Skip to main content
Log in

Full-scale chemical and field-effect passivation: 21.52% efficiency of stable MAPbI3 solar cells via benzenamine modification

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Organic-inorganic metal halide perovskite solar cells have achieved high efficiency of 25.5%. Finding an effective means to suppress the formation of traps and correlate stability losses are thought to be a promising route for further increasing the photovoltaic performance and commercialization potential of perovskite photovoltaic devices. Herein, we report a facile passivation model, which uses a multi-functional organic molecule to simultaneously realize the chemical passivation and field-effect passivation for the perovskite film by an upgraded anti-solvent coating method, which reduces the trap states density of the perovskite, improves interface charge transfer, and thus promotes device performance. In addition, the hydrophobic groups of the molecules can form a moisture-repelling barrier on the perovskite grains, which apparently promotes the humidity stability of the solar cells. Therefore, the optimal power conversion efficiency (PCE) of perovskite solar cells after synergistic passivation reaches 21.52%, and it can still retain 95% of the original PCE when stored in ∼ 40% humidity for 30 days. Our findings extend the scope for traps passivation to further promote both the photovoltaic performance and the stability of the perovskite solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xing, G. C.; Mathews, N.; Sun, S. Y.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344–347.

    Article  CAS  Google Scholar 

  2. Kang, C. H.; Dursun, I.; Liu, G. Y.; Sinatra, L.; Sun, X. B.; Kong, M. W.; Pan, J.; Maity, P.; Ooi, E. N.; Ng, T. K. et al. High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication. Light Sci. Appl. 2019, 8, 94.

    Article  CAS  Google Scholar 

  3. Yan, L. L.; Han, C.; Shi, B.; Zhao, Y.; Zhang, X. D. A review on the crystalline silicon bottom cell for monolithic perovskite/silicon tandem solar cells. Mater. Today Nano 2019, 7, 100045.

    Article  Google Scholar 

  4. Wang, F. Y.; Yang, M. F.; Yang, S.; Qu, X.; Yang, L. L.; Fan, L.; Yang, J. H.; Rosei, F. Iodine-assisted antisolvent engineering for stable perovskite solar cells with efficiency > 21.3%. Nano Energy 2020, 67, 104224.

    Article  CAS  Google Scholar 

  5. Best Research-Cell Efficiencies[Online]. NREL, https://www.nrel.gov/pv/assets/pdfs/cell-pv-eff-emergingpv.20200919.pdf (accessed 25 September 2020).

  6. Wu, W. Q.; Yang, Z. B.; Rudd, P. N.; Shao, Y. C.; Dai, X. Z.; Wei, H. T.; Zhao, J. J.; Fang, Y. J.; Wang, Q.; Liu, Y. et al. Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Sci. Adv. 2019, 5, eaav8925.

    Article  CAS  Google Scholar 

  7. Huang, D.; Goh, T.; Zheng, Y. F.; Qin, Z. L.; Zhao, J.; Zhao, S. L.; Xu, Z.; Taylor, A. D. An additive dripping technique using diphenyl ether for tuning perovskite crystallization for high-efficiency solar cells. Nano Res. 2018, 11, 2648–2657.

    Article  CAS  Google Scholar 

  8. Wu, W. Q.; Rudd, P. N.; Wang, Q.; Yang, Z. B.; Huang, J. S. Blading phase-pure formamidinium-alloyed perovskites for high-efficiency solar cells with low photovoltage deficit and improved stability. Adv. Mater. 2020, 32, 2000995.

    Article  CAS  Google Scholar 

  9. Fang, H. H.; Wang, F.; Adjokatse, S.; Zhao, N.; Even J.; Loi, M. A. Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications. Light Sci. Appl. 2016, 5, e16056.

    Article  CAS  Google Scholar 

  10. Yang, S.; Yao, J. C.; Quan, Y. N.; Hu, M. Y.; Su, R.; Gao, M.; Han, D. L.; Yang, J. H. Monitoring the charge-transfer process in a Nd-doped semiconductor based on photoluminescence and SERS technology. Light Sci. Appl. 2020, 9, 117.

    Article  CAS  Google Scholar 

  11. Wang, Q.; Chen, B.; Liu, Y.; Deng, Y. H.; Bai, Y.; Dong, Q. F.; Huang, J. S. Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy Environ. Sci. 2017, 10, 516–522.

    Article  CAS  Google Scholar 

  12. Shao, Y. C.; Fang, Y. J.; Li, T.; Wang, Q.; Dong, Q. F.; Deng, Y. H.; Yuan, Y. B.; Wei, H. T.; Wang, M. Y.; Gruverman, A. et al. Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films. Energy Environ. Sci. 2016, 9, 1752–1759.

    Article  CAS  Google Scholar 

  13. Xu, X.; Li, K.; Yang, Z. Z.; Shi, J. J.; Li, D. M.; Gu, L.; Wu, Z. J.; Meng, Q. B. Methylammonium cation deficient surface for enhanced binding stability at TiO2/CH3NH3PbI3 interface. Nano Res. 2017, 10, 483–490.

    Article  CAS  Google Scholar 

  14. Liu, L.; Huang, S.; Lu, Y.; Liu, P. F.; Zhao, Y. Z.; Shi, C. B.; Zhang, S. Y.; Wu, J. F.; Zhong, H. Z.; Sui, M. L. et al. Grain-boundary “patches” by in situ conversion to enhance perovskite solar cells stability. Adv. Mater. 2018, 30, 1800544.

    Article  CAS  Google Scholar 

  15. Niu, T. Q.; Lu, J.; Munir, R.; Li, J. B.; Barrit, D.; Zhang, X.; Hu, H. L.; Yang, Z.; Amassian, A.; Zhao, K. et al. Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater. 2018, 30, 1706576.

    Article  CAS  Google Scholar 

  16. Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A. et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997.

    Article  CAS  Google Scholar 

  17. Bu, T. L.; Liu, X. P.; Zhou, Y.; Yi, J. P.; Huang, X.; Luo, L.; Xiao, J. Y.; Ku, Z. L.; Peng, Y.; Huang, F. Z. et al. A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy Environ. Sci. 2017, 10, 2509–2515.

    Article  CAS  Google Scholar 

  18. Cho, K. T.; Paek, S.; Grancini, G.; Roldán-Carmona, C.; Gao, P.; Lee, Y.; Nazeeruddin, M. K. Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy Environ. Sci. 2017, 10, 621–627.

    Article  CAS  Google Scholar 

  19. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.

    Article  CAS  Google Scholar 

  20. Xu, J. X.; Buin, A.; Ip, A. H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M. J; Jeon, S.; Ning, Z. J.; McDowell, J. J. et al. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 2015, 6, 7081.

    Article  CAS  Google Scholar 

  21. Bi, D. Q.; Gao, P.; Scopelliti, R.; Oveisi, E.; Luo, J. S.; Grätzel, M.; Hagfeldt, A.; Nazeeruddin, M. K. High-performance perovskite solar cells with enhanced environmental stability based on amphiphile-modified CH3NH3PbI3. Adv. Mater. 2016, 28, 2910–2915.

    Article  CAS  Google Scholar 

  22. Wu, Y. Z.; Yang, X. D.; Chen, W.; Yue, Y. F.; Cai, M. L.; Xie, F. X.; Bi, E. B.; Islam, A.; Han, L. Y. Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering. Nat. Energy 2016, 1, 16148.

    Article  CAS  Google Scholar 

  23. Zheng, X. P.; Chen, B. C.; Dai, J.; Fang, Y. J.; Bai, Y.; Lin, Y.; Wei, H. T.; Zeng, X. C.; Huang J. S. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2017, 2, 17102.

    Article  CAS  Google Scholar 

  24. Tan, F.; Tan, H.; Saidaminov, M. I.; Wei, M. Y.; Liu, M. X.; Mei, A.; Li, P. C.; Zhang, B. W.; Tan, C. S.; Gong, X. W. et al. In situ back-contact passivation improves photovoltage and fill factor in perovskite solar cells. Adv. Mater. 2019, 31, e1807435.

    Article  CAS  Google Scholar 

  25. Peng, J.; Wu, Y. L.; Ye, W.; Jacobs, D. A.; Shen, H. P.; Fu, X.; Wan, Y. M.; Duong, T.; Wu, N. D.; Barugkin, C. et al. Interface passivation using ultrathin polymer-fullerene films for high-efficiency perovskite solar cells with negligible hysteresis. Energy Environ. Sci. 2017, 10, 1792–1800.

    Article  CAS  Google Scholar 

  26. Mahmud, M. A.; Duong, T.; Yin, Y. T.; Peng, J.; Wu, Y. L.; Lu, T.; Pham, H. T.; Shen, H. P.; Walter, D.; Nguyen, H. T. et al. In situ formation of mixed-dimensional surface passivation layers in perovskite solar cells with dual-isomer alkylammonium cations. Small 2020, 16, 2005022.

    Article  CAS  Google Scholar 

  27. Jiang, Q.; Zhao, Y.; Zhang, X. W; Yang, X. L; Chen, Y.; Chu, Z. M.; Ye, Q. F.; Li, X. X.; Yin, Z. G.; You, J. B. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466.

    Article  CAS  Google Scholar 

  28. Dingemans, G.; Terlinden, N. M.; Pierreux, D.; Profijt, H. B.; van de Sanden, M. C. M.; Kessels, W. M. M. Influence of the oxidant on the chemical and field-effect passivation of Si by ALD Al2O3. Electrochem. Solid-State Lett. 2011, 14, H1.

    Article  CAS  Google Scholar 

  29. Wang, F. Y.; Zhang, Y. H.; Yang, M. F.; Han, D. L.; Yang, L. L.; Fan, L.; Sui, Y. R.; Sun, Y. F.; Liu, X. Y.; Meng, X. W. et al. Interface dipole induced field-effect passivation for achieving 21.7% efficiency and stable perovskite solar cells. Adv. Funct. Mater., in press, DOI: https://doi.org/10.1002/adfm.202008052.

  30. Yi, H. T.; Rangan, S.; Tang, B. X.; Frisbie, C. D.; Bartynski, R. A.; Gartstein, Y. N.; Podzorov, V. Electric-field effect on photoluminescence of lead-halide perovskites. Mater. Today 2019, 28, 31–39.

    Article  CAS  Google Scholar 

  31. Hwang, J. M. Plasma charge injection technology and its application to c-Si solar cells for field-effect passivation. J. Appl. Phys. 2019, 125, 173301.

    Article  CAS  Google Scholar 

  32. Glunz, S. W.; Biro, D.; Rein, S.; Warta, W. Field-effect passivation of the SiO2Si interface. J. Appl. Phys. 1999, 86, 683–691.

    Article  CAS  Google Scholar 

  33. Yu, P. C.; Tsai, C. Y.; Chang, J. K.; Lai, C. C.; Chen, P. H.; Lai Y. C.; Tsai P. T.; Li, M. C.; Pan, H. T.; Huang, Y. Y. et al. 13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering. ACS Nano 2013, 7, 10780–10787.

    Article  CAS  Google Scholar 

  34. Kong, W. G.; Li, W.; Liu, C. W.; Liu, H.; Miao, J.; Wang, W. J.; Chen, S.; Hu, M. M.; Li, D. D.; Amini, A. et al. Organic monomolecular layers enable energy-level matching for efficient hole transporting layer free inverted perovskite solar cells. ACS Nano 2019, 13, 1625–1634.

    Article  CAS  Google Scholar 

  35. Yang, L. Y.; Cai, F. L.; Yan, Y.; Li, J. H.; Liu, D.; Pearson, A. J.; Wang, T. Conjugated small molecule for efficient hole transport in high-performance p-i-n type perovskite solar cells. Adv. Funct. Mater. 2017, 27, 1702613.

    Article  CAS  Google Scholar 

  36. Kalinowski, J.; Giro, G.; Cocchi, M.; Fattori, V.; Marco, P. D. Unusual disparity in electroluminescence and photoluminescence spectra of vacuum-evaporated films of 1,1-bis((di-4-tolylamino)phenyl) cyclohexane. Appl. Phys. Lett. 2000, 76, 2352–2354.

    Article  CAS  Google Scholar 

  37. Heymans, N. FTIR investigation of structural modification of polycarbonate during thermodynamical treatments. Polymer 1997, 38, 3435–3440.

    Article  CAS  Google Scholar 

  38. Khan, F.; Khanna, S.; Hor, A. M.; Sundararajan, P. R. Sundararajan, P. R. The role of molecular volume and the shape of the hole transport molecule in the morphology of model charge transport composites. Can. J. Chem. 2010, 88, 247–259.

    Article  CAS  Google Scholar 

  39. Jin, S.; Wei, Y. L.; Huang, F. Y.; Yang, X. M.; Luo, D.; Fang, Y.; Zhao, Y. Z.; Guo, Q. Y.; Huang, Y. F.; Wu, J. H. Enhancing the perovskite solar cell performance by the treatment with mixed anti-solvent. J. Power Sources 2018, 404, 64–72.

    Article  CAS  Google Scholar 

  40. Wang, F. Y.; Yang, M. F.; Zhang, Y. H.; Yang, L. L.; Fan, L.; Lv, S. Q.; Liu, X. Y.; Han, D. L.; Yang, J. H. Activating old materials with new architecture: Boosting performance of perovskite solar cells with H2O-assisted hierarchical electron transporting layers. Adv. Sci. 2019, 6, 1801170.

    Article  CAS  Google Scholar 

  41. Li, X. Q.; Li, W. H.; Yang, Y. J.; Lai, X.; Su, Q.; Wu, D.; Li, G. Q.; Wang, K.; Chen, S. M.; Sun, X. W. et al. Defects passivation with dithienobenzodithiophene based π-conjugated polymer for enhanced performance of perovskite solar cells. Sol. RRL 2019, 3, 1900029.

    Article  CAS  Google Scholar 

  42. Zhang, C. C.; Li, M.; Wang, Z. K.; Jiang, Y. R.; Liu, H. R.; Yang, Y. G.; Gao, X. Y.; Ma, H. Passivated perovskite crystallization and stability in organic-inorganic halide solar cells by doping a donor polymer. J. Mater. Chem. A 2017, 5, 2572–2579.

    Article  CAS  Google Scholar 

  43. Privitera, A.; Righetto, M.; De Bastiani, M.; Carraro, F.; Rancan, M.; Armelao, L.; Granozzi, G.; Bozio, R.; Franco, L. Hybrid organic/inorganic perovskite-polymer nanocomposites: Toward the enhancement of structural and electrical properties. J. Phys. Chem. Lett. 2017, 8, 5981–5986.

    Article  CAS  Google Scholar 

  44. Wu, Y. Q.; Wang, P.; Zhu, X. L.; Zhang, Q. Q.; Wang, Z. Y.; Liu, Y. Y.; Zou, G. Z.; Dai, Y.; Whangbo, M. H.; Huang, B. B. Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution. Adv. Mater. 2018, 30, 1704342.

    Article  CAS  Google Scholar 

  45. Wang, F. Y.; Zhang, Y. H.; Yang, M. F.; Yang, L. L.; Sui, Y. R.; Yang, J. H.; Zhao, Y.; Zhang, X. D. Realization of 16.9% efficiency on nanowires heterojunction solar cells with dopant-free contact for bifacial polarities. Adv. Funct. Mater. 2018, 28, 1805001.

    Article  CAS  Google Scholar 

  46. Wang, F. Y.; Zhang, Y. H.; Yang, M. F.; Du, J. Y.; Xue, L. L.; Yang, L. L.; Fan, L.; Sui, Y. R.; Yang, J. H.; Zhang, X. D. Exploring low-temperature processed a-WOx/SnO2 hybrid electron transporting layer for perovskite solar cells with efficiency > 20.5%. Nano Energy 2019, 63, 103825.

    Article  CAS  Google Scholar 

  47. Staub, F.; Hempel, H.; Hebig, J. C.; Mock, J.; Paetzold, U. W.; Rau, U.; Unold, T.; Kirchartz, T. Beyond bulk lifetimes: Insights into lead halide perovskite films from time-resolved photoluminescence. Phys. Rev. Appl. 2016, 6, 044017.

    Article  CAS  Google Scholar 

  48. He, Z. C.; Zhong, C. M.; Huang, X.; Wong, W. Y.; Wu, H. B.; Chen, L. W.; Su, S. J.; Cao, Y. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv. Mater. 2011, 23, 4636–4643.

    Article  CAS  Google Scholar 

  49. Tan, W. Y.; Wang, R.; Li, M.; Liu, G.; Chen, P.; Li, X. C.; Lu, S. M.; Zhu, H. L.; Peng, Q. M.; Zhu, X. H. et al. Lending triarylphosphine oxide to phenanthroline: A facile approach to high-performance organic small-molecule cathode interfacial material for organic photovoltaics utilizing air-stable cathodes. Adv. Funct. Mater. 2014, 24, 6540–6547.

    Article  CAS  Google Scholar 

  50. Xie, J. S.; Huang, K.; Yu, X. G.; Yang, Z. R.; Xiao, K.; Qiang, Y. P.; Zhu, X. D.; Xu, L. B.; Wang, P.; Cui, C. et al. Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells. ACS Nano 2017, 11, 9176–9182.

    Article  CAS  Google Scholar 

  51. Pockett, A.; Eperon, G. E.; Peltola, T.; Snaith, H. J.; Walker, A.; Peter, L. M.; Cameron, P. J. Characterization of planar lead halide perovskite solar cells by impedance spectroscopy, open-circuit photovoltage decay, and intensity-modulated photovoltage/photocurrent spectroscopy. J. Phys. Chem. C 2015, 119, 3456–3465.

    Article  CAS  Google Scholar 

  52. Bai, Y.; Dong, Q. F.; Shao, Y. C.; Deng, Y. H.; Wang, Q.; Shen, L.; Wang, D.; Wei, W.; Huang, J. S. Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nat. Commun. 2016, 7, 12806.

    Article  CAS  Google Scholar 

  53. Cho, Y.; Soufiani, A. M.; Yun, J. S.; Kim, J.; Lee, D. S.; Seidel, J.; Deng, X. F.; Green, M. A.; Huang, S. J.; Ho-Baillie, A. W. Y. Mixed 3D-2D passivation treatment for mixed-cation lead mixed-halide perovskite solar cells for higher efficiency and better stability. Adv. Energy Mater. 2018, 8, 1703392.

    Article  CAS  Google Scholar 

  54. Liu, K. K.; Liu, Q.; Yang, D. W.; Liang, Y. C.; Sui, L. Z.; Wei, J. Y.; Xue, G. W.; Zhao, W. B.; Wu, X. Y.; Dong, L. et al. Water-induced MAPbBr3@PbBr(OH) with enhanced luminescence and stability. Light Sci. Appl. 2020, 9, 44.

    Article  CAS  Google Scholar 

  55. Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (Nos. 61775081, 11904127, 22075101, 61904066, 61705020), Program for the Development of Science and Technology of Jilin Province (Nos. 20200801032GH and 20190103002JH), the Thirteenth Five-Year Program for Science and Technology of Education Department of Jilin Province (Nos. JJKH20200417KJ), Special Project of Industrial Technology Research and Development in Jilin Province (No. 2019C042-2), and Construction Program for Innovation Research Team of Jilin Normal University (No. 201703).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lili Yang or Jinghai Yang.

Electronic Supplementary Material

12274_2021_3286_MOESM1_ESM.pdf

Full-scale chemical and field-effect passivation: 21.52% efficiency of stable MAPbI3 solar cells via benzenamine modification

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Yang, M., Zhang, Y. et al. Full-scale chemical and field-effect passivation: 21.52% efficiency of stable MAPbI3 solar cells via benzenamine modification. Nano Res. 14, 2783–2789 (2021). https://doi.org/10.1007/s12274-021-3286-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3286-2

Keywords

Navigation