Skip to main content
Log in

Layered SnS sodium ion battery anodes synthesized near room temperature

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this report, we demonstrate a simple chemical bath deposition approach for the synthesis of layered SnS nanosheets (typically 6 nm or ∼10 layers thick) at very low temperature (40 °C). We successfully synthesized SnS/C hybrid electrodes using a solution-based carbon precursor coating with subsequent carbonization strategy. Our data showed that the ultrathin carbon shell was critical to the cycling stability of the SnS electrodes. As a result, the as-prepared binder-free SnS/C electrodes showed excellent performance as sodium ion battery anodes. Specifically, the SnS/C anodes delivered a reversible capacity as high as 792 mAh·g−1 after 100 cycles at a current density of 100 mA·g−1. They also had superior rate capability (431 mAh·g−1 at 3,000 mA·g−1) and stable long-term cycling performance under a high current density (345 mAh·g−1 after 500 cycles at 3 A·g−1). Our approach opens up a new route to synthesize SnS-based hybrid materials at low temperatures for energy storage and other applications. Our process will be particularly useful for chalcogenide matrix materials that are sensitive to high temperatures during solution synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Q.; Wang, C. Y.; Zhang, M. C.; Jian, M. Q.; Zhang, Y. Y. Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers. Nano Lett. 2016, 16, 6695–6700.

    Article  Google Scholar 

  2. Chen, Y. N.; Luo, W.; Carter, M.; Zhou, L. H.; Dai, J. Q.; Fu, K.; Lacey, S.; Li, T.; Wan, J. Y.; Han, X. G. et al. Organic electrode for non-aqueous potassium-ion batteries. Nano Energy 2015, 18, 205–211.

    Article  Google Scholar 

  3. Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.

    Article  Google Scholar 

  4. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

    Article  Google Scholar 

  5. Dutta, P. K.; Sen, U. K.; Mitra, S. Excellent electrochemical performance of tin monosulphide (SnS) as a sodium-ion battery anode. RSC Adv. 2014, 4, 43155–43159.

    Article  Google Scholar 

  6. Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energ Environ. Sci. 2013, 6, 2338–2360.

    Article  Google Scholar 

  7. Peng, L. L.; Zhu, Y.; Chen, D. H.; Ruoff, R. S.; Yu, G. H. Two-dimensional materials for beyond-lithium-ion batteries. Adv. Energy Mater. 2016, 6, 1600025.

    Article  Google Scholar 

  8. Li, H. S.; Zhu, Y.; Dong, S. Y.; Shen, L. F.; Chen, Z. J.; Zhang, X. G.; Yu, G. H. Self-assembled Nb2O5 nanosheets for high energy-high power sodium ion capacitors. Chem. Mater. 2016, 28, 5753–5760.

    Article  Google Scholar 

  9. Park, Y. U.; Seo, D. H.; Kwon, H. S.; Kim, B.; Kim, J.; Kim, H.; Kim, I.; Yoo, H. I.; Kang, K. A new high-energy cathode for a Na-ion battery with ultrahigh stability. J. Am. Chem. Soc. 2013, 135, 13870–13878.

    Article  Google Scholar 

  10. Li, H. S.; Peng, L. L.; Zhu, Y.; Chen, D. H.; Zhang, X. G.; Yu, G. H. An advanced high-energy sodium ion full battery based on nanostructured Na2Ti3O7/VOPO4 layered materials. Energy Environ. Sci. 2016, 9, 3399–3405.

    Article  Google Scholar 

  11. Li, Z.; Ding, J.; Mitlin, D. Tin and tin compounds for sodium ion battery anodes: Phase transformations and performance. Acc. Chem. Res. 2015, 48, 1657–1665.

    Article  Google Scholar 

  12. Wang, J. W.; Liu, X. H.; Mao, S. X.; Huang, J. Y. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 2012, 12, 5897–5902.

    Article  Google Scholar 

  13. Zheng, Y.; Zhou, T. F.; Zhang, C. F.; Mao, J. F.; Liu, H. K.; Guo, Z. P. Boosted charge transfer in SnS/SnO2 heterostructures: Toward high rate capability for sodium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 3408–3413.

    Article  Google Scholar 

  14. Su, D. W.; Ahn, H. J.; Wang, G. X. SnO2@ graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem. Commun. 2013, 49, 3131–3133.

    Article  Google Scholar 

  15. Hildenbrand, D. L.; Murad, E. Dissociation energy of NaO(g) and the heat of atomization of Na2O(g). J. Chem. Phys. 1970, 53, 3403–3408.

    Article  Google Scholar 

  16. Wu, L.; Lu, H. Y.; Xiao, L. F.; Qian, J. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. A tin(II) sulfide-carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries. J. Mater. Chem. A 2014, 2, 16424–16428.

    Article  Google Scholar 

  17. Zhu, C. B.; Kopold, P.; Li, W. H.; van Aken, P. A.; Maier, J.; Yu, Y. A general strategy to fabricate carbon-coated 3D porous interconnected metal sulfides: Case study of SnS/C nanocomposite for high-performance lithium and sodium ion batteries. Adv. Sci. 2015, 2, 1500200.

    Article  Google Scholar 

  18. Burton, L. A.; Colombara, D.; Abellon, R. D.; Grozema, F. C.; Peter, L. M.; Savenije, T. J.; Dennler, G.; Walsh, A. Synthesis, characterization, and electronic structure of single-crystal SnS, Sn2S3, and SnS2. Chem. Mater. 2013, 25, 4908–4916.

    Article  Google Scholar 

  19. Zhou, T. F.; Pang, W. K.; Zhang, C. F.; Yang, J. P.; Chen, Z. X.; Liu, H. K.; Guo, Z. P. Enhanced sodium-ion battery performance by structural phase transition from twodimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 2014, 8, 8323–8333.

    Article  Google Scholar 

  20. Im, H. S.; Cho, Y. J.; Lim, Y. R.; Jung, C. S.; Jang, D. M.; Park, J.; Shojaei, F.; Kang, H. S. Phase evolution of tin nanocrystals in lithium ion batteries. ACS Nano 2013, 7, 11103–11111.

    Article  Google Scholar 

  21. Xin, S.; Guo, Y. G.; Wan, L. J. Nanocarbon networks for advanced rechargeable lithium batteries. Acc. Chem. Res. 2012, 45, 1759–1769.

    Article  Google Scholar 

  22. Xie, X. Q.; Su, D. W.; Chen, S. Q.; Zhang, J. Q.; Dou, S. X.; Wang, G. X. SnS2 nanoplatelet@ graphene nanocomposites as high-capacity anode materials for sodium-ion batteries. Chem.–Asian J. 2014, 9, 1611–1617.

    Article  Google Scholar 

  23. Choi, S. H.; Kang, Y. C. Aerosol-assisted rapid synthesis of SnS-C composite microspheres as anode material for Na-ion batteries. Nano Res. 2015, 8, 1595–1603.

    Article  Google Scholar 

  24. Liu, Y. C.; Kang, H. Y.; Jiao, L. F.; Chen, C. C.; Cao, K. Z.; Wang, Y. J.; Yuan, H. T. Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Nanoscale 2015, 7, 1325–1332.

    Article  Google Scholar 

  25. Liu, S.; Yin, X. M.; Hao, Q. Y.; Zhang, M.; Li, L. M.; Chen, L. B.; Li, Q. H.; Wang, Y. G.; Wang, T. H. Chemical bath deposition of SnS2 nanowall arrays with improved electrochemical performance for lithium ion battery. Mater. Lett. 2010, 64, 2350–2353.

    Article  Google Scholar 

  26. Bang, G. S.; Nam, K. W.; Kim, J. Y.; Shin, J.; Choi, J. W.; Choi, S. Y. Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets. ACS Appl. Mater. Interfaces 2014, 6, 7084–7089.

    Article  Google Scholar 

  27. Chen, L.; Zhou, G. M.; Liu, Z. B.; Ma, X. M.; Chen, J.; Zhang, Z. Y.; Ma, X. L.; Li, F.; Cheng, H. M.; Ren, W. C. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv. Mater. 2016, 28, 510–517.

    Article  Google Scholar 

  28. Wang, Q.; Pan, J.; Li, M.; Luo, Y. Y.; Wu, H.; Zhong, L.; Li, G. H. VO2 (B) nanosheets as a cathode material for Li-ion battery. J. Mater. Sci. Technol. 2015, 31, 630–633.

    Article  Google Scholar 

  29. Chao, D. L.; Liang, P.; Chen, Z.; Bai, L. Y.; Shen, H.; Liu, X. X.; Xia, X. H.; Zhao, Y. L.; Savilov, S. V.; Lin, J. Y. et al. Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 2016, 10, 10211–10219.

    Article  Google Scholar 

  30. Yang, W. L.; Zhang, L.; Hu, Y.; Zhong, Y. J.; Wu, H. B.; Lou, X. W. D. Microwave-assisted synthesis of porous Ag2S–Ag hybrid nanotubes with high visible-light photocatalytic activity. Angew. Chem., Int. Ed. 2012, 51, 11501–11504.

    Article  Google Scholar 

  31. Reddy, N. K. Growth-temperature dependent physical properties of SnS nanocrystalline thin films. ECS J. Solid State Sci. Technol. 2013, 2, P259–P263.

    Article  Google Scholar 

  32. Devika, M.; Reddy, N. K.; Prashantha, M.; Ramesh, K.; Reddy, S. V.; Hahn, Y. B.; Gunasekhar, K. R. The physical properties of SnS films grown on lattice-matched and amorphous substrates. Phys. Status Solidi (A) 2010, 207, 1864–1869.

    Article  Google Scholar 

  33. Alam, F.; Dutta, V. Tin sulfide (SnS) nanostructured films deposited by continuous spray pyrolysis (CoSP) technique for dye-sensitized solar cells applications. Appl. Surf. Sci. 2015, 358, 491–497.

    Article  Google Scholar 

  34. Yue, G. H.; Lin, Y. D.; Wen, X.; Wang, L. S.; Chen, Y. Z.; Peng, D. L. Synthesis and characterization of the SnS nanowires via chemical vapor deposition. Appl. Phys. A 2012, 106, 87–91.

    Article  Google Scholar 

  35. Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    Article  Google Scholar 

  36. Rangappa, D.; Murukanahally, K. D.; Tomai, T.; Unemoto, A.; Honma, I. Ultrathin nanosheets of Li2MSiO4 (M = Fe, Mn) as high-capacity Li-ion battery electrode. Nano Lett. 2012, 12, 1146–1151.

    Article  Google Scholar 

  37. Zhang, K.; Kim, H. J.; Shi, X. J.; Lee, J. T.; Choi, J. M.; Song, M. S.; Park, J. H. Graphene/acid coassisted synthesis of ultrathin MoS2 nanosheets with outstanding rate capability for a lithium battery anode. Inorg. Chem. 2013, 52, 9807–9812.

    Article  Google Scholar 

  38. Ryu, J.; Hong, D. K.; Choi, S.; Park, S. Synthesis of ultrathin Si nanosheets from natural clays for lithium-ion battery anodes. ACS Nano 2016, 10, 2843–2851.

    Article  Google Scholar 

  39. Li, H. Q.; Zhou, H. S. Enhancing the performances of Li-ion batteries by carbon-coating: Present and future. Chem. Commun. 2012, 48, 1201–1217.

    Article  Google Scholar 

  40. Zhang, Z. H.; Dua, R.; Zhang, L. B.; Zhu, H. B.; Zhang, H. N.; Wang, P. Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction. ACS Nano 2013, 7, 1709–1717.

    Article  Google Scholar 

  41. Li, Z. Q.; Guo, H. C.; Qian, H. S.; Hu, Y. Facile microemulsion route to coat carbonized glucose on upconversion nanocrystals as high luminescence and biocompatible cellimaging probes. Nanotechnology 2010, 21, 315105.

    Article  Google Scholar 

  42. Wang, J. J.; Luo, C.; Mao, J. F.; Zhu, Y. J.; Fan, X. L.; Gao, T.; Mignerey, A. C.; Wang, C. S. Solid-state fabrication of SnS2/C nanospheres for high-performance sodium ion battery anode. ACS Appl. Mater. Interfaces 2015, 7, 11476–11481.

    Article  Google Scholar 

  43. Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T. H.; Lee, J. Y. Layered SnS2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854–3859.

    Article  Google Scholar 

  44. Zhang, Y. D.; Zhu, P. Y.; Huang, L. L.; Xie, J.; Zhang, S. C.; Cao, G. S.; Zhao, X. B. Few-layered SnS2 on few-layered reduced graphene oxide as na-ion battery anode with ultralong cycle life and superior rate capability. Adv. Funct. Mater. 2015, 25, 481–489.

    Article  Google Scholar 

  45. Zhou, N. J.; Lin, H.; Lou, S. J.; Yu, X. G.; Guo, P. J.; Manley, E. F.; Loser, S.; Hartnett, P.; Huang, H.; Wasielewski, M. R. et al. Morphology-performance relationships in highefficiency all-polymer solar cells. Adv. Energy Mater. 2014, 4, 130078.

    Google Scholar 

Download references

Acknowledgements

Research reported in this publication has been supported by King Abdullah University of Science and Technology (KAUST). The authors wish to thank Mr. Zhenwei Wang for his help with the AFM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Husam N. Alshareef.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, C., Zhang, F., Liang, H. et al. Layered SnS sodium ion battery anodes synthesized near room temperature. Nano Res. 10, 4368–4377 (2017). https://doi.org/10.1007/s12274-017-1722-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1722-0

Keywords

Navigation