Skip to main content
Log in

Enhancement of output power density in a modified polytetrafluoroethylene surface using a sequential O2/Ar plasma etching for triboelectric nanogenerator applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this work, the surface modification using a two-steps plasma etching has been developed for enhancing energy conversion performance in polytetrafluoroethylene (PTFE) triboelectric nanogenerator (TENG). Enhancing surface area by a powerful O2 and Ar bipolar pulse plasma etching without the use of CF4 gas has been demonstrated for the first time. TENG with modified surface PTFE using a sequential two-step O2/Ar plasma has a superior power density of 9.9 Wm−2, which is almost thirty times higher than that of a pristine PTFE TENG. The synergistic combination of high surface area and charge trapping sites due to chemical bond defects achieved from the use of a sequential O2/Ar plasma gives rise to the intensified triboelectric charge density and the enhancement of power output of PTFE-based TENG. The effects of plasma species and plasma etching sequence on surface morphologies and surface chemical species were investigated by a field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The correlation of surface morphology, chemical structure, and TENG performance was elucidated. In addition, the applications of mechanical energy harvesting for lighting, charging capacitors, keyboard sensing and operating a portable calculator were demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Niu, S. M.; Wang, Z. L. Theoretical systems of triboelectric nanogenerators. Nano Energy 2015, 14, 161–192.

    Article  CAS  Google Scholar 

  2. Lee, J. W.; Hwang, W. Theoretical study of micro/nano roughness effect on water-solid triboelectrification with experimental approach. Nano Energy 2018, 52, 315–322.

    Article  CAS  Google Scholar 

  3. Wu, J.; Wang, X. L.; Li, H. Q.; Wang, F.; Yang, W. X.; Hu, Y. Q. Insights into the mechanism of metal-polymer contact electrification for triboelectric nanogenerator via first-principles investigations. Nano Energy 2018, 48, 607–616.

    Article  CAS  Google Scholar 

  4. Wang, L. Y.; Daoud, W. A. Highly flexible and transparent polyionic-skin triboelectric nanogenerator for biomechanical motion harvesting. Adv. Energy Mater. 2019, 9, 1803183.

    Google Scholar 

  5. Ryu, H.; Lee, J. H.; Kim, T. Y.; Khan, U.; Lee, J. H.; Kwak, S. S.; Yoon, H. J.; Kim, S. W. High-performance triboelectric nanogenerators based on solid polymer electrolytes with asymmetric pairing of ions. Adv. Energy Mater. 2017, 7, 1700289.

    Article  Google Scholar 

  6. Fan, F. R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.

    Article  CAS  Google Scholar 

  7. Li, S. M.; Wang, J.; Peng, W. B.; Lin, L.; Zi, Y. L.; Wang, S. H.; Zhang, G.; Wang, Z. L. Sustainable energy source for wearable electronics based on multilayer elastomeric triboelectric nanogenerators. Adv. Energy Mater. 2017, 7, 1602832.

    Article  Google Scholar 

  8. Wang, S. H.; Lin, L.; Wang, Z. L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346.

    Article  CAS  Google Scholar 

  9. Zhang, X. S.; Han, M. D.; Wang, R. X.; Zhu, F. Y.; Li, Z. H.; Wang, W.; Zhang, H. X. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 2013, 13, 1168–1172.

    Article  CAS  Google Scholar 

  10. Kim, D.; Park, S. J.; Jeon, S. B.; Seol, M. L.; Choi, Y. K. A triboelectric sponge fabricated from a cube sugar template by 3D soft lithography for superhydrophobicity and elasticity. Adv. Electron. Mater. 2016, 2, 1500331.

    Article  Google Scholar 

  11. Park, H. Y.; Kim, H. K.; Hwang, Y. H.; Shin, D. M. Water-through triboelectric nanogenerator based on Ti-mesh for harvesting liquid flow. J. Korean Phys. Soc. 2018, 72, 499–503.

    Article  CAS  Google Scholar 

  12. Fan, X.; Chen, J.; Yang, J.; Bai, P.; Li, Z. L.; Wang, Z. L. Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano 2015, 9, 4236–4243.

    Article  CAS  Google Scholar 

  13. Shao, H. Y.; Cheng, P.; Chen, R. X.; Xie, L. J.; Sun, N.; Shen, Q. Q.; Chen, X. P.; Zhu, Q. Q.; Zhang, Y.; Liu, Y. et al. Triboelectric-electromagnetic hybrid generator for harvesting blue energy. Nano-Micro Lett. 2018, 10, 54.

    Article  Google Scholar 

  14. Su, Y. J.; Zhu, G.; Yang, W. Q.; Yang, J.; Chen, J.; Jing, Q. S.; Wu, Z. M.; Jiang, Y. D.; Wang, Z. L. Triboelectric sensor for self-powered tracking of object motion inside tubing. ACS Nano 2014, 8, 3843–3850.

    Article  CAS  Google Scholar 

  15. Pang, Y. K.; Li, X. H.; Chen, M. X.; Han, C. B.; Zhang, C.; Wang, Z. L. Triboelectric nanogenerators as a self-powered 3D acceleration sensor. ACS Appl. Mater. Interfaces 2015, 7, 19076–19082.

    Article  CAS  Google Scholar 

  16. Wang, S. H.; Lin, L.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Wang, Z. L. Sliding-triboelectric nanogenerators based on in-plane chargeseparation mechanism. Nano Lett. 2013, 13, 2226–2233.

    Article  CAS  Google Scholar 

  17. Yang, Y.; Zhang, H. L.; Chen, J.; Jing, Q. S.; Zhou, Y. S.; Wen, X. N.; Wang, Z. L. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 2013, 7, 7342–7351.

    Article  CAS  Google Scholar 

  18. Zhang, H. L.; Yang, Y.; Zhong, X. D.; Su, Y. J.; Zhou, Y. S.; Hu, C. G.; Wang, Z. L. Single-electrode-based rotating triboelectric nanogenerator for harvesting energy from tires. ACS Nano 2014, 8, 680–689.

    Article  CAS  Google Scholar 

  19. Jie, Y.; Wang, N.; Cao, X.; Xu, Y.; Li, T.; Zhang, X. J.; Wang, Z. L. Self-powered triboelectric nanosensor with poly(tetrafluoroethylene) nanoparticle arrays for dopamine detection. ACS Nano 2015, 9, 8376–8383.

    Article  CAS  Google Scholar 

  20. Yu, A. F.; Song, M.; Zhang, Y.; Zhang, Y.; Chen, L. B.; Zhai, J. Y.; Wang, Z. L. Self-powered acoustic source locator in underwater environment based on organic film triboelectric nanogenerator. Nano Res. 2015, 8, 765–773.

    Article  CAS  Google Scholar 

  21. Zhang, B. B.; Chen, J.; Jin, L.; Deng, W. L.; Zhang, L.; Zhang, H. T.; Zhu, M. H.; Yang, W. Q.; Wang, Z. L. Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for sustainably powering wireless traffic volume sensors. ACS Nano 2016, 10, 6241–6247.

    Article  CAS  Google Scholar 

  22. Xie, Y. N.; Wang, S. H.; Lin, L.; Jing, Q. S.; Lin, Z. H.; Niu, S. M.; Wu, Z. Y.; Wang, Z. L. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 2013, 7, 7119–7125.

    Article  CAS  Google Scholar 

  23. Lin, L.; Wang, S. H.; Niu, S. M.; Liu, C.; Xie, Y. N.; Wang, Z. L. Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor. ACS Appl. Mater. Interfaces 2014, 6, 3031–3038.

    Article  CAS  Google Scholar 

  24. Su, Y. J.; Wen, X. N.; Zhu, G.; Yang, J.; Chen, J.; Bai, P.; Wu, Z. M.; Jiang, Y. D.; Wang, Z. L. Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter. Nano Energy 2014, 9, 186–195.

    Article  CAS  Google Scholar 

  25. Wen, Z.; Chen, J.; Yeh, M. H.; Guo, H. Y.; Li, Z. L.; Fan, X.; Zhang, T. J.; Zhu, L. P.; Wang, Z. L. Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy 2015, 16, 38–46.

    Article  CAS  Google Scholar 

  26. Chen, S. W.; Cao, X.; Wang, N.; Ma, L.; Zhu, H. R.; Willander, M.; Jie, Y.; Wang, Z. L. An ultrathin flexible single-electrode triboelectric-nanogenerator for mechanical energy harvesting and instantaneous force sensing. Adv. Energy Mater. 2017, 7, 1601255.

    Article  Google Scholar 

  27. Bai, Y.; Han, C. B.; He, C.; Gu, G. Q.; Nie, J. H.; Shao, J. J.; Xiao, T. X.; Deng, C. R.; Wang, Z. L. Washable multilayer triboelectric air filter for efficient particulate matter PM2.5 removal. Adv. Funct. Mater. 2018, 28, 1706680.

    Article  Google Scholar 

  28. Morber, J. R.; Wang, X. D.; Liu, J.; Snyder, R. L.; Wang, Z. L. Wafer-level patterned and aligned polymer nanowire/micro- and nanotube arrays on any substrate. Adv. Mater. 2009, 21, 2072–2076.

    Article  CAS  Google Scholar 

  29. Liu, L.; Tang, W.; Wang, Z. L. Inductively-coupled-plasma-induced electret enhancement for triboelectric nanogenerators. Nanotechnology 2017, 28, 035405.

    Article  Google Scholar 

  30. Fang, H.; Wu, W. Z.; Song, J. H.; Wang, Z. L. Controlled growth of aligned polymer nanowires. J. Phys. Chem. C 2009, 113, 16571–16574.

    Article  CAS  Google Scholar 

  31. Cheng, X. L.; Meng, B.; Chen, X. X.; Han, M. D.; Chen, H. T.; Su, Z. M.; Shi, M. Y.; Zhang, H. X. Single-step fluorocarbon plasma treatment-induced wrinkle structure for high-performance triboelectric nanogenerator. Small 2016, 12, 229–236.

    Article  CAS  Google Scholar 

  32. Kim, D.; Jeon, S. B.; Kim, J. Y.; Seol, M. L.; Kim, S. O.; Choi, Y. K. High-performance nanopattern triboelectric generator by block copolymer lithography. Nano Energy 2015, 12, 331–338.

    Article  CAS  Google Scholar 

  33. Yoo, H. G.; Byun, M.; Jeong, C. K.; Lee, K. J. Performance enhancement of electronic and energy devices via block copolymer self-assembly. Adv. Mater. 2015, 27, 3982–3998.

    Article  CAS  Google Scholar 

  34. Ke, K. H.; Chung, C. K. High-performance Al/PDMS TENG with novel complex morphology of two-height microneedles array for high-sensitivity force-sensor and self-powered application. Small 2020, 16, 2001209.

    Article  CAS  Google Scholar 

  35. Trinh, V. L.; Chung, C. K. A facile method and novel mechanism using microneedle-structured PDMS for triboelectric generator applications. Small 2017, 13, 1700373.

    Article  Google Scholar 

  36. Lin, Z. H.; Xie, Y. N.; Yang, Y.; Wang, S. H.; Zhu, G.; Wang, Z. L. Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials. ACS Nano 2013, 7, 4554–4560.

    Article  CAS  Google Scholar 

  37. Feng, Y. G.; Zheng, Y. B.; Rahman, Z. U.; Wang, D. A.; Zhou, F.; Liu, W. M. Paper-based triboelectric nanogenerators and their application in self-powered anticorrosion and antifouling. J. Mater. Chem. A 2016, 4, 18022–18030.

    Article  CAS  Google Scholar 

  38. Feng, Y. G.; Zheng, Y. B.; Ma, S. H.; Wang, D. A.; Zhou, F.; Liu, W. M. High output polypropylene nanowire array triboelectric nanogenerator through surface structural control and chemical modification. Nano Energy 2016, 19, 48–57.

    Article  CAS  Google Scholar 

  39. Bai, P.; Zhu, G.; Liu, Y.; Chen, J.; Jing, Q. S.; Yang, W. Q.; Ma, J. S.; Zhang, G.; Wang, Z. L. Cylindrical rotating triboelectric nanogenerator. ACS Nano 2013, 7, 6361–6366.

    Article  CAS  Google Scholar 

  40. Kim, D. Y.; Kim, H. S.; Jung, J. H. Ar plasma treated polytetra-fluoroethylene films for a highly efficient triboelectric generator. J. Korean Phys. Soc. 2016, 69, 1720–1723.

    Article  CAS  Google Scholar 

  41. Yang, W. Q.; Chen, J.; Jing, Q. S.; Yang, J.; Wen, X. N.; Su, Y. J.; Zhu, G.; Bai, P.; Wang, Z. L. 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 2014, 24, 4090–4096.

    Article  CAS  Google Scholar 

  42. Yang, X. Y.; Chan, S.; Wang, L. Y.; Daoud, W. A. Water tank triboelectric nanogenerator for efficient harvesting of water wave energy over a broad frequency range. Nano Energy 2018, 44, 388–398.

    Article  CAS  Google Scholar 

  43. Li, H. Y.; Su, L.; Kuang, S. Y.; Pan, C. F.; Zhu, G.; Wang, Z. L. Significant enhancement of triboelectric charge density by fluorinated surface modification in nanoscale for converting mechanical energy. Adv. Funct. Mater. 2015, 25, 5691–5697.

    Article  CAS  Google Scholar 

  44. Kim, D.; Oh, Y.; Hwang, B. W.; Jeon, S. B.; Park, S. J.; Choi, Y. K. Triboelectric nanogenerator based on the internal motion of powder with a package structure design. ACS Nano 2016, 10, 1017–1024.

    Article  CAS  Google Scholar 

  45. Lee, C.; Yang, S.; Choi, D.; Kim, W.; Kim, J.; Hong, J. Chemically surface-engineered polydimethylsiloxane layer via plasma treatment for advancing textile-based triboelectric nanogenerators. Nano Energy 2019, 57, 353–362.

    Article  CAS  Google Scholar 

  46. Youngblood, J. P.; McCarthy, T. J. Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma. Macromolecules 1999, 32, 6800–6806.

    Article  CAS  Google Scholar 

  47. Salapare III, H. S.; Guittard, F.; Noblin, X.; Taffin de Givenchy, E.; Celestini, F.; Ramos, H. J. Stability of the hydrophilic and super-hydrophobic properties of oxygen plasma-treated poly(tetrafluoroethylene) surfaces. J. Colloid Interface Sci. 2013, 396, 287–292.

    Article  CAS  Google Scholar 

  48. Vandencasteele, N.; Broze, B.; Collette, S.; De Vos, C.; Viville, P.; Lazzaroni, R.; Reniers, F. Evidence of the synergetic role of charged species and atomic oxygen in the molecular etching of PTFE surfaces for hydrophobic surface synthesis. Langmuir 2010, 26, 16503–16509.

    Article  CAS  Google Scholar 

  49. Morra, M.; Occhiello, E.; Garbassi, F. Contact angle hysteresis in oxygen plasma treated poly(tetrafluoroethylene). Langmuir 1989, 5, 872–876.

    Article  CAS  Google Scholar 

  50. Liu, C. Z.; Wu, J. Q.; Ren, L. Q.; Tong, J.; Li, J. Q.; Cui, N.; Brown, N. M. D.; Meenan, B. J. Comparative study on the effect of RF and DBD plasma treatment on PTFE surface modification. Mater. Chem. Phys. 2004, 85, 340–346.

    Article  CAS  Google Scholar 

  51. Wang, C.; Chen, J. R.; Li, R. Studies on surface modification of poly(tetrafluoroethylene) film by remote and direct Ar plasma. Appl. Surf. Sci. 2008, 254, 2882–2888.

    Article  CAS  Google Scholar 

  52. Carbone, E. A. D.; Verhoeven, M. W. G. M.; Keuning, W.; van der Mullen, J. J. A. M. PTFE treatment by remote atmospheric Ar/O2 plasmas: A simple reaction scheme model proposal. J. Phys.: Conf. Ser. 2016, 715, 012011.

    Google Scholar 

  53. Kolská, Z.; Řezníčková, A.; Hnatowicz, V.; Švorčík, V. PTFE surface modification by Ar plasma and its characterization. Vacuum 2012, 86, 643–647.

    Article  Google Scholar 

  54. Stoffels, E.; Stoffels, W. W.; Vender, D.; Kando, M.; Kroesen, G. M. W.; de Hoog, F. J. Negative ions in a radio-frequency oxygen plasma. Phys. Rev. E 1995, 51, 2425–2435.

    Article  CAS  Google Scholar 

  55. Berezhnoj, S. V.; Shin, C. B.; Buddemeier, U.; Kaganovich, I. Charged species profiles in oxygen plasma. Appl. Phys. Lett. 2000, 77, 800–802.

    Article  CAS  Google Scholar 

  56. Carbone, E. A. D.; Boucher, N.; Sferrazza, M.; Reniers, F. How to increase the hydrophobicity of PTFE surfaces using an r.f. Atmospheric-pressure plasma torch. Surf. Interface Anal. 2010, 42, 1014–1018.

    Article  CAS  Google Scholar 

  57. Wilson, D. J.; Williams, R. L.; Pond, R. C. Plasma modification of PTFE surfaces. Part I: Surfaces immediately following plasma treatment. Surf. Interface Anal. 2001, 31, 385–396.

    Article  CAS  Google Scholar 

  58. Vesel, A.; Mozetic, M.; Zalar, A. XPS characterization of PTFE after treatment with RF oxygen and nitrogen plasma. Surf. Interface Anal. 2008, 40, 661–663.

    Article  CAS  Google Scholar 

  59. Ryan, M. E.; Badyal, J. P. S. Surface texturing of PTFE film using nonequilibrium plasmas. Macromolecules 1995, 28, 1377–1382.

    Article  CAS  Google Scholar 

  60. Egitto, F. D.; Matienzo, L. J.; Schreyer, H. B. Reactive ion etching of poly(tetrafluoroethylene) in O2-CF4 plasmas. J. Vac. Sci. Technol. A 1992, 10, 3060–3064.

    Article  CAS  Google Scholar 

  61. Momose, Y.; Tamura, Y.; Ogino, M.; Okazaki, S.; Hirayama, M. Chemical reactivity between Teflon surfaces subjected to argon plasma treatment and atmospheric oxygen. J. Vac. Sci. Technol. A 1992, 10, 229–238.

    Article  CAS  Google Scholar 

  62. Shao, X. J.; Zhang, G. J.; Zhan, J. Y.; Xu, G. M. Research on surface modification of polytetrafluoroethylene coupled with argon dielectric barrier discharge plasma jet characteristics. IEEE Trans. Plasma Sci. 2011, 39, 3095–3102.

    Article  CAS  Google Scholar 

  63. Niu, S. M.; Wang, S. H.; Lin, L.; Liu, Y.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 2013, 6, 3576–3583.

    Article  Google Scholar 

  64. He, X. M.; Guo, H. Y.; Yue, X. L.; Gao, J.; Xi, Y.; Hu, C. G. Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density. Nanoscale 2015, 7, 1896–1903.

    Article  CAS  Google Scholar 

  65. Chen, J.; Guo, H. Y.; He, X. M.; Liu, G. L.; Xi, Y.; Shi, H. F.; Hu, C. G. Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film. ACS Appl. Mater. Interfaces 2016, 8, 736–744.

    Article  CAS  Google Scholar 

  66. Kao, K. C. Dielectric Phenomena in Solids: With Emphasis on Physical Concepts of Electronic Processes; Elsevier: Amsterdam, 2004; pp 41–114.

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the RNN program of the NANOTEC, NSTDA, Ministry of Higher Education, Science, Research and Innovation (MHESI) and Khon Kaen University, Thailand, the Thailand Research Fund (No. MRG6280196), the Thailand Center of Excellence in Physics (ThEP), and the Basic Research Fund of Khon Kaen University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Viyada Harnchana or Artit Chingsungnoen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prada, T., Harnchana, V., Lakhonchai, A. et al. Enhancement of output power density in a modified polytetrafluoroethylene surface using a sequential O2/Ar plasma etching for triboelectric nanogenerator applications. Nano Res. 15, 272–279 (2022). https://doi.org/10.1007/s12274-021-3470-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3470-4

Keywords

Navigation