Skip to main content
Log in

Integrating the second near-infrared fluorescence imaging with clinical techniques for multimodal cancer imaging by neodymium-doped gadolinium tungstate nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Second near-infrared (NIR-II) fluorescence imaging is a recently emerged technique and is highly useful for accurate diagnosis of cancer. Although a diverse array of fluorescent nanomaterials have been developed to enable NIR-II fluorescence in various situations, they normally fail to unify the clinical techniques, such as computed tomography (CT) and magnetic resonance imaging (MRI). Therefore, exploiting multimodal agents to integrate the newly emerged NIR-II fluorescence and traditional clinical techniques would be of key significance. Here, we report a rational fabrication of neodymium (Nd)-doped gadolinium tungstate nanoparticles (NPs) that are subsequentially decorated with a hydrophilic layer and demonstrate that they can achieve the harmonious integration of NIR-II fluorescence imaging, CT, and MRI. The NIR-II fluorescence emission was activated by an incident light with discrete wavelength ranging from 250 to 810 nm. NIR-II fluorescence-CT-MRI associated trimodal imaging was subsequently demonstrated for breast cancer by an 808 nm laser, along with the estimation of NIR-II fluorescence imaging for cervical cancer. The integration of newly emerged and traditional clinical imaging techniques highlights the huge potential of rare-earth-doped NPs for multimodal imaging of different types of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luciani, S.; Cabanes, A.; Prieto-Lara, E.; Gawryszewski, V. Cervical and female breast cancers in the Americas: Current situation and opportunities for action. Bull. World Health Organ. 2013, 91, 640–649.

    Google Scholar 

  2. Ginsburg, O.; Bray, F.; Coleman, M. P.; Vanderpuye, V.; Eniu, A.; Kotha, S. R.; Sarker, M.; Huong, T. T.; Allemani, C.; Dvaladze, A. et al. The global burden of women’s cancers: A grand challenge in global health. Lancet 2017, 389, 847–860.

    Google Scholar 

  3. Torre, L. A.; Islami, F.; Siegel, R. L.; Ward, E. M.; Jemal, A. Global cancer in women: Burden and trends. Cancer Epidemiol. Biomarkers Prev. 2017, 26, 444–457.

    Google Scholar 

  4. Tsu, V. D.; Jeronimo, J.; Anderson, B. O. Why the time is right to tackle breast and cervical cancer in low-resource settings. Bull. World Health Organ. 2013, 91, 683–690.

    Google Scholar 

  5. Liu, M. H.; Guo, H. B.; Liu, H. B.; Zhang, Z. Y.; Chi, C. W.; Hui, H.; Dong, D.; Hu, Z. H.; Tian, J. In vivo pentamodal tomographic imaging for small animals. Biomed. Opt. Express 2017, 8, 1356–1371.

    CAS  Google Scholar 

  6. Goel, S.; Ferreira, C. A.; Chen, F.; Ellison, P. A.; Siamof, C. M.; Barnhart, T. E.; Cai, W. B. Activatable hybrid nanotheranostics for tetramodal imaging and synergistic photothermal/photodynamic therapy. Adv. Mater. 2018, 30, 1704367.

    Google Scholar 

  7. Rieffel, J.; Chen, F.; Kim, J.; Chen, G. Y.; Shao, W.; Shao, S.; Chitgupi, U.; Hernandez, R.; Graves, S. A.; Nickles, R. J. et al. Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles. Adv. Mater. 2015, 27, 1785–1790.

    CAS  Google Scholar 

  8. Miranda, D.; Carter, K.; Luo, D. D.; Shao, S.; Geng, J. M.; Li, C. N.; Chitgupi, U.; Turowski, S. G.; Li, N. S.; Atilla-Gokcumen, E. A. et al. Multifunctional liposomes for image-guided intratumoral chemo-phototherapy. Adv. Healthc. Mater. 2017, 6, 1700253.

    Google Scholar 

  9. Grodzinski, P.; Kircher, M.; Goldberg, M.; Gabizon, A. Integrating nanotechnology into cancer care. ACS Nano 2019, 13, 7370–7376.

    CAS  Google Scholar 

  10. Lusic, H.; Grinstaff, M. W. X-ray-computed tomography contrast agents. Chem. Rev. 2013, 113, 1641–1666.

    CAS  Google Scholar 

  11. Lee, N.; Yoo, D.; Ling, D. S.; Cho, M. H.; Hyeon, T.; Cheon, J. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev. 2015, 115, 10637–10689.

    CAS  Google Scholar 

  12. Yankeelov, T. E.; Mankoff, D. A.; Schwartz, L. H.; Lieberman, F. S.; Buatti, J. M.; Mountz, J. M.; Erickson, B. J.; Fennessy, F. M. M.; Huang, W.; Kalpathy-Cramer, J. et al. Quantitative imaging in cancer clinical trials. Clin. Cancer Res. 2016, 22, 284–290.

    Google Scholar 

  13. O’Connor, J. P. B.; Aboagye, E. O.; Adams, J. E.; Aerts, H. J. W. L.; Barrington, S. F.; Beer, A. J.; Boellaard, R.; Bohndiek, S. E.; Brady, M.; Brown, G. et al. Imaging biomarker roadmap for cancer studies. Nat. Rev. Clin. Oncol. 2017, 14, 169–186.

    Google Scholar 

  14. Yu, X. J.; Li, A.; Zhao, C. Z.; Yang, K.; Chen, X. Y.; Li, W. W. Ultrasmall semimetal nanoparticles of bismuth for dual-modal computed tomography/photoacoustic imaging and synergistic thermoradiotherapy. ACS Nano 2017, 11, 3990–4001.

    CAS  Google Scholar 

  15. Frangioni, J. V. New technologies for human cancer imaging. J. Clin. Oncol. 2018, 26, 4012–4021.

    Google Scholar 

  16. Smith, A. M.; Mancini, M. C.; Nie, S. M. Second window for in vivo imaging. Nat. Nanotechnol. 2019, 4, 710–711.

    Google Scholar 

  17. Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J.; Chen, Z.; Daranciang, D.; Dai, H. J. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 2009, 4, 773–780.

    CAS  Google Scholar 

  18. Sun, C. X.; Li, B. H.; Zhao, M. Y.; Wang, S. F.; Lei, Z. H.; Lu, L. F.; Zhang, H. X.; Feng, L. S.; Dou, C. R.; Yin, D. R. et al. J-aggregates of cyanine dye for NIR-II in vivo dynamic vascular imaging beyond 1500 nm. J. Am. Chem. Soc. 2019, 141, 19221–19225.

    CAS  Google Scholar 

  19. Kang, Y. W.; Yu, X. J.; Fan, X. Y.; Aodenggerile, Zhao, S. Z.; Tu, C. L.; Yan, Z. Q.; Wang, R. B.; Li, W. W.; Qiu, H. B. Tetramodal imaging and synergistic cancer radio-chemotherapy enabled by multiple component-encapsulated zeolitic imidazolate frameworks. ACS Nano 2020, 14, 4336–4351.

    CAS  Google Scholar 

  20. Jiang, Y. Y.; Upputuri, P. K.; Xie, C.; Zeng, Z. L.; Sharma, A.; Zhen, X.; Li, J. C.; Huang, J. G.; Pramanik, M.; Pu, K. Y. Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging. Adv. Mater. 2019, 31, 1808166.

    Google Scholar 

  21. He, S. Q.; Song, J.; Qu, J. L.; Cheng, Z. Crucial breakthrough of second near-infrared biological window fluorophores: Design and synthesis toward multimodal imaging and theranostics. Chem. Soc. Rev. 2018, 47, 4258–4278.

    CAS  Google Scholar 

  22. Kantamneni, H.; Zevon, M.; Donzanti, M. J.; Zhao, X. Y.; Sheng, Y.; Barkund, S. R.; McCabe, L. H.; Banach-Petrosky, W.; Higgins, L. M.; Ganesan, S. et al. Surveillance nanotechnology for multi-organ cancer metastases. Nat. Biomed. Eng. 2017, 1, 993–1003.

    CAS  Google Scholar 

  23. Gong, H.; Peng, R.; Liu, Z. Carbon nanotubes for biomedical imaging: The recent advances. Adv. Drug Deliv. Rev. 2013, 65, 1951–1963.

    CAS  Google Scholar 

  24. Hong, G. S.; Diao, S.; Chang, J. L.; Antaris, A. L.; Chen, C. X.; Zhang, B.; Zhao, S.; Atochin, D. N.; Huang, P. L.; Andreasson, K. I. et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics 2014, 8, 723–730.

    CAS  Google Scholar 

  25. Hong, G. S.; Robinson, J. T.; Zhang, Y. J.; Diao, S.; Antaris, A. L.; Wang, Q. B.; Dai, H. J. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem., Int. Ed. 2012, 51, 9818–9821.

    CAS  Google Scholar 

  26. Zhang, M. X.; Yue, J. Y.; Cui, R.; Ma, Z. R.; Wan, H.; Wang, F. F.; Zhu, S. J.; Zhou, Y.; Kuang, Y.; Zhong, Y. T. et al. Bright quantum dots emitting at ∼ 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proc. Natl. Acad. Sci. USA 2018, 115, 6590–6595.

    CAS  Google Scholar 

  27. Yang, T.; Tang, Y. A.; Liu, L.; Lv, X. Y.; Wang, Q. L.; Ke, H. T.; Deng, Y. B.; Yang, H.; Yang, X. L.; Liu, G. et al. Size-dependent Ag2S nanodots for second near-infrared fluorescence/photoacoustics imaging and simultaneous photothermal therapy. ACS Nano 2017, 11, 1848–1857.

    CAS  Google Scholar 

  28. Zhu, S. J.; Tian, R.; Antaris, A. L.; Chen, X. Y.; Dai, H. J. Near-infrared-II molecular dyes for cancer imaging and surgery. Adv. Mater. 2019, 31, 1900321.

    Google Scholar 

  29. Li, B. H.; Lu, L. F.; Zhao, M. Y.; Lei, Z. H.; Zhang, F. An efficient 1064 nm NIR-II excitation fluorescent molecular dye for deep-tissue high-resolution dynamic bioimaging. Angew. Chem., Int. Ed. 2018, 57, 7483–7487.

    CAS  Google Scholar 

  30. Antaris, A. L.; Chen, H.; Cheng, K.; Sun, Y.; Hong, G. S.; Qu, C. R.; Diao, S.; Deng, Z. X.; Hu, X. M.; Zhang, B. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 2016, 15, 235–242.

    CAS  Google Scholar 

  31. Chen, C.; Ni, X.; Jia, S.; Liang, Y.; Wu, X.; Kong, D.; Ding, D. Massively evoking immunogenic cell death by focused mitochondrial oxidative stress using an AIE luminogen with a twisted molecular structure. Adv. Mater. 2019, 31, 1904914.

    CAS  Google Scholar 

  32. Chen, C.; Ou, H.; Liu, R.; Ding, D. Regulating the photophysical property of organic/polymer optical agents for promoted cancer phototheranostics. Adv. Mater. 2020, 32, 1806331.

    CAS  Google Scholar 

  33. Ni, X.; Zhang, X.; Duan, X.; Zheng, H. L.; Xue, X. S.; Ding, D. Near-infrared afterglow luminescent aggregation-Induced emission dots with ultrahigh tumor-to-liver signal ratio for promoted image-guided cancer surgery. Nano Lett. 2019, 19, 318–330.

    CAS  Google Scholar 

  34. Guo, B.; Chen, J. Q.; Chen, N. B.; Middha, E.; Xu, S. D.; Pan, Y. T.; Wu, M.; Li, K.; Liu, C. B.; Liu, B. High-resolution 3D NIR-II photoacoustic imaging of cerebral and tumor vasculatures using conjugated polymer nanoparticles as contrast agent. Adv. Mater. 2019, 31, 1808355.

    Google Scholar 

  35. Hong, G. S.; Zou, Y. P.; Antaris, A. L.; Diao, S.; Wu, D.; Cheng, K.; Zhang, X. D.; Chen, C. X.; Liu, B.; He, Y. H. et al. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat. Commun. 2014, 5, 4206.

    CAS  Google Scholar 

  36. Zhang, H. X.; Fan, Y.; Pei, P.; Sun, C. X.; Lu, L. F.; Zhang, F. Tm3+-sensitized NIR-II fluorescent nanocrystals for in vivo information storage and decoding. Angew. Chem., Int. Ed. 2019, 58, 10153–10157.

    CAS  Google Scholar 

  37. Wang, S. F.; Liu, L.; Fan, Y.; El-Toni, A. M.; Alhoshan, M. S.; Li, D. D.; Zhang, F. In vivo high-resolution ratiometric fluorescence imaging of inflammation using NIR-II nanoprobes with 1550 nm emission. Nano Lett. 2019, 19, 2418–2427.

    CAS  Google Scholar 

  38. Naczynski, D. J.; Tan, M. C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C. M.; Riman, R. E.; Moghe, P. V. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat. Commun. 2013, 4, 2199.

    CAS  Google Scholar 

  39. Chen, G. Y.; Ohulchanskyy, T. Y.; Liu, S.; Law, W. C.; Wu, F.; Swihart, M. T.; Ågren, H.; Prasad, P. N. Core/shell NaGdF4: Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications. ACS Nano 2012, 6, 2969–2977.

    CAS  Google Scholar 

  40. Lammers, T.; Ferrari, M. The success of nanomedicine. Nano Today 2020, 31, 100853.

    CAS  Google Scholar 

  41. D’Mello, S. R.; Cruz, C. N.; Chen, M. L.; Kapoor, M.; Lee, S. L.; Tyner, K. M. The evolving landscape of drug products containing nanomaterials in the United States. Nat. Nanotechnol. 2017, 12, 523–529.

    Google Scholar 

  42. Bobo, D.; Robinson, K. J.; Islam, J.; Thurecht, K. J.; Corrie, S. R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016, 33, 2373–2387.

    CAS  Google Scholar 

  43. Bonvalot, S.; Rutkowski, P. L.; Thariat, J.; Carrère, S.; Ducassou, A.; Sunyach, M. P.; Agoston, P.; Hong, A.; Mervoyer, A.; Rastrelli, M. et al. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act.In.Sarc): A multicentre, phase 2–3, randomised, controlled trial. Lancet Oncol. 2019, 20, 1148–1159.

    CAS  Google Scholar 

  44. Wang, R.; Li, X. M.; Zhou, L.; Zhang, F. Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging. Angew. Chem., Int. Ed. 2014, 53, 12086–12090.

    CAS  Google Scholar 

  45. Naczynski, D. J.; Sun, C.; Türkcan, S.; Jenkins, C.; Koh, A. L.; Ikeda, D.; Pratx, G.; Xing, L. X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes. Nano Lett. 2015, 15, 96–102.

    CAS  Google Scholar 

  46. Dang, X. N.; Gu, L.; Qi, J. F.; Correa, S.; Zhang, G. R.; Belcher, A. M.; Hammond, P. T. Layer-by-layer assembled fluorescent probes in the second near-infrared window for systemic delivery and detection of ovarian cancer. Proc. Natl. Acad. Sci. USA 2016, 113, 5179–5184.

    CAS  Google Scholar 

  47. Zhong, Y. T.; Ma, Z. R.; Zhu, S. J.; Yue, J. Y.; Zhang, M. X.; Antaris, A. L.; Yuan, J.; Cui, R.; Wan, H.; Zhou, Y. et al. Boosting the downshifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm. Nat. Commun. 2017, 8, 737.

    Google Scholar 

  48. Ding, F.; Zhan, Y. B.; Lu, X. J.; Sun, Y. Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging. Chem. Sci. 2018, 9, 4370–4380.

    CAS  Google Scholar 

  49. Yu, X. J.; Liu, X. Y.; Wu, W. J.; Yang, K.; Mao, R. H.; Ahmad, F.; Chen, X. Y.; Li, W. W. CT/MRI-guided synergistic radiotherapy and X-ray inducible photodynamic therapy using Tb-doped Gd-W-nanoscintillators. Angew. Chem., Int. Ed. 2019, 58, 2017–2022.

    CAS  Google Scholar 

  50. Guo T.; Lin, Y.; Zhang, W. J.; Hong, J. S.; Lin, R. H.; Wu, X. P.; Li, J.; Lu, C. H.; Yang, H. H. High-efficiency X-ray luminescence in Eu3+-activated tungstate nanoprobes for optical imaging through energy transfer sensitization. Nanoscale 2018, 10, 1607–1612.

    CAS  Google Scholar 

  51. Hudson, D. E.; Hudson, D. O.; Wininger, J. M.; Richardson, B. D. Penetration of laser light at 808 and 980 nm in bovine tissue samples. Photomed. Laser Surg. 2013, 31, 163–168.

    Google Scholar 

  52. Lyu, Y.; Xie, C.; Chechetka, S. A.; Miyako, E.; Pu, K. Y. Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons. J. Am. Chem. Soc. 2016, 138, 9049–9052.

    CAS  Google Scholar 

  53. Zhong, Y. T.; Tian, G.; Gu, Z. J.; Yang, Y. J.; Gu, L.; Zhao, Y. L.; Ma, Y.; Yao, J. N. Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles. Adv. Mater. 2014, 26, 2831–2837.

    CAS  Google Scholar 

  54. Kotagiri, N.; Sudlow, G. P.; Akers, W. J.; Achilefu, S. Breaking the depth dependency of phototherapy with Cerenkov radiation and low-radiance-responsive nanophotosensitizers. Nat. Nanotechnol. 2015, 10, 370–379.

    CAS  Google Scholar 

  55. Chen, Q.; Wu, J.; Ou, X.; Huang, B.; Almutlaq, J.; Zhumekenov, A.; Guan, X.; Han, S.; Liang, L.; Yi, Z. et. al. All-inorganic perovskite nanocrystal scintillators. Nature 2018, 561, 88–93.

    CAS  Google Scholar 

  56. Nashed, R.; Alamgir, F. M.; Jang, S. S.; Ismail, Y.; El-Sayed, M. A.; Allam, N. K. Bandgap bowing in Ta-W-O system for efficient solar energy conversion: Insights from density functional theory and X-ray diffraction. Appl. Phys. Lett. 2013, 103, 133905.

    Google Scholar 

  57. Ye, S.; Song, E. H.; Zhang, Q. Y. Transition metal-involved photon upconversion. Adv. Sci. 2016, 3, 1600302.

    Google Scholar 

  58. Pernodet, N.; Fang, X. H.; Sun, Y.; Bakhtina, A.; Ramakrishnan, A.; Sokolov, J.; Ulman, A.; Rafailovich, M. Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2006, 2, 766–773.

    CAS  Google Scholar 

  59. Li, M. H.; Sun, X. T.; Zhang, N.; Wang, W.; Yang, Y.; Jia, H. Z.; Liu, W. G. NIR-activated polydopamine-coated carrier-free “nanobomb” for in situ on-demand drug release. Adv. Sci. 2018, 5, 1800155.

    Google Scholar 

  60. Zhou, J. J.; Xiong, Q. R.; Ma, J. L.; Ren, J. H.; Messersmith, P. B.; Chen, P.; Duan, H. W. Polydopamine-enabled approach toward tailored plasmonic nanogapped nanoparticles: From nanogap engineering to multifunctionality. ACS Nano 2016, 10, 11066–11075.

    CAS  Google Scholar 

  61. Choi, C. K. K.; Chiu, Y. T. E.; Zhuo, X. L.; Liu, Y.; Pak, C. Y.; Liu, X. D.; Tse, Y. L. S.; Wang, J. F.; Choi, C. H. J. Dopamine-mediated assembly of citrate-capped plasmonic nanoparticles into stable core-shell nanoworms for intracellular applications. ACS Nano 2019, 13, 5864–5884.

    CAS  Google Scholar 

  62. Swierczewska, M.; Cho, K. Y.; Mertz, E. L.; Huang, X. L.; Zhang, F.; Zhu, L.; Yoon, H. Y.; Park, J. H.; Bhirde, A.; Lee, S. et al. A facile, one-step nanocarbon functionalization for biomedical applications. Nano Lett. 2012, 12, 3613–3620.

    CAS  Google Scholar 

  63. Zhou, J.; Li, M. H.; Hou, Y. H.; Luo, Z.; Chen, Q. F.; Cao, H. X.; Huo, R. L.; Xue, C. C.; Sutrisno, L.; Hao, L. et al. Engineering of a nanosized biocatalyst for combined tumor starvation and low-temperature photothermal therapy. ACS Nano 2018, 12, 2858–2872.

    CAS  Google Scholar 

  64. Kim, S.; Jang, Y.; Jang, L. K.; Sunwoo, S. H.; Kim, T. I.; Cho, S. W.; Lee, J. Y. Electrochemical deposition of dopamine-hyaluronic acid conjugates for anti-biofouling bioelectrodes. J. Mater. Chem. B 2017, 5, 4507–4513.

    CAS  Google Scholar 

  65. Nyk, M.; Kumar, R.; Ohulchanskyy, T. Y.; Bergey, E. J.; Prasad, P. N. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett. 2008, 8, 3834–3838.

    CAS  Google Scholar 

  66. Rocha, U.; Kumar, K. U.; Jacinto, C.; Villa, I.; Sanz-Rodríguez, F.; del Carmen Iglesias de la Cruz M.; Juarranz, A.; Carrasco, E.; van Veggel, F. C. J. M.; Bovero, E.; Solé, J. G. et al. Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window. Small 2014, 10, 1141–1154.

    CAS  Google Scholar 

  67. Heffern, M. C.; Matosziuk, L. M.; Meade, T. J. Lanthanide probes for bioresponsive imaging. Chem. Rev. 2014, 114, 4496–4539.

    CAS  Google Scholar 

  68. Kohane, D. S.; Langer, R. Biocompatibility and drug delivery systems. Chem. Sci. 2010, 1, 441–446.

    CAS  Google Scholar 

  69. Rieffel, J.; Chitgupi, U.; Lovell, J. F. Recent advances in higherorder, multimodal, biomedical imaging agents. Small 2015, 11, 4445–4461.

    CAS  Google Scholar 

  70. Hyafil, F.; Cornily, J. C.; Feig, J. E.; Gordon, R.; Vucic, E.; Amirbekian, V.; Fisher, E. A.; Fuster, V.; Feldman, L. J.; Fayad, Z. A. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat. Med. 2007, 13, 636–641.

    CAS  Google Scholar 

  71. Cho, N. H.; Cheong, T. C.; Min, J. H.; Wu, J. H.; Lee, S. J.; Kim, D.; Yang, J. S.; Kim, S.; Kim, Y. K.; Seong, S. Y. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat. Nanotechnol. 2011, 6, 675–682.

    CAS  Google Scholar 

  72. Wang, X.; Guo, Z.; Zhang, C. Y.; Zhu, S.; Li, L. L.; Gu, Z. J.; Zhao, Y. L. Ultrasmall BiOI quantum dots with efficient renal clearance for enhanced radiotherapy of cancer. Adv. Sci. 2020, 7, 1902561.

    CAS  Google Scholar 

  73. Chen, X. F.; Song, J. B.; Chen, X. Y.; Yang, H. H. X-ray-activated nanosystems for theranostic applications. Chem. Soc. Rev. 2019, 48, 3073–3101.

    CAS  Google Scholar 

  74. Ni, D. L.; Zhang, J. W.; Wang, J.; Hu, P.; Jin, Y. Y.; Tang, Z. M.; Yao, Z. W.; Bu, W. B.; Shi, J. L. Oxygen vacancy enables markedly enhanced magnetic resonance imaging-guided photothermal therapy of a Gd3+-doped contrast agent. ACS Nano 2017, 11, 4256–4264.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 81901885), the Science and Technology Commission of Shanghai Municipality (Nos. 17JC1400700, 18JC1415500, and 1952710400), the Shanghai Education Development Foundation and the Shanghai Municipal Education Commission (No. 16SG54), and the Cultivating Fund of Frontiers Science Center for Transformative Molecules (No. 2019PT02). The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiqiang Yan, Wanwan Li or Huibin Qiu.

Electronic Supplementary Material

12274_2020_3136_MOESM1_ESM.pdf

Integrating the second near-infrared fluorescence imaging with clinical techniques for multimodal cancer imaging by neodymium-doped gadolinium tungstate nanoparticles

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Aodenggerile, Jiang, Z. et al. Integrating the second near-infrared fluorescence imaging with clinical techniques for multimodal cancer imaging by neodymium-doped gadolinium tungstate nanoparticles. Nano Res. 14, 2160–2170 (2021). https://doi.org/10.1007/s12274-020-3136-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3136-7

Keywords

Navigation