Skip to main content
Log in

B111, B112, B113, and B114: The most stable core-shell borospherenes with an icosahedral B12 core at the center exhibiting superatomic behaviors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Boron allotropes are known to be predominately constructed by icosahedral B12 cages, while icosahedral-B12 stuffing proves to effectively improve the stability of fullerene-like boron nanoclusters in the size range between B98–B102. However, the thermodynamically most stable core-shell borospherenes with a B12 icosahedron at the center still remains unknown. Based on the structural motif of D5h C70 and extensive first-principles theory calculations, we predict herein the high-symmetry C5v B111+ (3) which satisfies the Wade’s n+1 and n+2 skeletal electron counting rules exactly and the approximately electron sufficient Cs B111 (4), Cs B112 (5), Cs B113 (6), and Cs B114 (7) which are the most stable neutral core-shell borospherenes with a B12 icosahedron at the center reported to date in the size range between B68–B130, with Cs B112 (5) being the thermodynamically most favorite species in the series. Detailed orbital and bonding analyses indicate that these spherically aromatic species all contain a negatively charged icosahedral B122− core at the center which exhibits typical superatomic behaviors in the electronic configuration of 1S21P61D101F8, with its dangling valences saturated by twelve radial B-B 2c-2e σ bonds between the B12 inner core and the B70 outer shell. The infrared (IR) and Raman spectra of the concerned species are computationally simulated to facilitate their future characterizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oganov, A. R.; Chen, J. H.; Gatti, C.; Ma, Y. Z.; Glass, C. W.; Liu, Z. X.; Yu, T.; Kurakevych, O. O.; Solozhenko, V. L. Ionic high-pressure form of elemental boron. Nature 2009, 457, 863–867.

    Article  CAS  Google Scholar 

  2. Albert, B.; Hillebrecht, H. Boron: Elementary challenge for experimenters and theoreticians. Angew. Chem., Int. Ed. 2009, 48, 8640–8668.

    Article  CAS  Google Scholar 

  3. Cotton, A. F.; Murillo, C. A.; Bochmann, M; Wilkinson, G. Advanced Inorganic Chemistry; 6th ed. Wiley: New York, 1999; pp 1355.

    Google Scholar 

  4. Wang, L. S. Photoelectron spectroscopy of size-selected boron clusters: From planar structures to borophenes and borospherenes. Int. Rev. Phys. Chem. 2016, 35, 69–142.

    Article  Google Scholar 

  5. Jian, T.; Chen, X. N.; Li, S. D.; Boldyrev, A. I.; Li, J.; Wang, L. S. Probing the structures and bonding of size-selected boron and doped-boron clusters. Chem. Soc. Rev. 2019, 48, 3550–3591.

    Article  CAS  Google Scholar 

  6. Chen, Q.; Li, W. L.; Zhao, Y. F.; Hu, H. S.; Bai, H.; Li, H. R.; Tian, W. J.; Lu, H. G; Zhai, H. J.; Li, S. D. et al. Experimental and theoretical evidence of an axially chiral borospherene. ACS Nano 2015, 9, 754–760.

    Article  Google Scholar 

  7. Zhai, H. J.; Zhao, Y. F.; Li, W. L.; Chen, Q.; Bai, H.; Hu, H. S.; Piazza, Z. A.; Tian, W. J.; Lu, H. G.; Wu, Y. B. et al. Observation of an all-boron fullerene. Nat. Chem. 2014, 6, 727–731.

    Article  CAS  Google Scholar 

  8. Bai, H.; Chen, T. T.; Chen, Q.; Zhao, X. Y.; Zhang, Y. Y.; Chen, W. J.; Li, W. L.; Cheung, L. F.; Bai, B.; Cavanagh, J. et al. Planar B41− and B42− clusters with double-hexagonal vacancies. Nanoscale 2019, 11, 23286–23295.

    Article  CAS  Google Scholar 

  9. Chen, Q.; Zhang, S. Y.; Bai, H.; Tian, W. J.; Gao, T.; Li, H. R.; Miao, C. Q.; Mu, Y. W.; Lu, H. G.; Zhai, H. J. et al. Cage-like B41+ and B422+: New chiral members of the borospherene family. Angew. Chem., Int. Ed. 2015, 54, 8160–8164.

    Article  CAS  Google Scholar 

  10. Chen, Q.; Li, H. R.; Miao, C. Q.; Wang, Y. J.; Lu, H. G.; Mu, Y. W.; Ren, G. M.; Zhai, H. J.; Li, S. D. Endohedral Ca@B38: Stabilization of a B382borospherene dianion by metal encapsulation. Phys. Chem. Chem. Phys. 2016, 18, 11610–11615.

    Article  CAS  Google Scholar 

  11. Tian, W. J.; Chen, Q.; Li, H. R.; Yan, M.; Mu, Y. W.; Lu, H. G.; Zhai, H. J.; Li, S. D. Saturn-like charge-transfer complexes Li4&B36, Li5&B36+, and Li6&B362+: Exohedral metalloborospherenes with a perfect cage-like B364 core. Phys. Chem. Chem. Phys. 2016, 18, 9922–9926.

    Article  CAS  Google Scholar 

  12. Chen, Q.; Li, H. R.; Tian, W. J.; Lu, H. G.; Zhai, H. J.; Li, S. D. Endohedral charge-transfer complex Ga@B37: Stabilization of a B373 borospherene trianion by metal-encapsulation. Phys. Chem. Chem. Phys. 2016, 18, 14186–14190.

    Article  CAS  Google Scholar 

  13. Wang, Y. J.; Zhao, Y. F.; Li, W. L.; Jian, T.; Chen, Q.; You, X. R.; Ou, T.; Zhao, X. Y.; Zhai, H. J.; Li, S. D. et al. Observation and characterization of the smallest borospherene, B28 and B28. J. Chem. Phys. 2016, 144, 064307.

    Article  Google Scholar 

  14. Li, H. R.; Jian, T.; Li, W. L.; Miao, C. Q.; Wang, Y. J.; Chen, Q.; Luo, X. M.; Wang, K.; Zhai, H. J.; Li, S. D. et al. Competition between quasi-planar and cage-like structures in the B29 cluster: Photoelectron spectroscopy and ab initio calculations. Phys. Chem. Chem. Phys. 2016, 18, 29147–29155.

    Article  CAS  Google Scholar 

  15. Oger, E.; Crawford, N. R. M.; Kelting, R.; Weis, P.; Kappes, M. M.; Ahlrichs, R. Boron cluster cations: Transition from planar to cylindrical structures. Angew. Chem., Int. Ed. 2007, 46, 8503–8506.

    Article  CAS  Google Scholar 

  16. Sai, L. W.; Wu, X.; Gao, N.; Zhao, J. J.; King, R. B. Boron clusters with 46, 48, and 50 atoms: Competition among the core-shell, bilayer and quasi-planar structures. Nanoscale 2017, 9, 13905–13909.

    Article  CAS  Google Scholar 

  17. Pei, L.; Ma, Y. Y.; Yan, M.; Zhang, M.; Yuan, R. N.; Chen, Q.; Zan, W. Y.; Mu, Y. W.; Li, S. D. Bilayer B54, B60, and B62 clusters in a universal structural pattern. Eur. J. Inorg. Chem. 2020, 2020, 3296–3301.

    Article  CAS  Google Scholar 

  18. Szwacki, N. G.; Sadrzadeh, A.; Yakobson, B. I. B80 fullerene: An ab initio prediction of geometry, stability, and electronic structure. Phys. Rev. Lett. 2007, 98, 166804.

    Article  Google Scholar 

  19. De, S.; Willand, A.; Amsler, M.; Pochet, P.; Genovese, L.; Goedecker, S. Energy landscape of fullerene materials: A comparison of boron to boron nitride and carbon. Phys. Rev. Lett. 2011, 106, 225502.

    Article  Google Scholar 

  20. Zhao, J. J.; Wang, L.; Li, F. Y.; Chen, Z. F. B80 and other medium-sized boron clusters: Core-shell structures, not hollow cages. J. Phys. Chem. A 2010, 114, 9969–9972.

    Article  CAS  Google Scholar 

  21. Li, H.; Shao, N.; Shang, B.; Yuan, L. F.; Yang, J. L.; Zeng, X. C. Icosahedral B12-containing core-shell structures of B80. Chem. Commun. 2010, 46, 3878–3880.

    Article  CAS  Google Scholar 

  22. Shang, B.; Yuan, L. F.; Zeng, X. C.; Yang, J. L. Ab initio prediction of amorphous B84. J. Phys. Chem. A 2010, 114, 2245–2249.

    Article  CAS  Google Scholar 

  23. Prasad, D. L. V. K.; Jemmis, E. D. Stuffing improves the stability of fullerenelike boron clusters. Phys. Rev. Lett. 2008, 100, 165504.

    Article  Google Scholar 

  24. Li, F. Y.; Jin, P.; Jiang, D. E.; Wang, L.; Zhang, S. B.; Zhao, J. J.; Chen, Z. F. B80 and B101103 clusters: Remarkable stability of the core-shell structures established by validated density functionals. J. Chem. Phys. 2012, 136, 074302.

    Article  Google Scholar 

  25. VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 2005, 167, 103–128.

    Article  CAS  Google Scholar 

  26. Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170.

    Article  CAS  Google Scholar 

  27. Tao, J. M., Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 2003, 91, 146401.

    Article  Google Scholar 

  28. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627.

    Article  CAS  Google Scholar 

  29. Feller, D. The role of databases in support of computational chemistry calculations. J. Comput. Chem. 1996, 17, 1571–1586.

    Article  CAS  Google Scholar 

  30. Frisch, M. J. Gaussian 09, Revision D. 01, Gaussian Inc. Wallingford, CT, 2009.

    Google Scholar 

  31. Glendening, E. D.; Landis, C. R.; Weinhold, F. NBO 6.0: Natural bond orbital analysis program. J. Comput. Chem. 2013, 34, 1429–1437.

    Article  CAS  Google Scholar 

  32. von Ragué Schleyer, P.; Maerker, C.; Dransfeld, A.; Jiao, H. J.; van Eikema Hommes, N. J. R. Nucleus-independent chemical shifts: A simple and efficient aromaticity probe. J. Am. Chem. Soc. 1996, 118, 6317–6318.

    Article  Google Scholar 

  33. Chen, Z. F.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; von Ragué Schleyer, P. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 2005, 105, 3842–3888.

    Article  CAS  Google Scholar 

  34. Zubarev, D. Y.; Boldyrev, A. I. Developing paradigms of chemical bonding: Adaptive natural density partitioning. Phys. Chem. Chem. Phys. 2008, 10, 5207–5217.

    Article  CAS  Google Scholar 

  35. Tkachenko, N. V.; Boldyrev, A. I. Chemical bonding analysis of excited states using the adaptive natural density partitioning method. Phys. Chem. Chem. Phys. 2019, 21, 9590–9596.

    Article  CAS  Google Scholar 

  36. Zhang, B. L.; Wang, C. Z.; Ho, K. M.; Xu, C. H.; Chan, C. T. The geometry of small fullerene cages: C20 to C70. J. Chem. Phys. 1992, 97, 5007–5011.

    Article  CAS  Google Scholar 

  37. Wade, K. The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds. J. Chem. Soc. D. 1971, 15, 792–793.

    Article  Google Scholar 

  38. Özdoğan, C.; Mukhopadhyay, S.; Hayami, W.; Güvenc, Z. B.; Pandey, R.; Boustani, I. The unusually stable B100 fullerene, structural transitions in boron nanostructures, and a comparative study of α- and γ-boron and sheets. J. Phys. Chem. C 2010, 114, 4362–4375.

    Article  Google Scholar 

  39. Rahane, A. B.; Kumar V. B84: A quasi-planar boron cluster stabilized with hexagonal holes. Nanoscale 2015, 7, 4055–4062.

    Article  CAS  Google Scholar 

  40. Ciuparu, D.; Klie, R. F.; Zhu, Y. M.; Pfefferle, L. Synthesis of pure boron single-wall nanotubes. J. Phys. Chem. B 2004, 108, 3967–3969.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to professor B. I. Boldyrev and Dr. N. V. Tkachenko for their valuable help in AdNDP bonding analyses. This work was supported by the National Natural Science Foundation of China (Nos. 21720102006 and 21973057 to S.-D. Li and 21473106 to H.-G. Lu).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Gang Lu or Si-Dian Li.

Electronic Supplementary Material

12274_2021_3411_MOESM1_ESM.pdf

B111, B112, B113, and B114: The most stable core-shell borospherenes with an icosahedral B12 core at the center exhibiting superatomic behaviors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Lu, HG. & Li, SD. B111, B112, B113, and B114: The most stable core-shell borospherenes with an icosahedral B12 core at the center exhibiting superatomic behaviors. Nano Res. 14, 4719–4724 (2021). https://doi.org/10.1007/s12274-021-3411-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3411-x

Keywords

Navigation