreactor method. Appl. Phys. Lett. 2007, 90, 162509.

    Article  Google Scholar 

  17. Kim, J.; Rong, C. B.; Liu, J. P.; Sun, S. H. Dispersible ferromagnetic FePt nanoparticles. Adv. Mater. 2009, 21, 906–909.

    Article  CAS  Google Scholar 

  18. Meng, Z. G.; Xiao, F.; Wei, Z. X.; Guo, X. Y.; Zhu, Y.; Liu, Y. R.; Li, G. J.; Yu, Z. Q.; Shao, M. H.; Wong, W. Y. Direct synthesis of L10-FePt nanoparticles from single-source bimetallic complex and their electrocatalytic applications in oxygen reduction and hydrogen evolution reactions. Nano Res. 2019, 12, 2954–2959.

    Article  Google Scholar 

  19. Chen, X.; Wang, Y.; Wang, H. B.; Su, D.; Zhang, J.; Ruterana, P.; Wang, H. Direct one-pot synthesis of L10-FePtAg nanoparticles with uniform and very small particle sizes. J. Mater. Chem. C 2017, 5, 5316–5322.

    Article  CAS  Google Scholar 

  20. Lei, W. J.; Xu, J. J.; Yu, Y. S.; Yang, W. W.; Hou, Y. L.; Chen, D. F. Halide ion-mediated synthesis of L10-FePt nanoparticles with tunable magnetic properties. Nano Lett. 2018, 18, 7839–7844.

    Article  CAS  Google Scholar 

  21. Bigot, J. Y.; Kesserwan, H.; Halté, V.; Ersen, O.; Moldovan, M. S.; Kim, T. H.; Jang, J. T.; Cheon, J. Magnetic properties of annealed core-shell CoPt nanoparticles. Nano Lett. 2012, 12, 1189–1197.

    Article  CAS  Google Scholar 

  22. Yu, X. F.; Li, L. L.; Su, Y. Q.; Jia, W.; Dong, L. L.; Wang, D. S.; Zhao, J. L.; Li, Y. D. Platinum-copper nanoframes: One-pot synthesis and enhanced electrocatalytic activity. Chem.—Eur. J. 2016, 22, 4960–4965.

    Article  CAS  Google Scholar 

  23. Medwal, R.; Sehdev, N.; Govind; Annapoorni, G. S. Electronic states of self stabilized L10 FePt alloy nanoparticles. Appl. Phys. A 2012, 109, 403–408.

    Article  CAS  Google Scholar 

  24. Yang, Z. Y.; Zhao, T. S.; Huang, X. X.; Chu, X.; Tang, T. Y.; Ju, Y. M.; Wang, Q.; Hou, Y. L.; Gao, S. Modulating the phases of iron carbide nanoparticles: From a perspective of interfering with the carbon penetration of Fe@Fe3O4 by selectively adsorbed halide ions. Chem. Sci. 2017, 8, 473–481.

    Article  CAS  Google Scholar 

  25. Yu, Y. X.; Goodfellow, B. W.; Rasch, M. R.; Bosoy, C.; Smilgies, D. M.; Korgel, B. A. Role of halides in the ordered structure transitions of heated gold nanocrystal superlattices. Langmuir 2015, 31, 6924–6932.

    Article  CAS  Google Scholar 

  26. Xie, S. F.; Peng, H. C.; Lu, N.; Wang, J. G.; Kim, M. J.; Xie, Z. X.; Xia, Y. N. Confining the nucleation and overgrowth of Rh to the {111} facets of Pd nanocrystal seeds: The roles of capping agent and surface diffusion. J. Am. Chem. Soc. 2013, 135, 16658–16667.

    Article  CAS  Google Scholar 

  27. Zhang, S.; Jiang, G. M.; Filsinger, G. T.; Wu, L. H.; Zhu, H. Y.; Lee, J. H.; Wu, Z. B.; Sun, S. H. Halide ion-mediated growth of single crystalline Fe nanoparticles. Nanoscale 2014, 6, 4852–4856.

    Article  CAS  Google Scholar 

  28. Wang, C.; Hou, Y. L.; Kim, J.; Sun, S. H. A general strategy for synthesizing FePt nanowires and nanorods. Angew. Chem., Int. Ed. 2007, 119, 6449–6451.

    Article  Google Scholar 

  29. Niu, Z. Q.; Chen, S. P.; Yu, Y.; Lei, T.; Dehestani, A.; Schierle-Arndt, K.; Yang, P. D. Morphology-controlled transformation of Cu@Au core-shell nanowires into thermally stable Cu3Au intermetallic nanowires. Nano Res. 2020, 13, 2564–2569.

    Article  CAS  Google Scholar 

  30. Xu, Y. C.; Cui, X. Q.; Wei, S. T.; Zhang, Q. H.; Gu, L.; Meng, F. Q.; Fan, J. C.; Zheng, W. T. Highly active zigzag-like Pt-Zn alloy nanowires with high-index facets for alcohol electrooxidation. Nano Res. 2019, 12, 1173–1179.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant (Nos. 51871078, 51631001 and 51590882), the National Key R&D Program of China (No. 2016YFA0200102) and Heilongjiang Science Foundation (No. E2018028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiwei Yang or Yanglong Hou.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., He, L., Xu, J. et al. A facile solution phase synthesis of directly ordering monodisperse FePt nanoparticles. Nano Res. 15, 446–451 (2022). https://doi.org/10.1007/s12274-021-3499-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3499-4

Keywords

Navigation