Skip to main content
Log in

Quantifying 3D cell-matrix interactions during mitosis and the effect of anticancer drugs on the interactions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The mechanical force between cells and the extracellular microenvironment is crucial to many physiological processes such as cancer metastasis and stem cell differentiation. Mitosis plays an essential role in all these processes and thus an in-depth understanding of forces during mitosis gains insight into disease diagnosis and disease treatment. Here, we develop a traction force microscope method based on monolayer fluorescent beads for measuring the weak traction force (tens of Pa) of mitotic cells in three dimensions. We quantify traction forces of human ovarian granulosa (KGN) cells exerted on the extracellular matrix throughout the entire cell cycle in three dimensions. Our measurements reveal how forces vary during the cell cycle, especially during cell division. Furthermore, we study the effect of paclitaxel (PTX) and nocodazole (NDZ) on mitotic KGN cells through the measurement of traction forces. Our results show that mitotic cells with high concentrations of PTX exert a larger force than those with high concentrations of NDZ, which proved to be caused by changes in the structure and number of microtubules. These findings reveal the key functions of microtubule in generating traction forces during cell mitosis and explain how dividing cells regulate themselves in response to anti-mitosis drugs. This work provides a powerful tool for investigating cell-matrix interactions during mitosis and may offer a potential way to new therapies for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Preston-Martin, S.; Pike, M. C.; Ross, R. K.; Jones, P. A.; Henderson, B. E. Increased cell division as a cause of human cancer. Cancer Res. 1990, 50, 7415–7421.

    CAS  Google Scholar 

  2. Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 786–801.

    Article  CAS  Google Scholar 

  3. Papalazarou, V.; Zhang, T.; Paul, N. R.; Juin, A.; Cantini, M.; Maddocks, O. D. K.; Salmeron-Sanchez, M.; Machesky, L. M. The creatine-phosphagen system is mechanoresponsive in pancreatic adenocarcinoma and fuels invasion and metastasis. Nat. Metab. 2020, 2, 62–80.

    Article  CAS  Google Scholar 

  4. Baker, B. M.; Chen, C. S. Deconstructing the third dimension — how 3D culture microenvironments alter cellular cues. J. Cell Sci. 2012, 125, 3015–3024.

    CAS  Google Scholar 

  5. Huang, S.; Ingber, D. E. Cell tension, matrix mechanics, and cancer development. Cancer Cell 2005, 8, 175–176.

    Article  CAS  Google Scholar 

  6. Huebsch, N.; Arany, P. R.; Mao, A. S.; Shvartsman, D.; Ali, O. A.; Bencherif, S. A.; Rivera-Feliciano, J.; Mooney, D. J. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 2010, 9, 518–526.

    Article  CAS  Google Scholar 

  7. Munevar, S.; Wang, Y. L.; Dembo, M. Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys. J. 2001, 80, 1744–1757.

    Article  CAS  Google Scholar 

  8. Jiang, G. Y.; Giannone, G.; Critchley, D. R.; Fukumoto, E.; Sheetz, M. P. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 2003, 424, 334–337.

    Article  CAS  Google Scholar 

  9. Li, M.; Xi, N.; Wang, Y. C.; Liu, L. Q. Advances in atomic force microscopy for single-cell analysis. Nano Res. 2019, 12, 703–718.

    Article  CAS  Google Scholar 

  10. Tan, J. L.; Tien, J.; Pirone, D. M.; Gray, D. S.; Bhadriraju, K.; Chen, C. S. Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proc. Natl. Acad. Sci. USA 2003, 100, 1484–1489.

    Article  CAS  Google Scholar 

  11. Harris, A. K.; Wild, P.; Stopak, D. Silicone rubber substrata: A new wrinkle in the study of cell locomotion. Science 1980, 208, 177–179.

    Article  CAS  Google Scholar 

  12. Legant, W. R.; Choi, C. K.; Miller, J. S.; Shao, L.; Gao, L.; Betzig, E.; Chen, C. S. Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions. Proc. Natl. Acad. Sci. USA 2013, 110, 881–886.

    Article  Google Scholar 

  13. Style, R. W.; Boltyanskiy, R.; German, G. K.; Hyland, C.; MacMinn, C. W.; Mertz, A. F.; Wilen, L. A.; Xu, Y.; Dufresne, E. R. Traction force microscopy in physics and biology. Soft Matter 2014, 10, 4047–4055.

    Article  CAS  Google Scholar 

  14. Dembo, M.; Wang, Y. L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 1999, 76, 2307–2316.

    Article  CAS  Google Scholar 

  15. Huang, J. Y.; Wang, L. L.; Xiong, C. Y.; Yuan, F. Elastic hydrogel as a sensor for detection of mechanical stress generated by single cells grown in three-dimensional environment. Biomaterials 2016, 98, 103–112.

    Article  CAS  Google Scholar 

  16. Provenzano, P. P.; Keely, P. J. Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J. Cell Sci. 2011, 124, 1195–1205.

    Article  CAS  Google Scholar 

  17. Vianay, B.; Senger, F.; Alamos, S.; Anjur-Dietrich, M.; Bearce, E.; Cheeseman, B.; Lee, L.; Théry, M. Variation in traction forces during cell cycle progression. Biol. Cell 2018, 110, 91–96.

    Article  Google Scholar 

  18. Panagiotakopoulou, M.; Lendenmann, T.; Pramotton, F. M.; Giampietro, C.; Stefopoulos, G.; Poulikakos, D.; Ferrari, A. Cell cycle-dependent force transmission in cancer cells. Mol. Biol. Cell 2018, 29, 2528–2539.

    Article  CAS  Google Scholar 

  19. Nam, S.; Chaudhuri, O. Mitotic cells generate protrusive extracellular forces to divide in three-dimensional microenvironments. Nat. Phys. 2018, 14, 621–628.

    Article  CAS  Google Scholar 

  20. Jahan, G. S.; Yumura, S. Traction force and its regulation during cytokinesis in Dictyostelium cells. Eur. J. Cell Biol. 2017, 96, 515–528.

    Article  CAS  Google Scholar 

  21. Tanimoto, H.; Sano, M. Dynamics of traction stress field during cell division. Phys. Rev. Lett. 2012, 109, 248110.

    Article  CAS  Google Scholar 

  22. Lesman, A.; Notbohm, J.; Tirrell, D. A.; Ravichandran, G. Contractile forces regulate cell division in three-dimensional environments. J. Cell Biol. 2014, 205, 155–162.

    Article  CAS  Google Scholar 

  23. Maskarinec, S. A.; Franck, C.; Tirrell, D. A.; Ravichandran, G. Quantifying cellular traction forces in three dimensions. Proc. Natl. Acad. Sci. USA 2009, 106, 22108–22113.

    Article  CAS  Google Scholar 

  24. Hur, S. S.; Zhao, Y. H.; Li, Y. S.; Botvinick, E.; Chien, S. Live cells exert 3-dimensional traction forces on their substrata. Cell. Mol. Bioeng. 2009, 2, 425–436.

    Article  Google Scholar 

  25. Pelham, R. J. Jr.; Wang, Y. L. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 1997, 94, 13661–13665.

    Article  CAS  Google Scholar 

  26. Marinković, A.; Mih, J. D.; Park, J. A.; Liu, F.; Tschumperlin, D. J. Improved throughput traction microscopy reveals pivotal role for matrix stiffness in fibroblast contractility and TGF-β responsiveness. Am. J. Physiol. Lung Cell Mol. Physiol. 2012, 303, L169–L180.

    Article  CAS  Google Scholar 

  27. Denisin, A. K.; Pruitt, B. L. Tuning the range of polyacrylamide gel stiffness for Mechanobiology applications. ACS Appl. Mater. Interfaces 2016, 8, 21893–21902.

    Article  CAS  Google Scholar 

  28. Gao, Y.; Cheng, T.; Su, Y.; Xu, X. H.; Zhang, Y.; Zhang, Q. C. High-efficiency and high-accuracy digital image correlation for three-dimensional measurement. Opt. Lasers Eng. 2015, 65, 73–80.

    Article  Google Scholar 

  29. Su, Y.; Zhang, Q. C.; Xu, X. H.; Gao, Z. R. Quality assessment of speckle patterns for DIC by consideration of both systematic errors and random errors. Opt. Lasers Eng. 2016, 86, 132–142.

    Article  Google Scholar 

  30. Xu, X. H.; Su, Y.; Cai, Y. L.; Cheng, T.; Zhang, Q. C. Effects of various shape functions and subset size in local deformation measurements using DIC. Exp. Mech. 2015, 55, 1575–1590.

    Article  Google Scholar 

  31. Xu, X. Study on local deformation measurement accuracy and compensation methods in digital image correlation. Ph.D.Dissertation, University of Science and Technology of China, 2015.

  32. Steinwachs, J.; Metzner, C.; Skodzek, K.; Lang, N.; Thievessen, I.; Mark, C.; Münster, S.; Aifantis, K. E.; Fabry, B. Three-dimensional force microscopy of cells in biopolymer networks. Nat. Methods 2016, 13, 171–176.

    Article  CAS  Google Scholar 

  33. Landau, L. D.; Lifshitz, E. M. Theory of Elasticity; Pergamon: New York, 1986.

    Google Scholar 

  34. Lauffenburger, D. A.; Horwitz, A. F. Cell migration: A physically integrated molecular process. Cell 1996, 84, 359–369.

    Article  CAS  Google Scholar 

  35. Ridley, A. J.; Schwartz, M. A.; Burridge, K.; Firtel, R. A.; Ginsberg M. H.; Borisy, G.; Parsons, J. T.; Horwitz, A. R. Cell migration: Integrating signals from front to back. Science 2003, 302, 1704–1709.

    Article  CAS  Google Scholar 

  36. du Roure, O.; Saez, A.; Buguin, A.; Austin, R. H.; Chavrier, P.; Siberzan, P.; Ladoux, B. Force mapping in epithelial cell migration. Proc. Natl. Acad. Sci. USA 2005, 102, 2390–2395.

    Article  CAS  Google Scholar 

  37. Beningo, K. A.; Dembo, M.; Kaverina, I.; Small, J. V.; Wang, Y. L. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 2001, 153, 881–888.

    Article  CAS  Google Scholar 

  38. Sharp, D. J.; Brown, H. M.; Kwon, M.; Rogers, G. C.; Holland, G.; Scholey, J. M. Functional coordination of three mitotic motors in Drosophila embryos. Mol. Biol. Cell 2000, 11, 241–253.

    Article  CAS  Google Scholar 

  39. Karsenti, E.; Vernos, I. The mitotic spindle: A self-made machine. Science 2001, 294, 543–547.

    Article  CAS  Google Scholar 

  40. McIntosh, J. R.; Grishchuk, E. L.; West, R. R. Chromosome-microtubule interactions during mitosis. Annu. Rev. Cell Dev. Biol. 2002, 18, 193–219.

    Article  CAS  Google Scholar 

  41. Dix, C. L.; Matthews, H. K.; Uroz, M.; McLaren, S.; Wolf, L.; Heatley, N.; Win, Z.; Almada, P.; Henriques, R.; Boutros, M. et al. The role of mitotic cell-substrate adhesion re-modeling in animal cell division. Dev. Cell 2018, 45, 132–145.e3.

    Article  CAS  Google Scholar 

  42. Jones, M. C.; Askari, J. A.; Humphries, J. D.; Humphries, M. J. Cell adhesion is regulated by CDK1 during the cell cycle. J. Cell Biol. 2018, 217, 3203–3218.

    Article  CAS  Google Scholar 

  43. Kunda, P.; Pelling, A. E.; Liu, T.; Baum, B. Moesin controls cortical rigidity, cell rounding, and spindle morphogenesis during mitosis. Curr. Biol. 2008, 18, 91–101.

    Article  CAS  Google Scholar 

  44. Bergert, M.; Lendenmann, T.; Zündel, M.; Ehret, A. E.; Panozzo, D.; Richner, P.; Kim, D. K.; Kress, S. J. P.; Norris, D. J.; Sorkine-Hornung, O. et al. Confocal reference free traction force microscopy. Nat. Commun. 2016, 7, 12814.

    Article  CAS  Google Scholar 

  45. Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin. 2016, 66, 7–30.

    Article  Google Scholar 

  46. Jordan, M. A.; Toso, R. J.; Thrower, D.; Wilson, L. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc. Natl. Acad. Sci. USA 1993, 90, 9552–9556.

    Article  CAS  Google Scholar 

  47. Lock, J. G.; Jones, M. C.; Askari, J. A.; Gong, X. W.; Oddone, A.; Olofsson, H.; Göransson, S.; Lakadamyali, M.; Humphries, M. J.; Strömblad, S. Reticular adhesions are a distinct class of cell-matrix adhesions that mediate attachment during mitosis. Nat. Cell Biol. 2018, 20, 1290–1302.

    Article  CAS  Google Scholar 

  48. Jordan, M. A.; Thrower, D.; Wilson, L. Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis. J. Cell Sci. 1992, 102, 401–416.

    Article  CAS  Google Scholar 

  49. Rizk, R. S.; Bohannon, K. P.; Wetzel, L. A.; Powers, J.; Shaw, S. L.; Walczak, C. E. MCAK and paclitaxel have differential effects on spindle microtubule organization and dynamics. Mol. Biol. Cell 2009, 20, 1639–1651.

    Article  CAS  Google Scholar 

  50. Murrell, M. P.; Voituriez, R.; Joanny, J. F.; Nassoy, P.; Sykes, C.; Gardel, M. L. Liposome adhesion generates traction stress. Nat. Phys. 2014, 10, 163–169.

    Article  CAS  Google Scholar 

  51. Wu, Y. L.; Engl, W.; Hu, B. H.; Cai, P. Q.; Leow, W. R.; Tan, N. S.; Lim, C. T.; Chen, X. D. Nanomechanically visualizing drug-cell interaction at the early stage of chemotherapy. ACS Nano 2017, 11, 6996–7005.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Nos. 11872355, 11627803, 12072339, and 11872354) and the Strategic Priority Research Program of the Chinese Academy of Science (No. XDB22040502).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunxia Cao, Qingchuan Zhang or Shangquan Wu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, J., Su, Y. et al. Quantifying 3D cell-matrix interactions during mitosis and the effect of anticancer drugs on the interactions. Nano Res. 14, 4163–4172 (2021). https://doi.org/10.1007/s12274-021-3357-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3357-4

Keywords

Navigation