Skip to main content
Log in

The achievement of red upconversion lasing for highly stable perovskite nanocrystal glasses with the assistance of anion modulation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Perovskite materials have received extensive attention as optical gain media. However, it is tough to realize lasing using such materials on account of the unstable structure of MAPbI3/CsPbI3 nanocrystals (NCs), and the propensity for mixed-halogen perovskites to undergo phase decomposition into bromine-rich and iodide-rich regions under intense laser irradiation. To solve this issue, we fabricated CsPbX3 (X = Br, I) NCs, which were embedded into a glassy matrix with high stability. In addition, by doping Br ions into the CsPbI3 NCs to partially replace I ions, the optical efficiency and the optical gain properties were found to be significantly improved. Here, under 800 nm pulse laser excitation, red random lasing was realized with the assistance of such anion modulation. Moreover, we demonstrate that the perovskite NCs glasses (PNG) show strong water stability after immersion in water for one week, seeding a promise for application in high-definition (HD) displays and photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, B.; Zhang, Y. N.; Fu, L.; Yu, T.; Zhou, S. J.; Zhang, L. Y.; Yin, L. W. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat. Commun. 2018, 9, 1076.

    Article  CAS  Google Scholar 

  2. Wang, M.; Deng, K. M.; Meng, L. X.; Li, L. Bifunctional ytterbium (III) chloride driven low-temperature synthesis of stable α-CsPbI3 for high-efficiency inorganic perovskite solar cells. Small Methods 2020, 4, 1900652.

    Article  CAS  Google Scholar 

  3. Sun, H. R.; Zhang, J.; Gan, X. L.; Yu, L. T.; Yuan, H. B.; Shang, M. H.; Lu, C. J.; Hou, D. G.; Hu, Z. Y.; Zhu, Y. J. et al. Pb-reduced CsPb0.9Zn0.1I2Br thin films for efficient perovskite solar cells. Adv. Energy Mater. 2019, 9, 1900896.

    Article  CAS  Google Scholar 

  4. Yang, Y. Q.; Wu, J. H.; Wang, X. B.; Guo, Q. Y.; Liu, X. P.; Sun, W. H.; Wei, Y. L.; Huang, Y. F.; Lan, Z.; Huang, M. L. et al. Suppressing vacancy defects and grain boundaries via Ostwald ripening for highperformance and stable perovskite solar cells. Adv. Mater. 2020, 32, 1904347.

    Article  CAS  Google Scholar 

  5. Yang, J. N.; Song, Y.; Yao, J. S.; Wang, K. H.; Wang, J. J.; Zhu, B. S.; Yao, M. M.; Rahman, S. U.; Lan, Y. F.; Fan, F. J. et al. Potassium bromide surface passivation on CsPbI3−xBrx nanocrystals for efficient and stable pure red perovskite light-emitting diodes. J. Am. Chem. Soc. 2020, 142, 2956–2967.

    Article  CAS  Google Scholar 

  6. Chen, X.; Li, D. Y.; Pan, G. C.; Zhou, D. L.; Xu, W.; Zhu, J. Y.; Wang, H.; Chen, C.; Song, H. W. All-inorganic perovskite quantum dot/TiO2 inverse opal electrode platform: Stable and efficient photoelectrochemical sensing of dopamine under visible irradiation. Nanoscale 2018, 10, 10505–10513.

    Article  CAS  Google Scholar 

  7. Zhou, N. J.; Bekenstein, Y.; Eisler, C. N.; Zhang, D. D.; Schwartzberg, A. M.; Yang, P. D.; Alivisatos, A. P.; Lewis, J. A. Perovskite nanowire-block copolymer composites with digitally programmable polarization anisotropy. Sci. Adv. 2019, 5, eaav8141.

    Article  CAS  Google Scholar 

  8. Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.

    Article  CAS  Google Scholar 

  9. Sutherland, B. R.; Hoogland, S.; Adachi, M. M.; Wong, C. T. O.; Sargent, E. H. Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano 2014, 8, 10947–10952.

    Article  CAS  Google Scholar 

  10. Xing, G.; Mathews, N.; Lim, S. S.; Yantara, N.; Liu, X.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 2014, 13, 476–480.

    Article  CAS  Google Scholar 

  11. Wei, Y.; Cheng, Z. Y.; Lin, J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 2019, 48, 310–350.

    Article  CAS  Google Scholar 

  12. Trots, D. M.; Myagkota, S. V. High-temperature structural evolution of caesium and rubidium triiodoplumbates. J. Phys. Chem. Solids 2008, 69, 2520–2526.

    Article  CAS  Google Scholar 

  13. Zeng, Q. S.; Zhang, X. Y.; Liu, C. M.; Feng, T. L.; Chen, Z. L.; Zhang, W.; Zheng, W. T.; Zhang, H.; Yang, B. Inorganic CsPbI2Br perovskite solar cells: The progress and perspective. Solar RRL 2019, 3, 1800239.

    Article  CAS  Google Scholar 

  14. Xiu, J. W.; Dong, B.; Driscoll, E.; Feng, X. Y.; Muhammad, A.; Chen, S. Q.; Du, Z.; Zhu, Y. D.; Zhang, Z.; Tang, Z. H. et al. Degradation induced lattice anchoring self-passivation in CsPbI3−xBrx. J. Mater. Chem. A 2020, 8, 9963–9969.

    Article  CAS  Google Scholar 

  15. Hu, Y. Q.; Bai, F.; Liu, X. B.; Ji, Q. M.; Miao, X. L.; Qiu, T.; Zhang, S. F. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. ACS Energy Lett. 2017, 2, 2219–2227.

    Article  CAS  Google Scholar 

  16. Lee, J. W.; Seol, D. J.; Cho, A. N.; Park, N. G. High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Adv. Mater. 2014, 26, 4991–4998.

    Article  CAS  Google Scholar 

  17. Roh, K.; Zhao, L. F.; Gunnarsson, W. B.; Xiao, Z. G.; Jia, Y. F.; Giebink, N. C.; Rand, B. P. Widely tunable, room temperature, single-mode lasing operation from mixed-halide perovskite thin films. ACS Photonics 2019, 6, 3331–3337.

    Article  CAS  Google Scholar 

  18. Brenner, P.; Bar-On, O.; Jakoby, M.; Allegro, I.; Richards, B. S.; Paetzold, U. W.; Howard, I. A.; Scheuer, J.; Lemmer, U. Continuous wave amplified spontaneous emission in phase-stable lead halide perovskites. Nat. Commun. 2019, 10, 988.

    Article  CAS  Google Scholar 

  19. Lin, H.; Mao, J.; Qin, M. C.; Song, Z. L.; Yin, W. J.; Lu, X. H.; Choy, W. C. H. Single-phase alkylammonium cesium lead iodide quasi-2D perovskites for color-tunable and spectrum-stable red LEDs. Nanoscale 2019, 11, 16907–16918.

    Article  CAS  Google Scholar 

  20. Sutton, R. J.; Eperon, G. E.; Miranda, L.; Parrott, E. S.; Kamino, B. A.; Patel, J. B.; Hörantner, M. T.; Johnston, M. B.; Haghighirad, A. A.; Moore, D. T. et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 2016, 6, 1502458.

    Article  CAS  Google Scholar 

  21. Li, X. M.; Wang, Y.; Sun, H. D.; Zeng, H. B. Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing. Adv. Mater. 2017, 29, 1701185.

    Article  CAS  Google Scholar 

  22. Pan, J.; Sarmah, S. P.; Murali, B.; Dursun, I.; Peng, W.; Parida, M. R.; Liu, J. K.; Sinatra, L.; Alyami, N.; Zhao, C. et al. Air-stable surface-passivated perovskite quantum dots for ultra-robust, single- and two-photon-induced amplified spontaneous emission. J. Phys. Chem. Lett. 2015, 6, 5027–5033.

    Article  CAS  Google Scholar 

  23. Yuan, S.; Chen, D. Q.; Li, X. Y.; Zhong, J. S.; Xu, X. H. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing. ACS Appl. Mater. Interfaces 2018, 10, 18918–18926.

    Article  CAS  Google Scholar 

  24. Chen, L. J.; Dai, J. H.; Lin, J. D.; Mo, T. S.; Lin, H. P.; Yeh, H. C.; Chuang, Y. C.; Jiang, S. A.; Lee, C. R. Wavelength-tunable and highly stable perovskite-quantum-dot-doped lasers with liquid crystal lasing cavities. ACS Appl. Mater. Interfaces 2018, 10, 33307–33315.

    Article  CAS  Google Scholar 

  25. De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081.

    Article  CAS  Google Scholar 

  26. Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394–405.

    Article  CAS  Google Scholar 

  27. Hu, Z. P.; Liu, Z. Z.; Bian, Y.; Li, S. Q.; Tang, X. S.; Du, J.; Zang, Z. G.; Zhou, M.; Hu, W.; Tian, Y. X. et al. Enhanced two-photon-pumped emission from in situ synthesized nonblinking CsPbBr3/SiO2 nanocrystals with excellent stability. Adv. Opt. Mater. 2018, 6, 1700997.

    Article  CAS  Google Scholar 

  28. Chen, Y.; Yu, M. H.; Ye, S.; Song, J.; Qu, J. L. All-inorganic CsPbBr3 perovskite quantum dots embedded in dual-mesoporous silica with moisture resistance for two-photon-pumped plasmonic nanoLasers. Nanoscale 2018, 10, 6704–6711.

    Article  CAS  Google Scholar 

  29. Dhanker, R.; Brigeman, A. N.; Larsen, A. V.; Stewart, R. J.; Asbury, J. B.; Giebink, N. C. Random lasing in organo-lead halide perovskite microcrystal networks. Appl. Phys. Lett. 2014, 105, 151112.

    Article  CAS  Google Scholar 

  30. Liu, S.; Sun, W. Z.; Li, J. K.; Gu, Z. Y.; Wang, K. Y.; Xiao, S. M.; Song, Q. H. Random lasing actions in self-assembled perovskite nanoparticles. Opt. Eng. 2016, 55, 057102.

    Article  Google Scholar 

  31. Fan, T.; Lü, J. T.; Chen, Y. H.; Yuan, W. X.; Huang, Y. F. Random lasing in cesium lead bromine perovskite quantum dots film. J. Mater. Sci.: Mater. Electron. 2019, 30, 1084–1088.

    CAS  Google Scholar 

  32. Zhang, H. L.; Yuan, L.; Chen, Y.; Zhang, Y. Q.; Yu, Y. X.; Liang, X. J.; Xiang, W. D.; Wang, T. Amplified spontaneous emission and random lasing using CsPbBr3 quantum dot glass through controlling crystallization. Chem. Commun. 2020, 56, 2853–2856.

    Article  CAS  Google Scholar 

  33. Dutta, A.; Dutta, S. K.; Das Adhikari, S.; Pradhan, N. Phase-stable CsPbI3 nanocrystals: The reaction temperature matters. Angew. Chem. 2018, 57, 9083–9087.

    Article  CAS  Google Scholar 

  34. Liu, Y. F.; Silver, J.; Xie, R. J.; Zhang, J. H.; Xu, H. W.; Shao, H. Z.; Jiang, J.; Jiang, H. C. An excellent cyan-emitting orthosilicate phosphor for NUV-pumped white LED application. J. Mater. Chem. C 2017, 5, 12365–12377.

    Article  CAS  Google Scholar 

  35. Mi, Y.; Zhong, Y. G.; Zhang, Q.; Liu, X. F. Continuous-wave pumped perovskite lasers. Adv. Opt. Mater. 2019, 7, 1900544.

    Article  CAS  Google Scholar 

  36. Wei, Q.; Li, X. J.; Liang, C.; Zhang, Z. P.; Guo, J.; Hong, G.; Xing, G. C.; Huang, W. Recent progress in metal halide perovskite micro- and nanolasers. Adv. Opt. Mater. 2019, 7, 1900080.

    Article  CAS  Google Scholar 

  37. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

    Article  CAS  Google Scholar 

  38. Chen, J.; Du, W. N.; Shi, J. W.; Li, M. L.; Wang, Y.; Zhang, Q.; Liu, X. F. Perovskite quantum dot lasers. InfoMat 2020, 2, 170–183.

    Article  CAS  Google Scholar 

  39. Liao, Q.; Jin, X.; Fu, H. B. Tunable halide perovskites for miniaturized solid-state laser applications. Adv. Opt. Mater. 2019, 7, 1900099.

    Article  CAS  Google Scholar 

  40. Xu, X. H.; Lu, W.; Wang, T.; Gao, W.; Yu, X.; Qiu, J. B.; Yu, S. F. Deep UV random lasing from NaGdF4:Yb3+, Tm3+ upconversion nanocrystals in amorphous borosilicate glass. Opt. Lett. 2020, 45, 3095–3098.

    Article  Google Scholar 

  41. Gaio, M.; Peruzzo, M.; Sapienza, R. Tuning random lasing in photonic glasses. Opt. Lett. 2015, 40, 1611–1614.

    Article  CAS  Google Scholar 

  42. Li, S. Q.; Lei, D. Y.; Ren, W.; Guo, X. Y.; Wu, S. F.; Zhu, Y.; Rogach, A. L.; Chhowalla, M.; Jen, A. K. Water-resistant perovskite nanodots enable robust two-photon lasing in aqueous environment. Nat. Commun. 2020, 11, 1192.

    Article  CAS  Google Scholar 

  43. Yu, S. F.; Yuen, C.; Lau, S. P.; Lee, H. W. Zinc oxide thin-film random lasers on silicon substrate. Appl. Phys. Lett. 2004, 84, 3244–3246.

    Article  CAS  Google Scholar 

  44. Zhang, H. L.; Jin, M. F. F.; Liu, X. D.; Zhang, Y. Q.; Yu, Y. X.; Liang, X. J.; Xiang, W. D.; Wang, T. The preparation and up-conversion properties of full spectrum CsPbX3 (X = Cl, Br, I) quantum dot glasses. Nanoscale 2019, 11, 18009–18014.

    Article  CAS  Google Scholar 

  45. Jiang, Y.; Wang, X.; Pan, A. L. Properties of excitons and photogenerated charge carriers in metal halide perovskites. Adv. Mater. 2019, 31, 1806671.

    Article  CAS  Google Scholar 

  46. Diroll, B. T.; Talapin, D. V.; Schaller, R. D. Violet-to-blue gain and lasing from colloidal CdS nanoplatelets: Low-threshold stimulated emission despite low photoluminescence quantum yield. ACS Photonics 2017, 4, 576–583.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52072271, 51872207, and 61775187) and Innovative project of Yunnan Key Laboratory of New Materials (No. 2020KF005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting Wang or Weidong Xiang.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Electronic Supplementary Material

12274_2021_3364_MOESM1_ESM.pdf

The achievement of red upconversion lasing for highly stable perovskite nanocrystal glasses with the assistance of anion modulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, M., Gao, W., Liang, X. et al. The achievement of red upconversion lasing for highly stable perovskite nanocrystal glasses with the assistance of anion modulation. Nano Res. 14, 2861–2866 (2021). https://doi.org/10.1007/s12274-021-3364-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3364-5

Keywords

Navigation