Skip to main content
Log in

In-plane heterostructured Ag2S-In2S3 atomic layers enabling boosted CO2 photoreduction into CH4

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Sluggish separation and migration kinetics of the photogenerated carriers account for the low-efficiency of CO2 photoreduction into CH4. Design and construction two-dimensional (2D) in-plane heterostructures demonstrate to be an appealing approach to address above obstacles. Herein, we fabricate 2D in-plane heterostructured Ag2S-In2S3 atomic layers via an ion-exchange strategy. Photoluminescence spectra, time-resolved photoluminescence spectra, and photoelectrochemical measurements firmly affirm the optimized carrier dynamics of the In2S3 atomic layers after the introduction of in-plane heterostructure. In-situ Fourier transform infrared spectroscopy spectra and density functional theory (DFT) calculations disclose the in-plane heterostructure contributes to CO2 activation and modulates the adsorption strength of CO* intermediates to facilitate the formation of CHO* intermediates, which are further protonated to CH4. In consequence, the in-plane heterostructure achieves the CH4 evolution rate of 20 µmol·g−1·h−1, about 16.7 times higher than that of the In2S3 atomic layers. In short, this work proves construction of in-plane heterostructures as a promising method for obtaining high-efficiency CO2-to-CH4 photoconversion properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it? Joule 2018, 2, 825–832.

    Article  CAS  Google Scholar 

  2. Wagner, A.; Sahm, C. D.; Reisner, E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 2020, 3, 775–786.

    Article  CAS  Google Scholar 

  3. Ulmer, U.; Dingle, T.; Duchesne, P. N.; Morris, R. H.; Tavasoli, A.; Wood, T.; Ozin, G. A. Fundamentals and applications of photocatalytic CO2 methanation. Nat. Commun. 2019, 10, 3169.

    Article  Google Scholar 

  4. Kim, D.; Sakimoto, K. K.; Hong, D. C.; Yang, P. D. Artificial photosynthesis for sustainable fuel and chemical production. Angew. Chem., Int. Ed. 2015, 54, 3259–3266.

    Article  CAS  Google Scholar 

  5. Ozin, G. A. Throwing new light on the reduction of CO2. Adv. Mater. 2015, 27, 1957–1963.

    Article  CAS  Google Scholar 

  6. Jiao, X. C.; Zheng, K.; Liang, L.; Li, X. D.; Sun, Y. F.; Xie, Y. Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction. Chem. Soc. Rev. 2020, 49, 6592–6604.

    Article  CAS  Google Scholar 

  7. Fu, J. W.; Jiang, K. X.; Qiu, X. Q.; Yu, J. G.; Liu, M. Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 2020, 32, 222–243.

    Article  CAS  Google Scholar 

  8. Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962–4179.

    Article  CAS  Google Scholar 

  9. Wang, H.; Liu, F. C.; Fu, W.; Fang, Z. Y.; Zhou, W.; Liu, Z. Two-dimensional heterostructures: Fabrication, characterization, and application. Nanoscale 2014, 6, 12250–12272.

    Article  CAS  Google Scholar 

  10. Han, A.; Zhang, Z. D.; Li, X. Y.; Wang, D. S.; Li, Y. D. Atomic thickness catalysts: Synthesis and applications. Small Methods 2020, 4, 2000248.

    Article  CAS  Google Scholar 

  11. Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

    Article  CAS  Google Scholar 

  12. Cao, X. H.; Tan, C. L.; Zhang, X.; Zhao, W.; Zhang, H. Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion. Adv. Mater. 2016, 28, 6167–6196.

    Article  CAS  Google Scholar 

  13. Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196.

    Article  CAS  Google Scholar 

  14. Fu, J. W.; Liu, K.; Jiang, K. X.; Li, H. J. W.; An, P. D.; Li, W. Z.; Zhang, N.; Li, H. M.; Xu, X. W.; Zhou, H. Q. et al. Graphitic carbon nitride with dopant induced charge localization for enhanced photoreduction of CO2 to CH4. Adv. Sci. 2019, 6, 1900796.

    Article  CAS  Google Scholar 

  15. Li, X. D.; Wang, S. M.; Li, L.; Zu, X. L.; Sun, Y. F.; Xie, Y. Opportunity of atomically thin two-dimensional catalysts for promoting CO2 electroreduction. Acc. Chem. Res. 2020, 53, 2964–2974.

    Article  CAS  Google Scholar 

  16. Li, X. D.; Sun, Y. F.; Xu, J. Q.; Shao, Y. J.; Wu, J.; Xu, X. L.; Pan, Y.; Ju, H. X.; Zhu, J. F.; Xie, Y. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 2019, 4, 690–699.

    Article  CAS  Google Scholar 

  17. Jiao, X. C.; Li, X. D.; Jin, X. Y.; Sun, Y. F.; Xu, J. Q.; Liang, L.; Ju, H. X.; Zhu, J. F.; Pan, Y.; Yan, W. S. et al. Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 18044–18051.

    Article  CAS  Google Scholar 

  18. Wang, J. J.; Lin, S.; Tian, N.; Ma, T. Y.; Zhang, Y. H.; Huang, H. W. Nanostructured metal sulfides: Classification, modification strategy, and solar-driven CO2 reduction application. Adv. Funct. Mater., in press, DOI: https://doi.org/10.1002/adfm.202008008.

  19. Dan, M.; Zhang, Q.; Yu, S.; Prakash, A.; Lin, Y. H.; Zhou, Y. Noble-metal-free MnS/In2S3 composite as highly efficient visible light driven photocatalyst for H2 production from H2S. Appl. Catal. B: Environ. 2017, 217, 530–539.

    Article  CAS  Google Scholar 

  20. Jiang, D. L.; Chen, L. L.; Xie, J. M.; Chen, M. Ag2S/g-C3N4 composite photocatalysts for efficient Pt-free hydrogen production. The co-catalyst function of Ag/Ag2S formed by simultaneous photodeposition. Dalton Trans. 2014, 43, 4878–4885.

    Article  CAS  Google Scholar 

  21. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  22. Surendranath, Y.; Kanan, M. W.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501–16509.

    Article  CAS  Google Scholar 

  23. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  24. Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.

    Article  CAS  Google Scholar 

  25. An, X. Q.; Yu, J. C.; Wang, F.; Li, C. H.; Li, Y. C. One-pot synthesis of In2S3 nanosheets/graphene composites with enhanced visible-light photocatalytic activity. Appl. Catal. B: Environ. 2013, 129, 80–88.

    Article  CAS  Google Scholar 

  26. Feng, J. J.; Li, X. H.; Shi, Z. J.; Zheng, C.; Li, X. W.; Leng, D. Y.; Wang, Y. M.; Liu, J.; Zhu, L. J. 2D ductile transition metal chalcogenides (TMCs): Novel high-performance Ag2S nanosheets for ultrafast photonics. Adv. Opt. Mater. 2020, 8, 1901762.

    Article  CAS  Google Scholar 

  27. Li, R. J.; Tang, L. B.; Zhao, Q.; Ly, T. H.; Teng, K. S.; Li, Y.; Hu, Y. B.; Shu, C.; Lau, S. P. In2S3 quantum dots: Preparation, properties and optoelectronic application. Nanoscale Res. Lett. 2019, 14, 161.

    Article  Google Scholar 

  28. Sadovnikov, S. I.; Gerasimov, E. Y. Direct TEM observation of the “acanthite α-Ag2S-argentite β-Ag2S” phase transition in a silver sulfide nanoparticle. Nanoscale Adv. 2019, 1, 1581–1588.

    Article  CAS  Google Scholar 

  29. Huang, W. J.; Gan, L.; Yang, H. T.; Zhou, N.; Wang, R. Y.; Wu, W. H.; Li, H. Q.; Ma, Y.; Zeng, H. B.; Zhai, T. Y. Controlled synthesis of ultrathin 2D β-In2S3 with broadband photoresponse by chemical vapor deposition. Adv. Funct. Mater. 2017, 27, 1702448.

    Article  Google Scholar 

  30. Matsumoto, Y. Energy positions of oxide semiconductors and photocatalysis with iron complex oxides. J. Solid State Chem. 1996, 126, 227–234.

    Article  CAS  Google Scholar 

  31. Xu, M.; Ye, T. N.; Dai, F.; Yang, J. D.; Shen, J. M.; He, Q. Q.; Chen, W. L.; Liang, N.; Zai, J. T.; Qian, X. F. Rationally designed n-n heterojunction with highly efficient solar hydrogen evolution. ChemSusChem 2015, 8, 1218–1225.

    Article  CAS  Google Scholar 

  32. Xiao, Y. J.; Qi, Y.; Wang, X. L.; Wang, X. Y.; Zhang, F. X.; Li, C. Visible-light-responsive 2D cadmium-organic framework single crystals with dual functions of water reduction and oxidation. Adv. Mater. 2018, 30, 1803401.

    Article  Google Scholar 

  33. Low, J. X.; Jiang, C. J.; Cheng, B.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G. A review of direct Z-scheme photocatalysts. Small Methods 2017, 1, 1700080.

    Article  Google Scholar 

  34. Yang, J.; Zhu, Q. X.; Xie, T. P.; Wang, J. K.; Peng, Y.; Wang, Y. J.; Liu, C. L.; Xu, L. J. Insights into interface charge extraction in a noble-metal-free doped Z-scheme NiO@BiOCl heterojunction. Catalysts 2020, 10, 958.

    Article  CAS  Google Scholar 

  35. Low, J. X.; Dai, B. Z.; Tong, T.; Jiang, C. J.; Yu, J. G. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst. Adv. Mater. 2019, 31, 1802981.

    Article  Google Scholar 

  36. Nayak, S.; Parida, K. M. Deciphering Z-scheme charge transfer dynamics in heterostructure NiFe-LDH/N-rGO/g-C3N4 nanocomposite for photocatalytic pollutant removal and water splitting reactions. Sci. Rep. 2019, 9, 2458.

    Article  Google Scholar 

  37. Jin, L.; Seifitokaldani, A. In situ spectroscopic methods for electrocatalytic CO2 reduction. Catalysts, 2020, 10}

    Article  CAS  Google Scholar 

  38. Heidary, N.; Ly, K. H.; Kornienko, N. Probing CO2 conversion chemistry on nanostructured surfaces with Operando vibrational spectroscopy. Nano Lett. 2019, 19, 4817–4826.

    Article  CAS  Google Scholar 

  39. Grabow, L. C.; Mavrikakis, M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal. 2011, 1, 365–384.

    Article  CAS  Google Scholar 

  40. Li, Y. Y.; Fan, J. S.; Tan, R. Q.; Yao, H. C.; Peng, Y.; Liu, Q. C.; Li, Z. J. Selective photocatalytic reduction of CO2 to CH4 modulated by chloride modification on Bi2WO6 nanosheets. ACS Appl. Mater. Interfaces 2020, 12, 54507–54516.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (Nos. 2019YFA0210004, 2017YFA0207301, and 2017YFA0303500), the National Natural Science Foundation of China (Nos. 21975242, U2032212, 21890754, and 21805267), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000), Youth Innovation Promotion Association of CAS (No. CX2340007003), Major Program of Development Foundation of Hefei Center for Physical Science and Technology (No. 2020HSC-CIP003), Key Research Program of Frontier Sciences of CAS (No. QYZDY-SSW-SLH011), the Fok Ying-Tong Education Foundation (No. 161012), the University Synergy Innovation Program of Anhui Province (GXXT-2020-001), and Users with Excellence Program of Hefei Science Center CAS (2020HSC-UE001). Supercomputing USTC and National Supercomputing Center in Shenzhen are acknowledged for computational support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfu Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, W., Wang, S., Zhu, J. et al. In-plane heterostructured Ag2S-In2S3 atomic layers enabling boosted CO2 photoreduction into CH4. Nano Res. 14, 4520–4527 (2021). https://doi.org/10.1007/s12274-021-3365-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3365-4

Keywords

Navigation