Skip to main content
Log in

Bridging localized electron states of pyrite-type CoS2 cocatalyst for activated solar H2 evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of low-cost and high-active cocatalysts is one of the most significant links for photocatalytic water splitting. Herein, a novel strategy of electron delocalization modulation for transition metal sulfides has been developed by anion hybridization. P-modified CoS2 (CoS2∣P) nanocrystals were firstly fabricated via a gas-solid reaction and coupled with CdS nanorods to construct a composite catalyst for solar H2 evolution reaction (HER). The CdS/CoS2∣P catalyst shows an HER rate of 57.8 µmol·h−1, which is 18 times that of the bare CdS, 8 times that of the CdS/CoS2, and twice that of Pt/CdS. The reduced energy barrier and suppressed reverse reaction for HER on the catalyst have been predicted and explained by density functional theory (DFT) calculation. The underlying design strategy of novel cocatalysts by electron delocalization modulation may shed light on the rational development of other advanced catalysts for energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919–985.

    Article  CAS  Google Scholar 

  2. Hisatomi, T.; Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2019, 2, 387–399.

    Article  CAS  Google Scholar 

  3. Meng, A. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Dual cocatalysts in TiO2 photocatalysis. Adv. Mater. 2019, 31, 1807660.

    Article  Google Scholar 

  4. Sun, S. C.; Zhang, X. Y.; Liu, X. L.; Pan, L.; Zhang, X. W.; Zou, J. J. Design and construction of cocatalysts for photocatalytic water splitting. Acta Phys. Chim. Sin. 2020, 36, 1905007.

    Article  Google Scholar 

  5. Ran, J. J.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.

    Article  CAS  Google Scholar 

  6. Zhang, H. B.; Zhang, P.; Qiu, M.; Dong, J. C.; Zhang, Y. F.; Lou, X. W. Ultrasmall MoOx clusters as a novel cocatalyst for photocatalytic hydrogen evolution. Adv. Mater. 2019, 31, 1804883.

    Google Scholar 

  7. Li, L. H.; Deng, Z. X.; Yu, L. L.; Lin, Z. Y.; Wang, W. L.; Yang, G. W. Amorphous transitional metal borides as substitutes for Pt cocatalysts for photocatalytic water splitting. Nano Energy 2016, 27, 103–113.

    Article  CAS  Google Scholar 

  8. Sun, Z. J.; Zheng, H. F.; Li, J. S.; Du, P. W. Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts. Energy Environ. Sci. 2015, 8, 2668–2676.

    Article  CAS  Google Scholar 

  9. Zhang, J. Y.; Liu, Y. C.; Sun, C. Q.; Xi, P. X.; Peng, S. L.; Gao, D. Q.; Xue, D. S. Accelerated hydrogen evolution reaction in CoS2 by transition-metal doping. ACS Energy Lett. 2018, 3, 779–786.

    Article  CAS  Google Scholar 

  10. Yin, J.; Jin, J.; Zhang, H.; Lu, M.; Peng, Y.; Huang, B. L.; Xi, P. X.; Yan, C. H. Atomic arrangement in metal-doped NiS2 boosts the hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2019, 58, 18676–18682.

    Article  CAS  Google Scholar 

  11. Chang, K.; Hai, X.; Ye, J. H. Transition metal disulfides as noble-metal-alternative co-catalysts for solar hydrogen production. Adv. Energy Mater. 2016, 6, 1502555.

    Article  Google Scholar 

  12. Chang, K.; Pang, H.; Hai, X.; Zhao, G. X.; Zhang, H. B.; Shi, L.; Ichihara, F.; Ye, J. H. Ultra-small freestanding amorphous molybdenum sulfide colloidal nanodots for highly efficient photocatalytic hydrogen evolution reaction. Appl. Catal. B Environ. 2018, 232, 446–453.

    Article  CAS  Google Scholar 

  13. Zong, X.; Yan, H. J.; Wu, G. P.; Ma, G. J.; Wen, F. Y.; Wang, L.; Li, C. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 2008, 130, 7176–7177.

    Article  CAS  Google Scholar 

  14. Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541.

    Article  CAS  Google Scholar 

  15. Carenco, S.; Portehault, D.; Boissière, C.; Mézailles, N.; Sanchez, C. Nanoscaled metal borides and phosphides: Recent developments and perspectives. Chem. Rev. 2013, 113, 7981–8065.

    Article  CAS  Google Scholar 

  16. Liu, P.; Rodriguez, J. A. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P (001) surface: The importance of ensemble effect. J. Am. Chem. Soc. 2005, 127, 14871–14878.

    Article  CAS  Google Scholar 

  17. Xiao, P.; Sk, M. A.; Thia, L.; Ge, X. M.; Lim, R. J.; Wang, J. Y.; Lim, K. H.; Wang, X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 2624–2629.

    Article  CAS  Google Scholar 

  18. Cabán-Acevedo, M.; Stone, M. L.; Schmidt, J. R.; Thomas, J. G.; Ding, Q.; Chang, H. C.; Tsai, M. L.; He, J. H.; Jin, S. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 2015, 14, 1245–1251.

    Article  Google Scholar 

  19. Zhang, X.; Luo, Z. M.; Yu, P.; Cai, Y. Q.; Du, Y. H.; Wu, D. X.; Gao, S.; Tan, C. L.; Li, Z.; Ren, M. Q. et al. Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nat. Catal. 2018, 1, 460–468.

    Article  CAS  Google Scholar 

  20. Liu, W.; Hu, E. Y.; Jiang, H.; Xiang, Y. J.; Weng, Z.; Li, M.; Fan, Q.; Yu, X. Q.; Altman, E. I.; Wang, H. L. A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nat. Commun. 2016, 7, 10771.

    Article  CAS  Google Scholar 

  21. Zheng, J. M.; Tian, J.; Wu, D. X.; Gu, M.; Xu, W.; Wang, C. M.; Gao, F.; Engelhard, M. H.; Zhang, J. G.; Liu, J. et al. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett. 2014, 14, 2345–2352.

    Article  CAS  Google Scholar 

  22. Zhang, S.; Huang, Z. Q.; Ma, Y. Y.; Gao, W.; Li, J.; Cao, F. X.; Li, L.; Chang, C. R.; Qu, Y. Solid frustrated-lewis-pair catalysts constructed by regulations on surface defects of porous nanorods of CeO2. Nat. Commun. 2017, 8, 15266.

    Article  CAS  Google Scholar 

  23. Huang, Z. Q.; Liu, L. P.; Qi, S. T.; Zhang, S.; Qu, Y. Q.; Chang, C. R. Understanding All-solid frustrated-Lewis-pair sites on CeO2 from theoretical perspectives. ACS Catal. 2018, 8, 546–554.

    Article  CAS  Google Scholar 

  24. Liu, J. C.; Ma, X. L.; Li, Y.; Wang, Y. G.; Xiao, H.; Li, J. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 2018, 9, 1610.

    Article  Google Scholar 

  25. Wang, Y.; Zhuo, H. Y.; Zhang, X.; Dai, X. P.; Yu, K. M.; Luan, C. L.; Yu, L.; Xiao, Y.; Li, J.; Wang, M. L. et al. Synergistic effect between undercoordinated platinum atoms and defective nickel hydroxide on enhanced hydrogen evolution reaction in alkaline solution. Nano Energy 2018, 48, 590–599.

    Article  CAS  Google Scholar 

  26. Zou, X. X.; Wu, Y. Y.; Liu, Y. P.; Liu, D. P.; Li, W.; Gu, L.; Liu, H.; Wang, P. W.; Sun, L.; Zhang, Y. In situ generation of bifunctional, efficient Fe-based catalysts from mackinawite iron sulfide for water splitting. Chem 2018, 4, 1139–1152.

    Article  CAS  Google Scholar 

  27. Yan, H. J.; Xie, Y.; Wu, A. P.; Cai, Z. C.; Wang, L.; Tian, C. G.; Zhang, X. M.; Fu, H. G. Anion-modulated HER and OER activities of 3D Ni-V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting. Adv. Mater. 2019, 31, 1901174.

    Article  Google Scholar 

  28. Cheng, T.; Wang, L.; Merinov, B. V.; Goddard III, W. A. Explanation of dramatic pH-dependence of hydrogen binding on noble metal electrode: Greatly weakened water adsorption at high pH. J. Am. Chem. Soc. 2018, 140, 7787–7790.

    Article  CAS  Google Scholar 

  29. Kim, Y. D.; Chang, Y. C.; Klein, M. V. Effect of d electrons in transition-metal ions on band-gap energies of diluted magnetic semiconductors. Phys. Rev. B 1993, 48, 17770–17775.

    Article  CAS  Google Scholar 

  30. Savin, A.; Nesper, R.; Wengert, S.; Fässler, T. F. ELF: The electron localization function. Angew. Chem., Int. Ed. 1997, 36, 1808–1832.

    Article  CAS  Google Scholar 

  31. Huang, H. M.; Dai, B. Y.; Wang, W.; Lu, C. H.; Kou, J. H.; Ni, Y. R.; Wang, L. Z.; Xu, Z. Z. Oriented built-in electric field introduced by surface gradient diffusion doping for enhanced photocatalytic H2 evolution in CdS nanorods. Nano Lett. 2017, 17, 3803–3808.

    Article  CAS  Google Scholar 

  32. Cordero, B.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent radii revisited. Dalton Trans. 2008, 2832–2838.

  33. Yan, Y.; Liu, C. Y.; Jian, H. W.; Cheng, X.; Hu, T.; Wang, D.; Shang, L.; Chen, G.; Schaaf, P.; Wang, X. Y. et al. Substitutionally dispersed high-oxidation CoOx clusters in the lattice of rutile TiO2 triggering efficient Co-Ti cooperative catalytic centers for oxygen evolution reactions. Adv. Funct. Mater. 2020, 31, 2009610.

    Article  Google Scholar 

  34. Regulacio, M. D.; Ye, C.; Lim, S. H.; Bosman, M.; Polavarapu, L.; Koh, W. L.; Zhang, J.; Xu, Q. H.; Han, M. Y. One-pot synthesis of Cu1.94S-CdS and Cu1.94S−ZnxCd1−xS nanodisk heterostructures. J. Am. Chem. Soc. 2011, 133, 2052–2055.

    Article  CAS  Google Scholar 

  35. Peng, S. J.; Li, L. L.; Han, X. P.; Sun, W. P.; Srinivasan, M.; Mhaisalkar, S. G.; Cheng, F. Y.; Yan, Q. Y.; Chen, J.; Ramakrishna, S. Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew. Chem., Int. Ed. 2014, 53, 12594–12599.

    CAS  Google Scholar 

  36. Shang, L.; Tong, B.; Yu, H. J.; Waterhouse, G. I. N.; Zhou, C.; Zhao, Y. F.; Tahir, M.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. CdS nanoparticle-decorated Cd nanosheets for efficient visible light-driven photocatalytic hydrogen evolution. Adv. Energy Mater. 2016, 6, 1501241.

    Article  Google Scholar 

  37. Yuan, J. L.; Wen, J. Q.; Zhong, Y. M.; Li, X.; Fang, Y. P.; Zhang, S. S.; Liu, W. Enhanced photocatalytic H2 evolution over noble-metal-free NiS cocatalyst modified CdS nanorods/g-C3N4 heterojunctions. J. Mater. Chem. A 2015, 3, 18244–18255.

    Article  CAS  Google Scholar 

  38. Liu, J. C.; Wang, Y. G.; Li, J. Toward rational design of oxide-supported single-atom catalysts: Atomic dispersion of gold on ceria. J. Am. Chem. Soc. 2017, 139, 6190–6199.

    Article  CAS  Google Scholar 

  39. Zhao, Z. Y. Single water molecule adsorption and decomposition on the low-index stoichiometric rutile TiO2 surfaces. J. Phys. Chem. C 2014, 118, 4287–4295.

    Article  CAS  Google Scholar 

  40. Camellone, M. F.; Fabris, S. Reaction mechanisms for the CO oxidation on Au/CeO2 catalysts: Activity of substitutional Au3+/Au+ cations and deactivation of supported Au+ adatoms. J. Am. Chem. Soc. 2009, 131, 10473–10483.

    Article  Google Scholar 

  41. Wang, X. S.; Zheng, Y.; Sheng, W. C.; Xu, Z. J.; Jaroniec, M.; Qiao, S. Z. Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Mater. Today 2020, 36, 125–138.

    Article  CAS  Google Scholar 

  42. Zhao, L.; Zhang, Y.; Zhao, Z. L.; Zhang, Q. H.; Huang, L. B.; Gu, L.; Lu, G.; Hu, J. S.; Wan, L. J. Steering elementary steps towards efficient alkaline hydrogen evolution via size-dependent Ni/NiO nanoscale heterosurfaces. Natl. Sci. Rev. 2020, 7, 27–36.

    Article  CAS  Google Scholar 

  43. Sun, K.; Zhao, L.; Zeng, L.; Liu, S.; Zhu, H.; Li, Y.; Chen, Z.; Zhuang, Z.; Li, Z.; Liu, Z. et al. Reaction environment self-modification on low-coordination Ni2+ octahedra atomic interface for superior electrocatalytic overall water splitting. Nano Res. 2020, 13, 3068–3074.

    Article  Google Scholar 

  44. Li, F.; Han, G. F.; Noh, H. J.; Lu, Y. L.; Xu, J.; Bu, Y. F.; Fu, Z. P.; Baek, J. B. Construction of porous Mo3P/Mo nanobelts as catalysts for efficient water splitting. Angew. Chem., Int. Ed. 2018, 57, 14139–14143.

    Article  CAS  Google Scholar 

  45. Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+−Ni(OH)2-Pt interfaces. Science 2011, 334, 1256–1260.

    Article  CAS  Google Scholar 

  46. Zhou, K. L.; Wang, C. H.; Wang, Z. L.; Han, C. B.; Zhang, Q. Q.; Ke, X. X.; Liu, J. B.; Wang, H. Seamlessly conductive Co(OH)2 tailored atomically dispersed Pt electrocatalyst with a hierarchical nanostructure for an efficient hydrogen evolution reaction. Energy Environ. Sci. 2020, 13, 3082–3092.

    Article  CAS  Google Scholar 

  47. Guo, Q.; Xu, C. B.; Ren, Z. F.; Yang, W. S.; Ma, Z. B.; Dai, D. X.; Fan, H. J.; Minton, T. K.; Yang, X. M. Stepwise photocatalytic dissociation of methanol and water on TiO2 (110). J. Am. Chem. Soc. 2012, 134, 13366–13373.

    Article  CAS  Google Scholar 

  48. Luo, Z. Y.; Zhang, H.; Yang, Y. Q.; Wang, X.; Li, Y.; Jin, Z.; Jiang, Z.; Liu, C. P.; Xing, W.; Ge, J. J. Reactant friendly hydrogen evolution interface based on di-anionic MoS2 surface. Nat. Commun. 2020, 11, 1116.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51872138 and 22002060), Natural Science Foundation of Jiangsu Province (No. BK20181380), Qing Lan Project, Six Talent Peaks Project in Jiangsu Province (No. XCL-029) and Priority Academic Program Development of the Jiangsu Higher Education Institutions (PAPD). Dr. Hengming Huang gratefully acknowledges the support provided by China Scholarships Council (CSC No. 202008320109) and China Postdoctoral Science Foundation (No. 2020M681564). The authors are grateful to the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy and Microanalysis (CMM), The University of Queensland, and the Queensland node of the Australian National Fabrication Facility. The computational resources generously provided by the High-Performance Computing Center of Nanjing Tech University are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiahui Kou, Lianzhou Wang or Chunhua Lu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Xue, C., Fang, Z. et al. Bridging localized electron states of pyrite-type CoS2 cocatalyst for activated solar H2 evolution. Nano Res. 15, 202–208 (2022). https://doi.org/10.1007/s12274-021-3457-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3457-1

Keywords

Navigation