Skip to main content
Log in

Gram-scale fabrication of patchy nanoparticles with tunable spatial topology and chemical functionality

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Patchy particles, defined as particles with one or more well-defined patches, have attracted much attention due to their anisotropic and directional interactions. The anisotropic nature of the patchy particle surface enables a certain degree of control over the assembly process. Enormous efforts have been carried out to design and explore the properties of patchy particles and their collective behaviour. However, the techniques to fabricate patchy particles are still limited in terms of tunability and scalability. In this work, an effective method of fabricating patchy particles with tunable spatial topology and chemical composition of patches is presented. The number, distribution and size of the patches can be tailored by adjusting the packing of the colloidal particles and the processing condition. The active secondary reaction on the polydopamine (PDA)-coated surface and silica surface could functionalize the obtained patchy particles with desired properties to meet different requirements. As a proof of principle, the PDA-coated patches were modified with thiol-based dye via the Michael reaction and the silica surfaces were functionalized with amine-terminated alkoxysilanes via the silane coupling reaction have been demonstrated. Furthermore, the unique properties of PDA, such as reductive ability, powerful adhesive capability and carbonizable feature, have also been proven to fabricate metallic nanoparticle-decorated patchy particles and anisotropic carbon nanocapsules. The well-defined patchy particles are templated from colloidal crystal and their gram-scale fabrication is easily achieved. These results indicate that our strategy will help access the transformative potential of patchy particles in the rational design and large-scale production of functional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glotzer, S. C. Some assembly required. Science 2004, 306, 419–420.

    Article  CAS  Google Scholar 

  2. Duguet, E.; Désert, A.; Perro, A.; Ravaine, S. Design and elaboration of colloidal molecules: An overview. Chem. Soc. Rev. 2011, 40, 941–960.

    Article  CAS  Google Scholar 

  3. Sosa, C.; Liu, R.; Tang, C.; Qu, F. L.; Niu, S.; Bazant, M. Z.; Prud’homme, R. K.; Priestley, R. D. Soft multifaced and patchy colloids by constrained volume self-assembly. Macromolecules 2016, 49, 3580–3585.

    Article  CAS  Google Scholar 

  4. Li, W. Y.; Palis, H.; Mérindol, R.; Majimel, J.; Ravaine, S.; Duguet, E. Colloidal molecules and patchy particles: Complementary concepts, synthesis and self- assembly. Chem. Soc. Rev. 2020, 49, 1955–1976.

    Article  CAS  Google Scholar 

  5. Wang, Z. C.; Wang, Z. S.; Li, J. H.; Cheung, S. T. H.; Tian, C. H.; Kim, S. H.; Yi, G. R.; Ducrot, E.; Wang, Y. E. Active patchy colloids with shape-tunable dynamics. J. Am. Chem. Soc. 2019, 141, 14853–14863.

    Article  CAS  Google Scholar 

  6. Zheng, X. L.; Liu, M. Z.; He, M. X.; Pine, D. J.; Weck, M. Shape-shifting patchy particles. Angew. Chem., Int. Ed. 2017, 56, 5507–5511.

    Article  CAS  Google Scholar 

  7. Chen, C. H.; Xie, L.; Wang, Y. Recent advances in the synthesis and applications of anisotropic carbon and silica-based nanoparticles. Nano. Res. 2019, 12, 1267–1278.

    Article  CAS  Google Scholar 

  8. Wong, C. K.; Chen, F.; Walther, A.; Stenzel, M. H. BioactivePatchy Nanoparticles with Compartmentalized Cargoes for Simultaneous and Trackable Delivery. Angew. Chem., Int. Ed. 2019, 58, 7335–7340.

    Article  CAS  Google Scholar 

  9. Fu, J. Y.; Gu, Z. Y.; Liu, Y.; Zhang, J.; Song, H.; Yang, Y. N.; Yang, Y.; Noonan, O.; Tang, J.; Yu, C. Z. Bottom-up self-assembly of heterotrimeric nanoparticles and their secondary Janus generations. Chem. Sci. 2019, 10, 10388–10394.

    Article  CAS  Google Scholar 

  10. Pothorszky, S.; Zámbó, D.; Szekrényes, D.; Hajnal, Z.; Deák, A. Detecting patchy nanoparticle assembly at the single-particle level. Nanoscal. 2017, 9, 10344–10349.

    Article  CAS  Google Scholar 

  11. Yan, J.; Bae, S. C.; Granick, S. Colloidal superstructures programmed into magnetic janus particles. Adv. Mater. 2015, 27, 874–879.

    Article  CAS  Google Scholar 

  12. Ling, X. Y.; Phang, I.; Acikgoz, C.; Yilmaz, M. D.; Hempenius, M. A.; Vancso, G. J.; Huskens, J. Janus particles with controllable patchiness and their chemical functionalization and supramolecular assembly. Angew. Chem., Int. Ed. 2009, 48, 7677–7682.

    Article  CAS  Google Scholar 

  13. Wang, K.; Li, F.; Tian, D.; Xu, J. P.; Liu, Y. Y.; Hou, Z. Y.; Zhou, H. M.; Chen, S. B.; Zhu, J. T.; Yang, Z. Z. Segmental Janus nanoparticles of polymer composites. Chem. Commun. 2019, 55, 8114–8117.

    Article  CAS  Google Scholar 

  14. Kamp, M.; de Nijs, B.; van der Linden, M. N.; de Feijter, I.; Lefferts, M. J.; Aloi, A.; Griffiths, J.; Baumberg, J. J.; Voets, I. K.; van Blaaderen, A. Multivalent patchy colloids for quantitative 3D self-assembly studies. Langmuir 2020, 36, 2403–2418.

    Article  CAS  Google Scholar 

  15. Espinosa, A.; Reguera, J.; Curcio, A.; Muñoz-Noval, Á.; Kuttner, C.; van Walle, A.; Liz-Marzán, L. M.; Wilhelm, C. Janus magnetic-plasmonic nanoparticles for magnetically guided and thermally activated cancer therapy. Small 2020, 16, 1904960.

    Article  CAS  Google Scholar 

  16. Li, J. W.; Wang, J. F.; Yao, Q.; Yu, K.; Yan, Y. G.; Zhang, J. Cooperative assembly of Janus particles and amphiphilic oligomers: The role of Janus balance. Nanoscale 2019, 11, 7221–7228.

    Article  CAS  Google Scholar 

  17. Mao, Z. W.; Xu, H. L.; Wang, D. Y. Molecular mimetic self-assembly of colloidal particles. Adv. Funct. Mater. 2010, 20, 1053–1074.

    Article  CAS  Google Scholar 

  18. Bao, H. X.; Peukert, W.; Taylor, R. N. One-pot colloidal synthesis of plasmonic patchy particles. Adv. Mater. 2011, 23, 2644–2649.

    Article  CAS  Google Scholar 

  19. Yin, S. N.; Wang, C. F.; Yu, Z. Y.; Wang, J.; Liu, S. S.; Chen, S. Versatile bifunctional magnetic-fluorescent responsive Janus supraballs towards the flexible bead display. Adv. Mater. 2011, 23, 2915–2119.

    Article  CAS  Google Scholar 

  20. Koo, H. Y.; Yi, D. K.; Yoo, S. J.; Kim, D. Y. A snowman-like array of colloidal dimers for antireflecting surfaces. Adv. Mater. 2004, 16, 274–277.

    Article  CAS  Google Scholar 

  21. Lu, Y.; Xiong, H.; Jiang, X. C.; Xia, Y. N.; Prentiss, M.; Whitesides, G. M. Asymmetric dimers can be formed by dewetting half-shells of gold deposited on the surfaces of spherical oxide colloids. J. Am. Chem. Soc. 2003, 125, 12724–12725.

    Article  CAS  Google Scholar 

  22. Takei, H.; Shimizu, N. Gradient sensitive microscopic probes prepared by gold evaporation and chemisorption on latex spheres. Langmuir 1997, 13, 1865–1868.

    Article  CAS  Google Scholar 

  23. Ahn, J. H.; Kim, H. S.; Lee, K. J.; Jeon, S.; Kang, S. J.; Sun, Y. G.; Nuzzo, R. G.; Rogers, J. A. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 2006, 314, 1754–1757.

    Article  CAS  Google Scholar 

  24. Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004, 22, 47–52.

    Article  CAS  Google Scholar 

  25. Langer, R. Drugs on target. Science 2001, 293, 58–59.

    Article  CAS  Google Scholar 

  26. Yin, Y.; Xia, Y. Growth of large colloidal crystals with their (100) planes orientated parallel to the surfaces of supporting substrates. Adv. Mater. 2002, 14, 605–608.

    Article  CAS  Google Scholar 

  27. Su, B.; Zhang, C.; Chen, S. R.; Zhang, X. Y.; Chen, L. F.; Wu, Y. C.; Nie, Y. W.; Kan, X. N.; Song, Y. L.; Jiang, L. A general strategy for assembling nanoparticles in one dimension. Adv. Mater. 2014, 26, 2501–2507.

    Article  CAS  Google Scholar 

  28. Jiang, P.; McFarland. M. J. Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin- coating. J. Am. Chem. Soc. 2004, 126, 13778–13786.

    Article  CAS  Google Scholar 

  29. Huang, Y.; Zhou, J. M.; Su, B.; Shi, L.; Wang, J. X.; Chen, S. R.; Wang, L. B.; Zi, J.; Song, Y. L.; Jiang, L. Colloidal photonic crystals with narrow stopbands assembled from low-adhesive superhydrophobic substrates. J. Am. Chem. Soc. 2012, 134, 17053–17058.

    Article  CAS  Google Scholar 

  30. Cui, J. C.; Zhu, W.; Gao, N.; Li, J.; Yang, H. W.; Jiang, Y.; Seidel, P.; Ravoo, B. J.; Li, G. T. Inverse opal spheres based on polyionic liquids as functional microspheres with tunable optical properties and molecular recognition capabilities. Angew. Chem., Int. Ed. 2014, 53, 3844–3848.

    Article  CAS  Google Scholar 

  31. Zhao, Y. J.; Zhao, X. W.; Sun, C.; Li, J.; Zhu, R.; Gu, Z. Z. Encoded silica colloidal crystal beads as supports for potential multiplex immunoassay. Anal. Chem. 2008, 80, 1598–1605.

    Article  CAS  Google Scholar 

  32. Kamalasanan, K.; Jhunjhunwala, S.; Wu, J. M.; Swanson, A.; Gao, D.; Little, S. R. Patchy, anisotropic microspheres with soft protein islets. Angew. Chem., Int. Ed. 2011, 50, 8706–8708.

    Article  CAS  Google Scholar 

  33. Ling, X. Y.; Phang, I. Y.; Acikgoz, C.; Yilmaz, M. D.; Hempenius, M. A.; Vancso, G. J.; Huskens, J. Janus particles with controllable patchiness and their chemical functionalization and supramolecular assembly. Angew. Chem., Int. Ed. 2009, 48, 7677–7682.

    Article  CAS  Google Scholar 

  34. Kaufmann, T.; Gokmen, M. T.; Wendeln, C.; Schneiders, M.; Rinnen, S.; Arlinghaus, H. F.; Bon, S. A. F.; Prez, F. E. D.; Ravoo, B. J. “Sandwich” microcontact printing as a mild route towards monodisperse Janus particles with tailored bifunctionality. Adv. Mater. 2011, 23, 79–83.

    Article  CAS  Google Scholar 

  35. Jiang, P.; McFarland. M. J. Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. J. Am. Chem. Soc. 2004, 126, 13778–13786.

    Article  CAS  Google Scholar 

  36. Wang, L. K.; Xia, L. H.; Li, G.; Ravaine, S.; Zhao, X. S. Patterning the surface of colloidal microspheres and fabrication of nonspherical particles. Angew. Chem., Int. Ed. 2008, 47, 4725–4728.

    Article  CAS  Google Scholar 

  37. Hoogenboom, J. P.; Rétif, C.; de Bres, E.; van de Boer, M.; van Langen-Suurling, A. K.; Romijn, J.; van Blaaderen, A. Template-induced growth of close-packed and non-close-packed colloidal crystals during solvent evaporation. Nano Lett. 2004, 4, 205–208.

    Article  CAS  Google Scholar 

  38. Dziomkina, N. V.; Hempenius, M. A.; Vancso, G. J. Symmetry control of polymer colloidal monolayers and crystals by electrophoretic deposition on patterned surfaces. Adv. Mater. 2005, 17, 237–240.

    Article  CAS  Google Scholar 

  39. Langille, M. R.; Personick, M. L.; Mirkin, C. A. Plasmon-mediated syntheses of metallic nanostructures. Angew. Chem., Int. Ed. 2013, 52, 13910–13940.

    Article  CAS  Google Scholar 

  40. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430.

    Article  CAS  Google Scholar 

  41. Wang, C.; Zhu, W.; Lan, Y.; Zhang, M.; Tian, T.; Wang, H.; Li, G. T. Facile fabrication of reactive plasmonic substrates for fluorescence enhancement via mussel-inspired chemistry. J. Phys. Chem. C 2014, 118, 10754–10763.

    Article  CAS  Google Scholar 

  42. Jiang, Y.; Lan, Y.; Yin, X. P.; Yang, H. W.; Cui, J. C.; Zhu, T.; Li, G T. Polydopamine-based photonic crystal structures. J. Mater. Chem. C 2013, 1, 6136–6144.

    Article  CAS  Google Scholar 

  43. Jang, J.; Bae, J. Fabrication of polymer nanofibers and carbon nanofibers by using a salt-assisted microemulsion polymerization. Angew. Chem., Int. Ed. 2004, 43, 3803–3806.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 21902147) and Zhejiang Provincial Natural Science Foundation of China (No. LQ18B030004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiecheng Cui or Guangtao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Li, Y., Yuan, H. et al. Gram-scale fabrication of patchy nanoparticles with tunable spatial topology and chemical functionality. Nano Res. 14, 2666–2672 (2021). https://doi.org/10.1007/s12274-020-3270-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3270-2

Keywords

Navigation