Skip to main content
Log in

Cu2Sb decorated Cu nanowire arrays for selective electrocatalytic CO2 to CO conversion

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The advancement of cost-effective and selective electrocatalyst towards CO2 to CO conversion is crucial for renewable energy conversion and storage, thus to achieve carbon-neutral cycle in a sustainable manner. In this communication, we report that Cu2Sb decorated Cu nanowire arrays on Cu foil act as a highly active and selective electrocatalyst for CO2 to CO conversion. In CO2-saturated 0.1 M KHCO3, it achieves a high Faraday efficiency (FE) of 86.5% for CO, at −0.90 V vs. reversible hydrogen electrode (RHE). The H2/CO ratio is tunable from 0.08:1 to 5.9:1 by adjusting the potential. It is worth noting that HCOO product was totally suppressed on such catalyst, compared with Sb counterpart. The improving selectivity for CO could be attributed to the bimetallic effect and nanowire arrays structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feldman, D. R.; Collins, W. D.; Gero, P. J.; Torn, M. S.; Mlawer E. J.; Shippert, T. R. Observational determination of surface radiative forcing by CO2 from 2000 to 2010. Nature 2015, 519, 339–343.

    Article  CAS  Google Scholar 

  2. Vitousek, P. M.; Mooney, H. A.; Lubchenco, J.; Melillo, J. M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499.

    Article  CAS  Google Scholar 

  3. Mou, S. Y.; Wu, T. W.; Xie, J. F.; Zhang, Y.; Ji, L.; Huang, H.; Wang, T.; Luo, Y. L.; Xiong, X. L.; Tang, B. et al. Boron phosphide nanoparticles: A nonmetal catalyst for high-selectivity electrochemical reduction of CO2 to CH3OH. Adv. Mater. 2019, 31, 1903499.

    Article  CAS  Google Scholar 

  4. Zhao, C. M.; Dai, X. Y.; Yao, T.; Chen, W. X.; Wang, X. Q.; Wang, J.; Yang, J.; Wei, S. Q.; Wu, Y. E.; Li, Y. D. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078–8081.

    Article  CAS  Google Scholar 

  5. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    Article  CAS  Google Scholar 

  6. Vasileff, A.; Xu, C. C.; Jiao, Y.; Zheng Y.; Qiao, S. Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 2018, 4, 1809–1831.

    Article  CAS  Google Scholar 

  7. Ji, L.; Li, L.; Ji, X. Q.; Zhang, Y.; Mou, S. Y.; Wu, T. W.; Liu, Q.; Li, B. H.; Zhu, X. J.; Luo, Y. L. et al. Highly selective electrochemical reduction of CO2 to alcohols on an FeP nanoarray. Angew. Chem., Int. Ed. 2020, 59, 758–762.

    Article  CAS  Google Scholar 

  8. Tan, D. X.; Zhang, J. L.; Yao, L.; Tan, X. N.; Cheng, X. Y.; Wan, Q.; Han, B. X.; Zheng, L. R. Zhang, J. Multi-shelled CuO microboxes for carbon dioxide reduction to ethylene. Nano Res. 2020, 13, 768–774.

    Article  CAS  Google Scholar 

  9. Yang, J.; Ma, W. P.; Chen, D.; Holmen A.; Davis, B. H. Fischer-Tropsch synthesis: A review of the effect of CO conversion on methane selectivity. Appl. Catal. A Gen. 2014, 470, 250–260.

    Article  CAS  Google Scholar 

  10. Lee, J. H.; Lee, H. K.; Chun, D. H.; Choi, H.; Rhim, G B.; Youn, M. H.; Jeong, H.; Kang, S. W.; Yang, J. I.; Jung, H. et al. Phase-controlled synthesis of thermally stable nitrogen-doped carbon supported iron catalysts for highly efficient Fischer-Tropsch synthesis. Nano Res. 2019, 12, 2568–2575.

    Article  CAS  Google Scholar 

  11. Wang, Z. Y.; Yang, J.; Cao, J. B.; Chen, W. X.; Wang, G.; Liao, F.; Zhou, X.; Zhou, F. Y.; Li, R. L.; Yu, Z. Q. et al. Room-temperature synthesis of single iron site by electrofiltration for photoreduction of CO2 into tunable syngas. ACS Nano 2020, 14, 6164–6172.

    Article  CAS  Google Scholar 

  12. Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944–1948.

    Article  CAS  Google Scholar 

  13. Chen, Y. H.; Li, C. W.; Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 2012, 134, 19969–19972.

    Article  CAS  Google Scholar 

  14. Zhang, Y.; Ji, L.; Qiu, W. B.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Iodide-derived nanostructured silver promotes selective and efficient carbon dioxide conversion into carbon monoxide. Chem. Commun. 2018, 54, 2666–2669.

    Article  CAS  Google Scholar 

  15. He, Q.; Lee, J. H.; Liu, D. B.; Liu, Y. M.; Lin, Z. X.; Xie, Z. H.; Hwang, S.; Kattel, S.; Song, L.; Chen, J. G. Accelerating CO2 electroreduction to CO over Pd single-atom catalyst. Adv. Funct. Mater. 2020, 30, 2000407.

    Article  CAS  Google Scholar 

  16. Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

    Article  CAS  Google Scholar 

  17. Karamad, M.; Tripkovic, V.; Rossmeisl, J. Intermetallic alloys as CO electroreduction catalysts-role of isolated active sites. ACS Catal. 2014, 4, 2268–2273.

    Article  CAS  Google Scholar 

  18. Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.

    Article  CAS  Google Scholar 

  19. Roy, C.; Galipaud, J.; Fréchette-Viens, L.; Garbarino, S.; Qiao, J.; Guay, D. CO2 electroreduction at AuxCu1−x obtained by pulsed laser deposition in O2 atmosphere. Electrochim. Acta 2017, 246, 115–122.

    Article  CAS  Google Scholar 

  20. Ross, M. B.; Dinh, C. T.; Li, Y. F.; Kim, D.; De Luna, P.; Sargent, E. H.; Yang, P. D. Tunable Cu enrichment enables designer syngas electrosynthesis from CO2. J. Am. Chem. Soc. 2017, 139, 9359–9363.

    Article  CAS  Google Scholar 

  21. Chen, X. Y.; Henckel, D. A.; Nwabara, U. O.; Li, Y. Y.; Frenkel, A. I.; Fister, T. T.; Kenis, P. J. A.; Gewirth, A. A. Controlling speciation during CO2 reduction on Cu-alloy electrodes. ACS Catal. 2020, 10, 672–682.

    Article  CAS  Google Scholar 

  22. Wang, Y. X.; Niu, C. L.; Zhu, Y. C. Copper-silver bimetallic nanowire arrays for electrochemical reduction of carbon dioxide. Nanomaterials 2019, 9, 173.

    Article  CAS  Google Scholar 

  23. Ma, S. C.; Sadakiyo, M.; Heima, M.; Luo, R.; Haasch, R. T.; Gold, J. I.; Yamauchi, M.; Kenis, P. J. A. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 2017, 139, 47–50.

    Article  CAS  Google Scholar 

  24. Yin, Z.; Gao, D. F.; Yao, S. Y.; Zhao, B.; Cai, F.; Lin, L. L.; Tang, P.; Zhai, P.; Wang, G. X.; Ma, D. et al. Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO. Nano Energy 2016, 27, 35–43.

    Article  CAS  Google Scholar 

  25. Luo, W.; Xie, W.; Li, M.; Zhang, J.; Züttel, A. 3D hierarchical porous indium catalyst for highly efficient electroreduction of CO2. J. Mater. Chem. A 2019, 7, 4505–4515.

    Article  CAS  Google Scholar 

  26. Detweiler, Z. M.; White, J. L.; Bernasek, S. L.; Bocarsly, A. B. Anodized indium metal electrodes for enhanced carbon dioxide reduction in aqueous electrolyte. Langmuir 2014, 30, 7593–7600.

    Article  CAS  Google Scholar 

  27. Xia, Z.; Freeman, M.; Zhang, D. X.; Yang, B.; Lei, L. C.; Li, Z. J.; Hou, Y. Highly selective electrochemical conversion of CO2 to HCOOH on dendritic indium foams. ChemElectroChem 2018, 5, 253–259.

    Article  CAS  Google Scholar 

  28. Won, D. H.; Choi, C. H.; Chung, J.; Chung, M. W.; Kim, E. H.; Woo, S. I. Rational design of a hierarchical tin dendrite electrode for efficient electrochemical reduction of CO2. ChemSusChem 2015, 8, 3092–3098.

    Article  CAS  Google Scholar 

  29. Chen, Y. H.; Kanan, M. W. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 2012, 134, 1986–1989.

    Article  CAS  Google Scholar 

  30. Kim, S.; Dong, W. J.; Gim, S.; Sohn, W.; Park, J. Y.; Yoo, C. J.; Jang, H. W.; Lee, J. L. Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate. Nano Energy 2017, 39, 44–52.

    Article  CAS  Google Scholar 

  31. Li, F. W.; Xue, M. Q.; Li, J. Z.; Ma, X. L.; Chen, L.; Zhang, X. J.; MacFarlane, D. R.; Zhang, J. Unlocking the electrocatalytic activity of antimony for CO2 reduction by two-dimensional engineering of the bulk material. Angew. Chem, Int. Ed. 2017, 56, 14718–14722.

    Article  CAS  Google Scholar 

  32. Jiang, Z. L.; Wang, T.; Pei, J. J.; Shang, H. S.; Zhou, D. N.; Li, H. J.; Dong, J. C.; Wang, Y.; Cao, R.; Zhuang, Z. B. et al. Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856–2863.

    Article  CAS  Google Scholar 

  33. Devi, P.; Malik, K.; Arora, E.; Bhattacharya, S.; Kalendra, V.; Lakshmi, K. V.; Verma, A.; Singh, J. P. Selective electrochemical reduction of CO2 to CO on CuO/In2O3 nanocomposites: Role of oxygen vacancies. Catal. Sci. Technol. 2019, 9, 5339–5349.

    Article  CAS  Google Scholar 

  34. Jang, Y. J.; Lee, J.; Kim, J. H.; Lee, B. J.; Lee, J. S. One-dimensional CuIn alloy nanowires as a robust and efficient electrocatalyst for selective CO2-to-CO conversion. J. Power Sources 2018, 378, 412–417.

    Article  CAS  Google Scholar 

  35. Jedidi, A.; Rasul, S.; Masih, D.; Cavallo, L.; Takanabe, K. Generation of Cu-In alloy surfaces from CuInO2 as selective catalytic sites for CO2 electroreduction. J. Mater. Chem. A 2015, 3, 19085–19092.

    Article  CAS  Google Scholar 

  36. Larrazábal, G. O.; Martín, A. J.; Mitchell, S.; Hauert, R.; Pérez-Ramírez, J. Enhanced reduction of CO2 to CO over Cu-In electrocatalysts: Catalyst evolution is the key. ACS Catal. 2016, 6, 6265–6274.

    Article  CAS  Google Scholar 

  37. Rasul, S.; Anjum, D. H.; Jedidi, A.; Minenkov, Y; Cavallo, L.; Takanabe, K. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angew. Chem., Int. Ed. 2015, 54, 2146–2150.

    Article  CAS  Google Scholar 

  38. Sarfraz, S.; Garcia-Esparza, A. T.; Jedidi, A.; Cavallo, L.; Takanabe, K. Cu-Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catal. 2016, 6, 2842–2851.

    Article  CAS  Google Scholar 

  39. Ju, W. B.; Zeng, J. Q.; Bejtka, K.; Ma, H.; Rentsch, D.; Castellino, M.; Sacco, A.; Pirri, C. F.; Battaglia, C. Sn-decorated Cu for selective electrochemical CO2 to CO conversion: Precision architecture beyond composition design. ACS Appl. Energy Mater. 2019, 2, 867–872.

    Article  CAS  Google Scholar 

  40. Li, Q.; Fu, J. J.; Zhu, W. L.; Chen, Z. Z.; Shen, B.; Wu, L. H.; Xi, Z.; Wang, T. Y.; Lu, G.; Zhu, J. J. et al. Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure. J. Am. Chem. Soc. 2017, 139, 4290–4293.

    Article  CAS  Google Scholar 

  41. Zhao, Y.; Wang, C. Y.; Wallace, G. G. Tin nanoparticles decorated copper oxide nanowires for selective electrochemical reduction of aqueous CO2 to CO. J. Mater. Chem. A 2016, 4, 10710–10718.

    Article  CAS  Google Scholar 

  42. Ma, M.; Djanashvili, K.; Smith, W. A. Selective electrochemical reduction of CO2 to CO on CuO-derived Cu nanowires. Phys. Chem. Chem. Phys. 2015, 17, 20861–20867.

    Article  CAS  Google Scholar 

  43. Ma, M.; Djanashvili, K.; Smith, W. A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem., Int. Ed. 2016, 55, 6680–6684.

    Article  CAS  Google Scholar 

  44. Cao, L.; Raciti, D.; Li, C. Y.; Livi, K. J. T.; Rottmann, P. F.; Hemker, K. J.; Mueller, T.; Wang, C. Mechanistic insights for low-overpotential electroreduction of CO2 to CO on copper nanowires. ACS Catal. 2017, 7, 8578–8587.

    Article  CAS  Google Scholar 

  45. Mosby, J. M.; Prieto, A. L. Direct electrodeposition of Cu2Sb for lithium-ion battery anodes. J. Am. Chem. Soc. 2008, 130, 10656–10661.

    Article  CAS  Google Scholar 

  46. Hori, Y.; Konishi, H.; Futamura, T.; Murata, A.; Koga, O.; Sakurai, H.; Oguma, K. “Deactivation of copper electrode” in electrochemical reduction of CO2. Electrochim. Acta 2005, 50, 5354–5369.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22072015) and the Foundation of Sichuan Department of Science and Technology (No. 2017FZ0079)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoli Xiong, Dongwei Ma or Xuping Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mou, S., Li, Y., Yue, L. et al. Cu2Sb decorated Cu nanowire arrays for selective electrocatalytic CO2 to CO conversion. Nano Res. 14, 2831–2836 (2021). https://doi.org/10.1007/s12274-021-3295-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3295-1

Keywords

Navigation