Skip to main content
Log in

Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The oxidation of hydrocarbons to produce high value-added compounds (ketones or alcohols) using oxygen in air as the only oxidant is an efficient synthetic strategy from both environmental and economic views. Herein, we successfully synthesized cobalt single atom site catalysts (Co SACs) with high metal loading of 23.58 wt.% supported on carbon nitride (CN), which showed excellent catalytic properties for oxidation of ethylbenzene in air. Moreover, Co SACs show a much higher turn-over frequency (19.6 h−1) than other reported non-noble catalysts under the same condition. Comparatively, the as-obtained nanosized or homogenous Co catalysts are inert to this reaction. Co SACs also exhibit high selectivity (97%) and stability (unchanged after five runs) in this reaction. DFT calculations reveal that Co SACs show a low energy barrier in the first elementary step and a high resistance to water, which result in the robust catalytic performance for this reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu, L. L.; Lipshultz, J. M.; MacMillan, D. W. C. Merging photoredox and nickel catalysis: The direct synthesis of ketones by the decarboxylative arylation of α-Oxo acids. Angew. Chem., Int. Ed. 2015, 54, 7929–7933.

    Article  CAS  Google Scholar 

  2. Lesieur, M.; Genicot, C.; Pasau, P. Development of a flow photochemical aerobic oxidation of benzylic C-H bonds. Org. Lett. 2018, 20, 1987–1990.

    Article  CAS  Google Scholar 

  3. Clark, W. M.; Tickner-Eldridge, A. M.; Huang, G. K.; Pridgen, L. N.; Olsen, M. A.; Mills, R. J.; Lantos, I.; Baine, N. H. A Catalytic enantioselective synthesis of the endothelin receptor antagonists SB-209670 and SB-217242. A base-catalyzed stereospecific formal 1, 3-hydrogen transfer of a chiral 3-arylindenol. J. Am. Soc. Chem. 1998, 120, 4550–4551.

    Article  CAS  Google Scholar 

  4. Jana, S. K.; Wu, P.; Tatsumi, T. NiAl hydrotalcite as an efficient and environmentally friendly solid catalyst for solvent-free liquid-phase selective oxidation of ethylbenzene to acetophenone with 1 atm of molecular oxygen. J. Catal. 2006, 240, 268–274.

    Article  CAS  Google Scholar 

  5. Zhang, P. F.; Lu, H. F.; Zhou, Y.; Zhang, L.; Wu, Z. L.; Yang, S. Z.; Shi, H. L.; Zhu, Q. L.; Chen, Y. F.; Dai, S. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons. Nat. Commun. 2015, 6, 8446.

    Article  CAS  Google Scholar 

  6. Wang, L.; Zhu, Y. H.; Wang, J. Q.; Liu, F. D.; Huang, J. F.; Meng, X. J.; Basset, J. M.; Han, Y.; Xiao, F. S. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds. Nat. Commun. 2015, 6, 6957.

    Article  CAS  Google Scholar 

  7. Zhang, P. F.; Gong, Y. T.; Li, H. R.; Chen, Z. R.; Wang, Y. Solvent-free aerobic oxidation of hydrocarbons and alcohols with Pd@N-doped carbon from glucose. Nat. Commun. 2013, 4, 1593.

    Article  Google Scholar 

  8. Biswas, R.; Das, S. K.; Bhaduri, S. N.; Bhaumik, A.; Biswas, P. AgNPs Immobilized over functionalized 2D hexagonal SBA-15 for catalytic C-H oxidation of hydrocarbons with molecular oxygen under solvent-free conditions. ACS Sustainable Chem. Eng. 2020, 8, 5856–5867.

    Article  CAS  Google Scholar 

  9. Kojima, T.; Nakayama, K.; Ikemura, K.; Ogura, T.; Fukuzumi, S. Formation of a ruthenium(IV)-Oxo complex by electron-transfer oxidation of a coordinatively saturated ruthenium(II) complex and detection of oxygen-rebound intermediates in C-H bond oxygenation. J. Am. Chem. Soc. 2011, 133, 11692–11700.

    Article  CAS  Google Scholar 

  10. Stubbs, A. W.; Dincă, M. Selective oxidation of C-H bonds through a manganese(III) hydroperoxo in MnII-Exchanged CFA-1. Inorg. Chem. 2019, 58, 13221–13228.

    Article  CAS  Google Scholar 

  11. Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

    Article  CAS  Google Scholar 

  12. Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Wu, L. P.; Ma, L.; Li, T. Y.; Pang, Z. Q.; Jiao, M. L.; Liang, Z. Q.; Gao, J. L. et al. High temperature shockwave stabilized single atoms. Nat. Nanotechnol. 2019, 14, 851–857.

    Article  CAS  Google Scholar 

  13. Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 2003300.

  14. Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2020, 2000051.

  15. Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651–10657.

    Article  CAS  Google Scholar 

  16. Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.

    Article  CAS  Google Scholar 

  17. Sun, T. T.; Li, Y. L.; Cui, T. T.; Xu, L. B.; Wang, Y. G.; Chen, W. X.; Zhang, P. P.; Zheng, T. Y.; Fu, X. Z.; Zhang, S. L. et al. Engineering of coordination environment and multiscale structure in single-site copper catalyst for superior electrocatalytic oxygen reduction. Nano Lett. 2020, 20, 6206–6214.

    Article  CAS  Google Scholar 

  18. Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indiumδ+-N4 interface for efficient electroreduction of CO2 to Formate. Angew. Chem., Int. Ed. 2020, https://doi.org/10.1002/anie.202010903.

  19. Tian, S.; Hu, M.; Xu, Q.; Gong, W. B.; Chen, W. X.; Yang, J. R.; Zhu, Y. Q.; Chen, C.; He, J.; Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater. 2020, https://doi.org/10.1007/s40843-020-1443-8.

  20. Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

    Article  CAS  Google Scholar 

  21. Xiong, Y.; Sun, W. M.; Xin, P. Y.; Chen, W. X.; Zheng, X. S.; Yan, W. S.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Wang, D. S. et al. Gram-scale synthesis of high-loading single-atomic-site Fe catalysts for effective epoxidation of styrene. Adv. Mater. 2020, 32, 2000896.

    Article  CAS  Google Scholar 

  22. Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

    Article  Google Scholar 

  23. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  24. Liu, J. Y. Catalysis by supported single metal atoms. ACS Catal. 2017, 7, 34–59.

    Article  CAS  Google Scholar 

  25. Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

    Article  Google Scholar 

  26. Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density of metal-organic frameworks-derived Co single-atom sites to enhance oxygen reduction performance. Angew. Chem., Int. Ed. 2020, DOI: https://doi.org/10.1002/ange.202012798.

  27. Cui, X. J.; Li, W.; Ryabchuk, P.; Junge, K.; Beller, M. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 2018, 1, 385–397.

    Article  CAS  Google Scholar 

  28. Mao, J. J.; He, C. T.; Pei, J. J.; Liu, Y.; Li, J.; Chen, W. X.; He, D. S.; Wang, D. S.; Li, Y. D. Isolated Ni atoms dispersed on Ru nanosheets: High-performance electrocatalysts toward hydrogen oxidation reaction. Nano Lett. 2020, 20, 3442–3448.

    Article  CAS  Google Scholar 

  29. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    Article  CAS  Google Scholar 

  30. Zhang, T.; Zhang, D.; Han, X. H.; Dong, T.; Guo, X. W.; Song, C. S.; Si, R.; Liu, W.; Liu, Y. F.; Zhao, Z. K. Preassembly strategy to fabricate porous hollow carbonitride spheres inlaid with single Cu-N3 sites for selective oxidation of benzene to phenol. J. Am. Chem. Soc. 2018, 140, 16936–16940.

    Article  CAS  Google Scholar 

  31. Li, J. K.; Pršlja, P.; Shinagawa, T.; Fernández, A. J. M.; Krumeich, F.; Artyushkova, K.; Atanassov, P.; Zitolo, A.; Zhou, Y. C.; García-Muelas, R. et al. Volcano trend in electrocatalytic CO2 reduction activity over atomically dispersed metal sites on nitrogen-doped carbon. ACS Catal. 2019, 9, 10426–10439.

    Article  CAS  Google Scholar 

  32. Cao, Y. J.; Chen, S.; Luo, Q. Q.; Yan, H.; Lin, Y.; Liu, W.; Cao, L. L.; Lu, J. L.; Yang, J. L.; Yao, T. et al. Atomic-level insight into optimizing the hydrogen evolution pathway over a Co1-N4 single-site photocatalyst. Angew. Chem., Int. Ed. 2017, 56, 12191–12196.

    Article  CAS  Google Scholar 

  33. Gong, W. B.; Yuan, Q. L.; Chen, C.; Lv, Y.; Lin, Y.; Liang, C. H.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Liberating N-CNTs confined highly dispersed Co-Nx sites for selective hydrogenation of quinolines. Adv. Mater. 2019, 31, 1906051.

    Article  CAS  Google Scholar 

  34. Wan, J. W.; Zhao, Z. H.; Shang, H. S.; Peng, B.; Chen, W. X.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Cao, R.; Sarangi, R. et al. In situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks to design atomic Co1-P1N3 interfacial structure for promoting catalytic performance. J. Am. Chem. Soc. 2020, 142, 8431–8439.

    Article  CAS  Google Scholar 

  35. Ye, M. Y.; Li, S.; Zhao, X. J.; Tarakina, N. V.; Teutloff, C.; Chow, W. Y.; Bittl, R.; Thomas, A. Cobalt-exchanged poly(heptazine imides) as transition metal-Nx electrocatalysts for the oxygen evolution reaction. Adv. Mater. 2020, 32, 1903942.

    Article  CAS  Google Scholar 

  36. Ou H. H.; Wang, D. S.; Li, Y. D. How to select effective electrocatalysts: Nano or single atom? Nano Select 2020,https://doi.org/10.1002/nano.202000239.

  37. Zhao, Q.; Yao, W. F.; Huang, C. P.; Wu, Q.; Xu, Q. J. Effective and durable Co single atomic Co catalysts for photocatalytic hydrogen production. ACS Appl. Mater. Interfaces. 2017, 9, 42734–42741.

    Article  CAS  Google Scholar 

  38. Zitolo, A.; Ranjbar-Sahraie, N.; Mineva, T.; Li, J. K.; Jia, Q. Y.; Stamatin, S.; Harrington, G. F.; Lyth, S. M.; Krtil, P.; Mukerjee, S. et al. Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nat. Commun. 2017, 8, 957.

    Article  Google Scholar 

  39. Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Kim, N. D.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.

    Article  CAS  Google Scholar 

  40. Yue, X. Y.; Li, X. L.; Wang, W. W.; Chen, D.; Qiu, Q. Q.; Wang, Q. C.; Wu, X. J.; Fu, Z. W.; Shadike, Z.; Yang, X. Q. et al. Wettable carbon felt framework for high loading Li-metal composite anode. Nano Energy 2019, 60, 257–266.

    Article  CAS  Google Scholar 

  41. Zhu, Y. F.; Kong, X.; Yin, J. Q.; You, R.; Zhang, B.; Zheng, H. Y.; Wen, X. D.; Zhu, Y. L.; Li, Y. W. Covalent-bonding to irreducible SiO2 leads to high-loading and atomically dispersed metal catalysts. J. Catal. 2017, 353, 315–324.

    Article  CAS  Google Scholar 

  42. Kunwar, D.; Zhou, S. L.; DeLaRiva, A.; Peterson, E. J.; Xiong, H. F.; Pereira-Hernández, X. I.; Purdy, S. C.; ter Veen, R.; Brongersma, H. H.; Miller, J. T. et al. Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support. ACS Catal. 2019, 9, 3978–3990.

    Article  CAS  Google Scholar 

  43. Cao, J. Y.; Du, C.; Wang, S. C.; Mercier, P.; Zhang, X. G.; Yang, H.; Akins, D. L. The production of a high loading of almost monodispersed Pt nanoparticles on single-walled carbon nanotubes for methanol oxidation. Electrochem. Commun. 2007, 9, 735–740.

    Article  CAS  Google Scholar 

  44. Wang, Y. M.; Zou, L. L.; Huang, Q. H.; Zou, Z. Q.; Yang, H. 3D carbon aerogel-supported PtNi intermetallic nanoparticles with high metal loading as a durable oxygen reduction electrocatalyst. Int. J. Hydrogen Energy. 2017, 42, 26695–26703.

    Article  CAS  Google Scholar 

  45. Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

    Article  CAS  Google Scholar 

  46. Xu, J.; Zhang, L. W.; Shi, R.; Zhu, Y. F. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A 2013, 1, 14766–14772.

    Article  CAS  Google Scholar 

  47. Wu, H. H.; Li, H. B.; Zhao, X. F.; Liu, Q. F.; Wang, J.; Xiao, J. P.; Xie, S. H.; Si, R.; Yang, F.; Miao, S. et al. Highly doped and exposed Cu(I)-N active sites within graphene towards efficient oxygen reduction for zinc-air batteries. Energy Environ. Sci. 2016, 9, 3736–3745.

    Article  CAS  Google Scholar 

  48. Khabashesku, V. N.; Zimmerman, J. L.; Margrave, J. L. Powder synthesis and characterization of amorphous carbon nitride. Chem. Mater. 2000, 12, 3264–3270.

    Article  CAS  Google Scholar 

  49. Bertoncello, R.; Bettinelli, M.; Casarin, M.; Gulino, A.; Tondello, E.; Vittadini, A. Hexakis(acetato)oxotetrazinc, a well-tailored molecular model of zinc oxide. An experimental and theoretical investigation of the electronic structure of Zn4O(acetate)6 and ZnO by means of UV and X-ray photoelectron spectroscopies and first principle local density molecular cluster calculations. Inorg. Chem. 1992, 31, 1558–1565.

    Article  CAS  Google Scholar 

  50. Zhou, J. G.; Zhou, X. T.; Li, R. Y.; Sun, X. L.; Ding, Z. F.; Cutler, J.; Sham, T. K. Electronic structure and luminescence center of blue luminescent carbon nanocrystals. Chem. Phys. Lett. 2009, 474, 320–324.

    Article  CAS  Google Scholar 

  51. Liang, Y. Y.; Wang, H. L.; Zhou, J. G.; Li, Y. G.; Wang, J.; Regier, T.; Dai, H. J. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Soc. Chem. 2012, 134, 3517–3523.

    Article  CAS  Google Scholar 

  52. Lv, W. M.; Yang, L.; Fan, B. B.; Zhao, Y.; Chen, Y. F.; Lu, N. Y.; Li, R. F. Silylated MgAl LDHs intercalated with MnO2 nanowires: Highly efficient catalysts for the solvent-free aerobic oxidation of ethylbenzene. Chem. Eng. J. 2015, 263, 309–316.

    Article  CAS  Google Scholar 

  53. Sun, W. Z.; Zhang, S. L.; Qiu, J. F.; Xu, Z. M.; Zhao, L. Modeling the liquid phase autoxidation of cyclohexylbenzene to hydroperoxide. Chem. Eng. Res. Des. 2017, 124, 202–210.

    Article  CAS  Google Scholar 

  54. Clementi, E.; Raimondi, D. L.; Reinhardt, W. P. Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons. J. Chem. Phys. 1967, 47, 1300–1307.

    Article  CAS  Google Scholar 

  55. Devika, S.; Palanichamy, M.; Murugesan, V. Selective oxidation of ethylbenzene over CeAlPO-5. Appl. Catal. A Gener. 2011, 407, 76–84.

    Article  CAS  Google Scholar 

  56. Ricca, C.; Labat, F.; Russo, N.; Adamo, C.; Sicilia, E. Oxidation of ethylbenzene to acetophenone with N-Doped graphene: Insight from theory. J. Phys. Chem. C 2014, 118, 12275–12284.

    Article  CAS  Google Scholar 

  57. Gao, Y. J.; Hu, G.; Zhong, J.; Shi, Z. J.; Zhu, Y. S.; Su, D. S.; Wang, J. G.; Bao, X. H.; Ma, D. Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation. Angew. Chem., Int. Ed. 2013, 52, 2109–2113.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2018YFA0702003 and 2016YFA0202801), the National Natural Science Foundation of China (Nos. 21890383, 21671117, 21871159, and 21901135), Science and Technology Key Project of Guangdong Province of China (No. 2020B010188002), Beijing Municipal Science & Technology Commission (No. Z191100007219003) and China Postdoctoral Science Foundation (No. 2018M640114). We thank the BL11B station in Shanghai Synchrotron Radiation Facility (SSRF) for XAFS measurement. We appreciate the BL12B station of National Synchrotron Radiation Laboratory (NRSL) for NEXAFS measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingsheng Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Sun, W., Han, Y. et al. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 14, 2418–2423 (2021). https://doi.org/10.1007/s12274-020-3244-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3244-4

Keywords

Navigation