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ABSTRACT 
Pt3Ni nanoparticles have been obtained by shape-controlled synthesis and employed as oxygen reduction 
electrocatalysts for proton exchange membrane fuel cells (PEMFC). The effects of varying the synthesis 
parameters such as the types of the capping agent and the reducing agent, and the reaction time have been 
systematically studied. The as-prepared Pt3Ni nanoparticles were subjected to a butylamine-based surface 
treatment in order to prepare carbon-supported electrocatalysts. The Pt3Ni electrocatalysts show an area- 
specific activity of 0.76 mA/cm2(Pt) at 0.9 V in an alkaline electrolyte, which is 4.5 times that of a commercial 
Pt/C catalyst (0.17 mA/cm2 (Pt)). The mass activity reached 0.30 A/mg(Pt) at 0.9 V, which is about twice that of 
the commercial Pt/C catalyst. Our results also show that the area-specific activities of these carbon-supported 
Pt3Ni electrocatalysts depend strongly on the (111) surface fraction, which is consistent with the results of a 
study based on Pt3Ni extended single-crystal surfaces. 
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1. Introduction 

Fuel cells and batteries offer attractive alternatives to 
traditional energy conversion systems based on fossil 
fuels, in terms of efficiency, clean energy production 
and storage [1–6]. Using oxygen in air as an active 
ingredient allows these systems to produce energy 
cost effectively. However, one critical issue to be 
addressed is the lack of effective Pt-based electro- 
catalysts for the four-electron reduction of oxygen 
with a relatively low over-potential [7]. Although Pt 
has excellent overall performance for catalyzing the 
oxygen reduction reaction (ORR), its high cost and 
limited abundance call for the development of Pt 
alloy-based and non-Pt electrocatalysts. Great efforts 

have been devoted to exploring low-Pt ORR catalysts 
[2, 8–18], but practical examples of durable [19–21] 
and highly active [7] catalysts for use in strongly 
acidic solutions of Nafion-based proton exchange 
membrane fuel cells (PEMFCs) are still limited. In 
this regard, the use of alkaline fuel cells could have 
certain advantages, both in terms of electrocatalytic 
activity and in materials stability [22–24]. The decreased 
competitive adsorption by nonreactive anions in 
alkaline media means that most electrocatalytic steps 
should be much easier in alkaline solutions than in 
acidic environments [25]. As a result, ORR catalysts 
generally exhibit favorable properties in alkaline  
environments [22, 26, 27]. 

Recently, compared with conventional Pt/C catalysts, 
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several dozen-fold enhancements in area-specific 
ORR activity have been achieved by using a vacuum- 
generated Pt3Ni (111) single crystal surface [8]. This 
dramatic change in catalytic activity was attributed to 
both the electronic and surface atomic structures of 
composition-defined Pt alloys. Thus, control over the 
shape and composition of Pt alloy nanoparticles is 
essential for the development of active catalysts. We 
recently demonstrated in a communication that a 
four-fold improvement in ORR activity compared 
with a Pt/C catalyst was possible in an acidic 
environment by using truncated octahedral Pt3Ni 
electrocatalysts made using solution phase synthesis 
and a room temperature post-synthesis treatment 
[11]. In this paper, we present a study of the effects of 
several key factors affecting the shape control of 
Pt3Ni nanostructures. Carbon-supported Pt3Ni (Pt3Ni/C) 
catalysts have been prepared and their shape- 
dependent ORR properties in alkaline solution are  
described. 

2. Experimental 

2.1 Synthesis of Pt3Ni nanoparticles 

The general procedure for preparing the Pt3Ni electro- 
catalysts was similar to that reported elsewhere [11], 
though detailed studies of the various factors that 
affect the shape of the particles were carried out in 
this work.  

The synthesis mixture consisted of the following 
components: (1) borane–tert-butylamine complex 
(TBAB, Aldrich, 97%, 100 mg, 1.14 mmol); (2) 
1-adamantaneacetic acid (AAA, Aldrich, 234 mg, 
1.2 mmol), or adamantanecarboxylic acid (ACA, 
Aldrich, 99%, 216 mg, 1.2 mmol), or L-ascorbic acid 
(Aldrich, 1.2 mmol); (3) 1,2-hexadecanediol (HDD, 
Aldrich, 96%, 1.6 g, 6.2 mmol), or 1,2-dodecanediol 
(DDD, Aldrich, 90%, 1.25 g, 6.2 mmol), or 1,2-decanediol 
(DD, Aldrich, 98%, 1.08 g, 6.2 mmol); (4) octylamine 
(Aldrich, 1 mL), or dodecylamine (Aldrich, 8.28 mmol), 
or hexadecylamine (HDA, TCI, 2 g, 8.28 mmol), or 
octadecylamine (Aldrich, 8.28 mmol), or oleylamine 
(8.28 mmol); and (5) diphenyl ether (DPE, Aldrich, 
90%, 2 mL) which were added to a 25-mL three-neck 
round-bottle flask under argon flow. Platinum 

acetylacetonate (Pt(acac)2, Strem, 97%, 0.127 mmol) 
and nickel acetylacetonate (Ni(acac)2, Aldrich, 98%, 
0.0424 mmol) were dissolved in 2 mL of DPE at 60 °C, 
followed by rapid injection into the above flask. The 
reaction mixture was maintained at 190 °C in oil bath 
for a given time (30 min, 1 h, or 2 h). After the reaction, 
the product was mixed with 2 mL of chloroform in a 
16-mL plastic vial, followed by the addition of 8 mL 
of ethanol. The precipitate was separated from the 
mixture by centrifugation at 12 000 rpm for 5 min. 
The supernatant was decanted and the black product 
was dispersed in 2 mL of chloroform. This separation 
process was repeated three times. In addition to the 
above ratio of HDD/TBAB (5.44), a reaction was also 
carried out with a ratio of 1.36 by using 3.1 mmol HDD 
and 2.28 mmol TBAB, with HDA as capping agent in  
the presence of AAA. 

2.2 Preparation of carbon-supported catalysts 

The preparation of carbon-supported Pt3Ni catalysts 
essentially followed the procedure reported elsewhere, 
but with minor modifications [11]. Vulcan XC-72 
carbon was chosen as the carbon support for making 
Pt3Ni/C catalysts. The carbon particles were dispersed 
in chloroform and sonicated for 1 h before the addition 
of Pt3Ni nanoparticles to this dispersion with a 
nanoparticle:carbon black mass ratio of 1:4. This 
mixture was stirred overnight and the resulting solid 
was precipitated by centrifugation and dried under  
argon. 

The solid particles were then re-dispersed in 
n-butylamine (EM, 98%) at a concentration of 2 mg- 
catalyst/mL. The mixture was then stirred for 3 days 
at room temperature, followed by centrifugation at 
5000 rpm for 5 min. The precipitate was dispersed 
again in 10 mL of methanol and the dispersion was 
sonicated for 15 min. After mixing well, the supported 
catalyst was separated from the solution by 
centrifugation. The same washing procedure was 
repeated three times. The final samples were dried  
under an argon flow for further characterization.  

2.3 Electrochemical measurements 

A three-electrode configuration was used to carry out 
the measurements. A glassy-carbon rotating disk 
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electrode (RDE) (area: 0.196 cm2) was used as the 
working electrode, and a platinum foil with the 
dimensions of 1 cm × 1 cm as the counter electrode. A 
reversible hydrogen electrode (RHE, HydroFlex, 
Gaskatel) was used as the reference and placed in a 
separate compartment. The electrolyte used for meas- 
uring facet-related surface adsorption was 0.5 mol/L 
sulfuric acid (H2SO4). To prepare the working electrode, 
2.5 mg of the Pt3Ni/C catalyst was dispersed in 5 mL 
of solvent and sonicated for 5 min. The solvent was a 
mixture of de-ionized water, isopropanol and 5% 
Nafion with a volume ratio of 4:1:0.025. 20 μL of this 
ink was added onto the RDE by a pipette and dried 
in a gentle flow of air. The loading of Pt on the RDE 
was calculated to be 9.3 μg(Pt)/cm2. The electrochemical 
active surface area (ECSA) was determined by 
integrating the area for the hydrogen adsorption 
range from cyclic voltammetry (CV) curves under 
steady state conditions, which were reached after 20 
potential cycles at room temperature in argon- 
saturated 0.1 mol/L KOH solution. The potential scan 
rate was 50 mV/s. ORR activity was determined based 
on steady-state polarization curves, which were 
recorded after 10 sweeps in a 0.1 mol/L KOH solution 
that was purged with oxygen for 30 min prior to, and 
during, the measurements. The scan rate for ORR 
measurements was set at 10 mV/s for the positive scan. 
For comparison, Pt/C (TKK, 50 wt% Pt, 3 nm diameter 
on Vulcan carbon) was used as the reference catalyst. 
The loading of Pt on the RDE was calculated to be 
11 μg(Pt)/cm2. The area-specific activity was obtained 
by normalizing the kinetic current density against the 
total ECSA, and the kinetic current density was obtained 
from the Koutecky–Levich plot and normalized against  
RDE surface area (0.196 cm2).  

2.4 Characterization 

Transmission electron microscopy (TEM) and 
high-resolution transmission electron microscopy 
(HRTEM) images were obtained using a FEI TECNAI 
F-20 field emission microscope (accelerating voltage: 
200 kV). Energy dispersive X-ray (EDX) analysis was 
carried out on a field emission scanning electron 
microscope (FE-SEM, Zeiss–Leo DSM982) equipped 
with an EDX detector. Powder X-ray diffraction 

(PXRD) patterns were recorded using a Philips MPD 
diffractometer with a Cu Kα X-ray source (λ = 
1.5405 Å). The metal composition of Pt3Ni/C catalysts 
was determined by thermogravimetric analysis (TGA, 
SDT-Q600, TA Instruments, Inc.). The experiment 
involved heating the sample to 600 °C at rate of 
10 °C/min in flowing air at 50 mL/min, followed by 
heating at 600 °C for 30 min under a reducing 
atmosphere of 5% H2 in Ar with a flow rate of  
50 mL/min. 

3. Results and discussion 

3.1 Structure of the Pt3Ni nanoparticles 

Figure 1(a) shows a representative TEM image of the 
sample formed at 190 °C with a reaction time of 1 h, 
using HDA (C16H33NH2) as capping agent, HDD and 
TBAB with a molar ratio of 5.44 as the mixed reducing  
agents, in the presence of AAA.  

The nanoparticles were uniform in overall size and 
dominated by truncated octahedra (about 90% in 
population) with a small population of cubes. The 
average edge length was around 8.3 nm ± 0.5 nm. The 
truncated octahedra have a d-spacing of 0.22 nm  

 
Figure 1 (a) TEM image of HDA-capped Pt3Ni nanoparticles 
showing the uniform size, and high-resolution TEM images of 
(b) a representative truncated octahedron with (111) lattice planes, 
and (c) a cube with (200) lattice planes 



Nano Res. 2011, 4(1): 72–82 

 

75

(Fig. 1(b)), which closely matches that of the (111) 
plane of Pt3Ni alloy. The cubes have a d-spacing of 
0.19 nm (Fig. 1(c)), which matches that of the (200) 
plane of Pt3Ni alloy. 

Figure 2 shows a representative PXRD pattern and 
EDX analysis of the nanoparticles shown in Fig. 1 
made using HDA as the capping agent. The powder 
PXRD pattern can be indexed to (111), (200), (220), 
and (311) diffractions of a face-centered-cubic (fcc) 
structure with the peak positions in between those 
for pure Pt and Ni metals (Fig. 2(a)). The lattice 
constant was calculated to be 3.84 Å for the 90% 
truncated octahedral Pt3Ni (t,o-Pt3Ni) by fitting all 
four peaks of the PXRD curve. This value corresponds 
to a composition close to Pt3Ni calculated according 
to Vegard’s law, assuming aPt = 3.923 Å and aNi = 
3.524 Å. The crystalline domain size was determined 

 
Figure 2 (a) PXRD pattern and (b) EDX spectrum of the Pt3Ni 
nanoparticles 

to be ~7 nm using the full width at half-maximum 
(HWHM) of the (111) diffraction peak and the 
Debye-Scherrer formulation. This value is close to the 
dimension shown in the TEM image (Fig. 1(a)). EDX 
analysis shows the weight percentage composition of 
the bimetallic material was 8.6% Ni and 91.4% Pt. 
These values correspond to a Pt/Ni atomic ratio of 
76/24, which is very close to the composition Pt3Ni. 

3.2 Effect of varying the amine capping agents and 
acid additives 

Long carbon chain amines and acids generally play 
important roles in the size and shape control in 
non-hydrolytic syntheses of nanoparticles. In this 
work, we explored the effects of four N-terminal 
amines with different carbon chain lengths on the 
shape control of Pt3Ni alloys. Figure 3 shows the 
nanoparticles made by using amines with different 
alkyl- or alkenyl chain lengths, which varied from 8 
to 18 carbon atoms, (C8H17NH2, C12H25NH2, C18H37NH2, 
C18H35NH2). All other reaction conditions were kept 
the same as for HDA. The shape of Pt3Ni nano- 
particles produced using octylamine (C8H17NH2) was 
not uniform (Fig. 3(a)). It seems that octylamine does 
not have strong facet-selected adsorption on Pt3Ni 
surfaces. This short alkyl chain amine can occupy the 
active growth sites and inhabit the adsorption of 
AAA, which is known to show competitive binding 
on metal surfaces with certain amines, such as HDA 
[11, 28–30]. When long carbon chain amines including 
dodecylamine and octadecylamine were used, the 
shape and size of the nanoparticles became uniform 
(Figs. 3(b) and 3(c)) as previously observed for HDA 
(Fig. 1(a)). The population of truncated octahedra 
and cubes also changed. Truncated octahedral Pt3Ni 
nanoparticles were essentially the only product when 
dodecylamine was used as the capping agent 
(Fig. 3(b)). The product consisted of about 70% of 
truncated octahedra when octadecylamine was used 
(Fig. 3(c). The remaining 30% was largely composed 
of nanocubes. With oleylamine, which has the same 
carbon chain length as octadecylamine but contains a 
C=C double bond, shape-control was lost (Fig. 3(d)). 
While it is effective in controlling the size and shape 
of some metal and alloy nanoparticles [2], oleylamine 
is not effective under our reaction conditions.  
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Figure 3 TEM images of Pt3Ni nanoparticles synthesized in   
the presence of different N-terminal amines: (a) octylamine, 
(b) dodecylamine, (c) octadecylamine, and (d) oleylamine 

Based on these observations, it seems that additives 
such as HDA and dodecylamine, balanced the growth 
along the <111> and <100> directions, resulting in the 
formation of a predominance of truncated octahedra, 
in which both {111} and {100} facets are exposed, and 
a few cubes, which have only {100} facets exposed. 
When the length of the alkyl group was increased 
(octadecylamine), the population of the cubic shape 
increased, indicating that the optimal alkyl group is 
necessary to create the right interfacial energy near  
the {111} and {100} facets for selected growth. 

The particle size of the samples also varied, with an 
average of 5.4 nm ± 0.6 nm for dodecylamine-capped 
particles (Fig. 3(b)), 8.3 nm ± 0.5 nm for HDA-capped 
nanoparticles (Fig. 1(a)), and 8.9 nm ± 0.7 nm for 
octadecylamine-capped nanoparticles (Fig. 3(c)). This 
difference in size might be related to variations in the 
weak reducing ability of the various amines [31, 32], 
although the main reducing agents used were still  
TBAB and the 1,2-alkanediol. 

3.3 Effect of varying the bulky acid additives 

Figure 4 shows TEM images of HDA-capped Pt3Ni 
nanoparticles made in the presence of ACA and 

 

Figure 4 TEM images of HDA-capped Pt3Ni nanoparticles 
synthesized in the presence of (a) ACA, and (b) L-ascorbic acid 

L-ascorbic acid, instead of AAA. The size and shape 
of Pt3Ni nanoparticles made using ACA (Fig. 4(a)) 
were similar to those made in the presence of AAA 
under similar reaction conditions (Fig. 1(a)). When 
L-ascorbic acid, which does not contain an adamantane 
functional group, was employed, no well-defined 
shapes were obtained, with various irregular mor- 
phologies including short tripods (Fig. 4(b)) being 
formed. Thus, while slight changes in alkyl chain 
length do not lead to dramatic transformations in 
shape, the bulky adamantane group is an important 
structural factor in shape control. This observation 
suggests that kinetic exchange between bulky 
adamantane and long chain amine groups on the 
metal surface is critical in the controlling the shape  
[11, 28–30].  

The relative growth rates along (111) and (100) 
surfaces largely determine whether {111} facet- 
dominant octahedra or {100} facet-dominant cubes 
are formed. The preferred growth is directly related 
to the surface energy of these two types of facets. In  
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these Pt3Ni nanoparticle systems, controlling the 
reaction rate by varying the relative surface energies 
of (111) and (100), and the reduction rate of metal 
precursors were both found to be feasible. The use of 
long carbon chain amines and, to a lesser extent, 
bulky acid additives alters the relative energies of 
(111) and (100) surfaces. Long chain amines such as 
HDA favored the formation of octahedra and 
truncated octahedra that possess a high ratio of {111} 
facets. The ratio of (111)/(100) surfaces increased as 
the population changed from 90% to 100% truncated 
octahedra, which was achieved when HDA was 
replaced by a shorter alkyl chain amine (dodecylamine); 
this is probably due to the strong capping ability of  
the latter amine on the (111) surface.  

Besides their ability to compete with long-chain 
amines in binding on metal surfaces, the acid 
additives can also selectively react with Ni atoms on 
the growing surfaces of Pt3Ni nanoparticles. In 
general, carboxylic acids should bind strongly with 
less noble metals such as Fe and Ni, while amines 
interact preferentially with noble metals, such as Au 
and Pt [33]. In the case of a Pt3Ni alloy, the acid 
functional group can react with Ni at 190 °C, which 
affects the relative surface energies of (100) and (111). 
Overall, the bulky adamantane functional group 
seems to be critical in achieving shapes which are 
dominated by the (111) surface.  

3.4 Effect of varying the reducing agents 

The role of amines and acid additives is primarily   
to control the surface energy and reaction kinetics  
of nanoparticle formation. To examine the effect of 
varying the reducing agents on the shape control,  
we added DDD (C12H24(OH)2) or DD (C10H20(OH)2) 
instead of HDD (C16H32(OH)2) to our non-hydrolytic 
reaction system. When DDD was used, nanoparticles 
grew into irregular shapes, suggesting there was 
insufficient reaction time for Ostwald (size-focused) 
ripening, which is important for the formation of 
uniform particles (Fig. 5(a)). With DD was employed, 
dendrite-like growth became pronounced (Fig. 5(b)). 
Reaction under these conditions was relatively fast,   
a likely reason for the uncontrollable anisotropic 
growth. The change in the alkyl chain length of the  

 

Figure 5 TEM images of Pt3Ni nanoparticles reduced with   
(a) TBAB and DDD and (b) TBAB and DD, and (c) TBAB with 
no diol 

1,2-alkanediols could also affect the relative surface  
energies of the Pt3Ni nanoparticles.  

Figure 5(c) shows a TEM image of Pt3Ni nanoparticles 
formed by reduction with the strong reductant, 
TBAB, alone rather than mixed with a diol as a weak 
reducing agent. The size of the resulting nanoparticles 
was around 4–5 nm and the shapes were not uniform. 
As TBAB is a strong reducing agent, a burst of nuclei 
occurred readily and the subsequent growth was also 
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fast. Under such conditions, shape was not easily  
controllable because the growth stage was too short.  

When the HDD/TBAB molar ratio was decreased 
from 5.44 (as for the sample shown in Fig. 1(a)) to 
1.36, the size of the particles obtained was 3–4 nm 
(Fig. 6), substantially smaller than those made with a 
HDD/TBAB molar ratio of 5.44. Thus the size of the 
nanoparticles can clearly be tuned by changing the 
rate of reduction of metal precursors by adjusting the 
relative amounts of strong (TBAB) and weak (HDD) 
reducing agents. As a strong reductant, TBAB plays 
the major role in the nucleation stage, whereas the 
1,2-alkanediol, the weak reductant, is important in 
affecting the reaction rate and surface energy during  
the growth stage. 

3.5 Effect of varying the reaction time 

As the ripening step is critical in the size control, we 
further examined the time evolution of the Pt3Ni 
nanoparticles. The well-defined 5.9 nm ± 0.5 nm 
truncated octahedral Pt3Ni formed at 30 min (Fig. 7(a)). 
The edge length of these nanoparticles was about 70% 
of those after reaction for 1 h (Fig. 1(a)). The nano- 
particles became mostly spherical and uniform in 
size after 2 h, most likely due to the Ostwald ripening, 
in which the thermodynamically unstable atoms at 
the corners and edges dissolved in solution during the 
growth stage (Fig. 7(b)). There were a few truncated 
octahedral nanoparticles with smooth corners, which 
indicates that the size and shape evolution is time-  
dependent. 

 
Figure 6 TEM image of Pt3Ni nanoparticles formed with a 
HDD/TBAB molar ratio of 1.36 using HDA as capping agent in 
the presence of AAA 

3.6 Electrocatalytic properties 

We studied the electrocatalytic properties in alkaline 
solutions using three different shaped-defined Pt3Ni/C 
catalysts with 70% (Fig. 7(a)), 90% (Fig. 1(a)) and 
100% (Fig. 3(b)) of the particles having truncated 
octahedral shape. Figure 8 shows the CV curves of the 
Pt3Ni/C catalysts in 0.5 mol/L H2SO4. In the backward 
(negative) scan, the peak centered at 0.23 V is due to 
the hydrogen adsorption on the {110} facets and the 
peak at 0.12 V arises from the {100} facets. The 
featureless box-like broad peak between 0.1 V and 
0.3 V represents hydrogen adsorption on the {111} 
facets [34]. The sample with 70% t,o-Pt3Ni/C shows a 
weak adsorption on the (111) surface. The 100% 
t,o-Pt3Ni sample shows the strongest (111) surface 
adsorption among the three catalysts. These results 
are generally consistent with the TEM images of 
these Pt3Ni nanoparticles (Figs. 7(a), 1(a), and 3(b)  

 
Figure 7 TEM images showing the shape of Pt3Ni nanoparticles 
after reaction for (a) 30 min and (b) 120 min 

 
Figure 8 CV curves in 0.5 mol/L H2SO4 of three Pt3Ni catalysts 
with different proportions of t,o-Pt3Ni. The inset shows the enlarged 
hydrogen adsorption region between 0.05 and 0.30 V 
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respectively). 
Figure 9 shows the electrochemical properties of 

these Pt3Ni/C catalysts and a Pt reference catalyst in 
0.1 mol/L KOH. From the CV and polarization curves, 
we obtained the normalized ORR activities. The area- 
specific activity of Pt3Ni at 0.9 V was 0.56 mA/cm2(Pt) 
for 70% t,o-Pt3Ni/C, 0.57 mA/cm2(Pt) for 90% t,o-Pt3Ni/C 
and 0.76 mA/cm2(Pt) for 100% t,o-Pt3Ni/C. All of these 
values are higher than the value, 0.17 mA/cm2(Pt), for 
Pt/C. The Pt3Ni/C catalyst with the highest specific 

activity represents a 3.5-fold enhancement over Pt/C. 
The corresponding ORR mass activity (im) was 0.30 
A/mg(Pt) for the 100% t,o-Pt3Ni/C catalyst, which is 
more than twice that of the Pt/C catalyst (0.14 A/mg(Pt)). 

The electrocatalytic activity of the t,o-Pt3Ni/C 
catalysts was quantitatively examined as a function 
of rotation speed of the rotating disk electrode 
ranging from 400 to 2500 rpm (Figs. 10(a)–10(c)). The 
well-defined limiting current curves at various 
rotation speeds suggest that the charge transfer is  

 
Figure 9 (a) Area-specific (mA/cm2(Pt)) and (b) mass (A/mg(Pt)) ORR activities for the t,o-Pt3Ni and reference Pt catalysts. (black dotted
line: Pt; green dash line: 70% t,o-Pt3Ni; red dotted dash line: 90% t,o-Pt3Ni; and blue solid line: 100% t,o-Pt3Ni) 

 
Figure 10 RDE voltammograms for the ORR of (a) 70%, (b) 90% and (c) 100% t,o-Pt3Ni/C electrocatalysts at various rotation rates,
and (d) Koutecky–Levich plots of the rotating disk current at 0.3 V (vs. RHE). The tests were conducted in O2-saturated 0.1 mol/L KOH
solution and the scan rate was kept at 10 mV/s 



 Nano Res. 2011, 4(1): 72–82 

 

80

much faster than the mass transfer during ORR [7]. 
Figure 10(d) shows the Koutecky–Levich plots as a 
function of ORR working potentials for these three 
t,o-Pt3Ni/C catalysts. These curves overlap with each 
other, indicating that the number of electrons 
transferred in ORR barely changes within the potential  
region of the limiting-current. 

We further compared the slopes of these curves 
with the theoretically calculated values for the four- 
electron reduction of O2 using the modified Koutecky- 
Levich equation[7] for thin film-coated electrodes. 
The measured current density (i) is related to the 
kinetic current density (ik), and the diffusion-limiting 
current density (id), can be obtained using the  
following equation: 

ω−= 2 1 1
3 6 2

d o o0.2i nFD C v            (1) 

where n is the number of electrons transferred, F is 
the Faraday constant, Do is the diffusion coefficient of 
O2 gas (1.9 × 10–5 cm2/s), υ is the kinematic viscosity of 
water (0.01 cm2/s), Co is the concentration of O2 gas in 
dilute aqueous solution (1.1 × 10–5 mol/cm3) and ω is 
the rotation rate of the electrode in unit of rpm. The 
kinetic current density, ik is an intrinsic property of 
the catalyst and can be obtained based the relationship 
between the measured current density and the rotation 
rate, which can be described as follows: 

ω
= + = + 1

2
disk k d k

1 1 1 1 1
i i i i B

           (2) 

where B is the Levich constant that can be obtained 
from the slope of the Koutecky–Levich plot. Using 
the appropriate numerical values, the relationship 
between the Levich constant B and the number of 
electrons n transferred during the ORR can be simply  
obtained based on the following equation: 

− −= = ×2 1
3 6 5

o o0.2 3.5 10B nFD C v n        (3) 

From the slopes of the curves shown in Fig. 10(d), 
we obtained values of n of 3.5 ± 0.1, 3.6 ± 0.1 and 3.6 ± 
0.1, respectively, for 70%, 90% and 100% t,o-Pt3Ni 
catalysts at 0.3 V (vs. RHE). This indicates that in alka- 
line aqueous media, the reduction from O2 to OH– by 

Table 1 ECSA, mass- and area-specific ORR activities of Pt3Ni 
and Pt catalysts in 0.1 mol/L KOHa 

Sample Pt loading 
(mg(Pt)/cm2)

ECSA 
(m2/g(Pt)) 

Mass 
activity 

(A/mg(Pt))

Area-specific 
activity 

(mA/cm2(Pt))

100% 
t,o-Pt3Ni/C

9.3 39.5 0.30 0.76 

90% 
t,o-Pt3Ni/C

9.3 36.5 0.20 0.57 

70% 
t,o-Pt3Ni/C

9.3 37.0 0.20 0.56 

Pt/C 11 84.6 0.14 0.17 
a  The activity was measured at 0.9 V vs. RHE. 
 
these t,o-Pt3Ni catalysts can be treated as a direct four- 
electron process controlled by mass diffusion [7, 17, 35]. 

4. Conclusions 

The effects of varying key factors, including the 
capping agent, reducing agent and reaction time on 
the size, shape and composition of Pt3Ni nanoparticles 
have been demonstrated. While the shape and size of 
the particles can be affected by changing almost any 
of the reaction parameters studied, the use of 
adamantane-containing functional groups, and a 
mixture of strong and weak reducing agents are 
especially important in obtaining good control over 
particle shape. In alkaline solution, the shape- 
controlled Pt3Ni catalysts show very high kinetic 
activity in the ORR reaction. In addition, the Pt3Ni (111) 
surface has a much higher ORR catalytic activity than 
that of the (100) surface; the same trend has previously 
been demonstrated for these catalysts under acidic  
conditions. 
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