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ABSTRACT 
A tight-binding analytic framework is combined with first-principles calculations to reveal the mechanism 
underlying the strain effects on electronic structures of graphene and graphene nanoribbons (GNRs). It provides 
a unified and precise formulation of the strain effects under various circumstances—including the shift of the 
Fermi (Dirac) points, the change in band gap of armchair GNRs with uniaxial strain in a zigzag pattern and its 
insensitivity to shear strain, and the variation of the k-range of edge states in zigzag GNRs under uniaxial and  
shear strains which determine the gap behavior via the spin polarization interaction. 
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1. Introduction 

Apart from its remarkable fundamental properties, 
graphene has attracted intensive interest in recent 
years as a promising candidate material for the new 
generation of electronics and spintronics [1, 2]. To 
construct a graphene-based device or circuitry, the 
ability to modulate the electronic structure of graphene 
is definitely required. Possible means to achieve this 
goal include patterning [3], electric field effects [4], and 
chemical doping [5]. Recently, it was even proposed 
that strain can be utilized to generate various basic  
elements for all-graphene electronics [6].  

Growth of graphene on substrates with a different 
lattice constant usually introduces strain which can 
be detected by Raman spectroscopy [7, 8]. In some 
cases, relief of the compressive strain will result in 

the formation of ridges and buckling [9]. Even in the 
absence of a lattice mismatch, strain still arises along 
the edges and manifests some interesting quantum 
features [10, 11]. Graphene is the strongest material 
ever measured [12]. Small [13, 14] or large (up to  
30%) [15] strains can be readily exerted on graphene 
in labs. Recently, by carefully controlling the uniaxial 
and shear strains, Bao et al. succeeded in creating  
periodic ripples in graphene sheets [16].  

Strain may have important effects on the electronic 
properties of a material. Strain in Si, SiGe, and Ge  
has been successfully employed in the semiconductor 
industry to improve the mobility of field-effect 
transistors (FETs) [17]. For carbon nanotubes, it has 
been established that the band structure can be 
dramatically altered by strain [18, 19]. Considering the 
close relation between graphene and carbon nanotubes,  
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one would expect strain will have important influence 
on the electronic structure of graphene. Scanning 
tunneling microscopy (STM) studies on graphene have 
indeed revealed a correlation between local strain 
and tunneling conductance [20]. Theoretically, both 
the tight-binding (TB) model and ab initio approaches 
have been widely adopted to investigate the effect of 
strain on the band structure of graphene and graphene 
nanoribbons (GNRs) [14, 21–35]. It was shown that 
below a threshold value (which may exceed 20%, 
depending on direction), uniaxial strain will not open 
an energy gap for infinite graphene sheets, but just 
cause the Fermi crossing to move away from the K 
point [26, 27, 30, 31]. In the case of GNRs, uniaxial strain 
has little influence on the band structure of zigzag 
GNRs (ZGNRs), while the energy gap of armchair 
GNRs (AGNRs) is modified in a periodic way with a 
zigzag pattern [21, 25, 29, 32]. Accordingly, AGNRs 
and ZGNRs possess distinct charge transport properties 
under strain [30, 32–34], e.g., ZGNRs remain robust 
against high uniaxial strain [33]. The effect of strain 
on the chemical reactivity of graphene has also been 
investigated [36]. Very recently, a TB calculation was 
conducted to investigate the effects of both uniaxial 
and shear strains on GNRs, and an analytical solution 
at k = 0 was obtained to provide physical insights into  
understanding the response of AGNRs [35].  

Although there have been many studies of the strain 
effects in graphene and GNRs, most of them have 
focused on uniaxial strain, while the effect of shear 
strain has seldom been studied (with the exception of 
the recent work by Lu and Guo [35]). Furthermore, 
although various effects of strain on graphene and 
GNRs have been revealed, a universal theory that  
can provide a concise physical understanding of the 
different simulation results from TB and ab initio 
approaches is still lacking. In this paper, we calculate 
the band structures of graphene and GNRs under 
both uniaxial and shear strain using density functional 
theory (DFT), and formulate a universal explanation  
for the various effects of strain. 

2. Method and model 

2.1 First-principles calculations 

The uniform strain in graphene can be generally written 

as a strain tensor:  

ε γ
ε

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

A

Z0
ε                (1) 

where εA  and εZ  are the uniaxial strain along the 
armchair and zigzag directions, respectively, and γ is 
the shear strain. A positive value of εA (εZ ) means the 
strain is elongating (tensile) while a negative value 
corresponds to compressive strain. In our first-principles 
calculations, we consider three special cases where 
we keep one of εA, εZ, and γ at a fixed value while the  
other two are relaxed to achieve the lowest total energy. 

For GNRs, we define x-direction to be along the 
unstrained ribbon axis and y as the transverse direction 
(Fig. 1). In the presence of a uniaxial or shear strain, the 
x-component of the coordinate of the i-th atom changes  
according to following relations:  

ε
γ

→ +⎧
⎨ → +⎩

A/Z(1 ) , (Uniaxial)
, (Shear)

i i

i i i

x x
x x y

          (2) 

where A/Zε  denotes Aε  in AGNRs and Zε  in ZGNRs. 
The y-component of the atom coordinates is free to 
relax. Two examples are illustrated in Fig. 1 to show 
the deformation.  

We performed our DFT calculations implemented 
with the Vienna ab initio simulation package (VASP) [37]. 
The projector augmented wave (PAW) pseudopotential 
[38], and the general gradient approximation (GGA) 
PW91 [39] were adopted with a 520 eV cutoff energy. 
We used a supercell geometry in which adjacent sheets 
are separated by 10 Å to avoid any interaction between 
them. The Monkhorst-Pack grid mesh was 45× 45 for 
graphene and 25× 1 for GNRs. Energy was taken to be 
converged when the difference between consecutive 
total energy was less than 0.1 meV. Atoms were relaxed 
using the conjugate gradient method until the forces 
on atoms were less than 0.01 eV/Å. 

2.2 Analytic model 

In order to analyze the DFT calculations, we adopted 
the theory presented by Yang and Han, which is based 
on the Hückel TB model and an analytic framework 
[18]. When a strain is exerted on graphene, real space 
vectors are transformed according to = + 0( )r I ε r , where 
I is the unit matrix and ε  the strain tensor. Subscript 
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“0” denotes undeformed states. The resulting Brillouin 
zone (BZ) for the reciprocal vector k in the deformed 
space is no longer a regular hexagon (Fig. 2(a)) [22–24,  
26, 27]. By introducing a new quantity 

* = + T( )k I ε k               (3) 

the BZ in the k* space will be restored to hexagonal as 
in the undeformed case since  

*⋅ = ⋅ + = + ⋅ = ⋅T
0 0 0( ) [( ) ]k r k I ε r I ε k r k r      (4) 

k* can be regarded as the undeformed reciprocal vector. 
The introduction of k* and the property in Eq. (4) 
greatly facilitate the analysis. For example, the TB  
Hamiltonian becomes  

*

= =

= ⋅ = ⋅∑ ∑ 0
1,2,3 1,2,3

( ) exp(i ) exp( )i i i i
i i

H t tk k a k a    (5) 

where the ia  are three bond vectors from a carbon 
atom, and it  are hopping parameters which depend 
on the bond length. This incorporates the effect of strain 
into the variation of it . When a symmetric strain is 
applied, = =1 2 3t t t , and the Fermi points (synonymous 
with the Dirac points in this paper) Fk , defined by 

= =F F( ) | ( )| 0E Hk k , sit at the vertex of the hexagonal 
BZ, i.e., the K points in Fig. 2. For uniaxial and shear 
strains which are asymmetric, 1t , 2t , and 3t  are no 
longer equal, and the Fermi points will deviate from 

K in the k* space. Under the linear approximation, the 
deviation * * *Δ = −F F Kk k k  is determined to be [18] 

( )
( )

*

*

ν σ θ γ θ

ν σ θ γ θ

⎧Δ = + +⎪
⎨
Δ = − + +⎪⎩

F 0

F 0

[ 1 cos 3 sin 3 ]
[ 1 sin 3 cos 3 ]

x t

y t

k a S
k a S

     (6) 

where *Δ Fxk  and *Δ Fyk  are the components of *Δ Fk  along 
x and y directions, θ  is the angle between the x axis 
and the zigzag direction, σ  is the uniaxial strain along 
the y direction, and ν  is the Poisson’s ratio: i.e., 
(positive) σ  is the elongating strain along the y 
direction while νσ  is the compressive strain along the 
x direction. tS  is a constant introduced here to reflect  
the dependence of t  on a : 

=

= −
0

d
2 dt

a a

a tS
t a

               (7) 

where 0a  is the equilibrium bond length. For the Har- 
rison hopping parameter relation = 2

0 0( / )i it t a a  [40], 
= 1.0tS . The deviation of K’ is opposite to that of K. 

The dispersion relation of deformed graphene is given  
by expanding ( )E k  near the Fermi points:  

* * *= ± −0 0 F
3( )
2

E t ak k k              (8) 

Thus the effect of (small) strain is to move the energy 
cone in the k* space (Fig. 2(b)). 

 

Figure 1 Schematic views of GNRs under strain: (a) AGNRs with ribbon width NA = 12 under a uniaxial strain of εA = 10%; (b) ZGNRs 
with ribbon width NZ = 6 under a shear strain of γ = 10%. The edge carbon atoms (gray circles) are passivated by hydrogen atoms (white
circles). The shaded rectangles denote the unit cells of the systems 
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Figure 2 Schematic illustrations of the effects of strain: (a) defor- 
mation of the Brillouin zone; (b) shift of the energy cone away 
from K points in the k* space 

The electronic properties of GNRs are analyzed based 
on the above results for graphene with the consideration 
that the k values of the allowed electronic states lie on 
some discrete lines due to the quantum confinement  
effect. 

3. Results and discussion 

3.1 Graphene: The shift of the Fermi points 

We investigated the band structure of infinite graphene 
sheets under various strains. For a shear of 5%, our DFT 
calculation shows that the conduction band energy at 

the K point is not equal to the valence band energy, 
and there is a small gap of ~100 meV. However, similar 
to studies of the uniaxial case [26, 27, 30, 31, 41], this 
does not mean that a band gap is opened by strain. 
By scanning the vicinity of K along various k lines, we 
find that the valence and conduction bands touch at a 
point deviating from K (Fig. 3(a)), and thus the system 
remains gapless. The dispersion is still well described 
by a cone. A global fit (solid lines) gives a hopping 
parameter t0 = 2.67 eV, which is consistent with the 
relaxed equilibrium value (~2.7 eV) in the literature 
[18, 42]. We also tested the influence of the uniaxial 
strain along the armchair and zigzag directions, and 
observed similar behaviors, i.e., the shift of the Fermi 
points. The main difference between the various 
strains is the shifting direction, which is summarized 
in Fig. 3(b). Note that shear strain will shift the Fermi 
points away from any symmetric k paths. Furthermore, 
the shifting of Fermi points near the K points is exactly 
opposite to that near K’. They may collide if the uniaxial 
strain is large enough. It was previously suggested 
using an analytical model that a realistic band gap 
will be opened under such a collision [43], and a 
similar effect has also been observed in TB and DFT  
calculations [26, 30, 31]. 

The results of our DFT calculations can be 
satisfactorily explained in the theoretical framework 
developed by Yang and Han [18] (see Section 2). The 
shifting direction of Fermi points predicted by Eq. (6) 

 

Figure 3 Shift of Fermi points under strain in graphene. (a) Energy difference between the conduction band and the valence band for
various k lines starting from the K point. DFT data under a shear strain of γ = 5% are shown as circles and a global fit is shown as solid
lines. The inset is a schematic view of selected k lines. (b) Summary of the shift direction of Fermi points under different types of strain
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is fully consistent with Fig. 3(b). It is also inferred 
from Eq. (6) that when the strain (uniaxial or shear) 
rotates by an angle θ, the shifting direction of Fermi 
points will rotate by 2θ ①, neglecting the slight 
difference between k and k*; this is consistent with the 
observation of Mohr et al. [27]. By combining Eqs. (6) 
and (8), we obtain the following analytical expression  
for the pseudo gap at K and K’ points in the k* space:  

( )
( )
( )*

ν ε

ν ε
γ

+⎧
⎪

= +⎨
⎪
⎩

0 A A

gap V 0 Z Z

0

3 1  (uniaxial strain along armchair)
3 1  (uniaxial strain along zigzag)
3                 (shear strain)

t

t

t

t S
E t S

t S
k

                                 (9) 

In Fig. 4, we depict the *
gap V( )E k  data obtained in DFT 

calculations for various strains up to 5%. The value of 
*

gap V( )E k  under shear strain is smaller than that under 
uniaxial strain. Equation (9) indicates that the difference 
comes from the Poisson’s ratio ν, i.e., when graphene 
is stretched in one direction, it will shrink in the per- 
pendicular direction, and thus further shift the Fermi 
points. Using the averaged ν values of νA = 0.145 and 
νZ = 0.16 in DFT calculations (Fig. 4, inset), we made a 
global fit (the solid lines in Fig. 4) to the *

gap V( )E k  data,   

 
Figure 4 The calculated energy gap at *

Vk  for various strains. 
Straight lines are a global fit according to Eq. (9). Inset is the 
Poisson’s ratio ν for uniaxial strain along zigzag and armchair 
directions 

                                                        
① Note that the angle θ between zigzag direction and the x-direction should 
be subtracted from the angle between shifting direction and the x-direction  
(3θ in Eq. (6)) to obtain the desired value. Refer to Fig. 1 of Ref. [18] for a 
schematic graphic 

and the result confirms that ν indeed accounts for  
the different effects of shear and uniaxial strains. By 
adopting 0t = 2.67 as determined above, we obtain 

tS = 1.29, which is slightly larger than the value given 
by the Harrison relation [40] ( tS = 1.0), while smaller 
than the approximation made by Pereira et al. [26]  
( tS ≈ 1.7). 

3.2 AGNRs: The effects of discrete k-lines 

We now examine whether strain can change the energy 
gap in GNRs where the size confinement may play 
an important role. It is well known that the con- 
finement effect will open a gap in AGNRs and the gaps 
can be divided into three groups according to the 
ribbon width i.e., NA = 3p, 3p+1, or 3p+2, where p is a 
positive integer [3, 44]. Our DFT results of the shear 
effect on AGNRs are summarized in Fig. 5. It can be 
seen that shear strain makes the band structure a little 
smoother, but the modification of the band architecture, 
especially the energy gap, is slight (Fig. 5(a)). Even 
under a shear strain of up to γ = 10%, the variation of 
the gap is less than 60 meV for a system with NA = 12. 
The influences on the three groups of AGNRs are 
similar (Fig. 5(b)). The curves of the gap are symmetric 
with respect to γ = 0, and thus the slope at γ = 0 is 
exactly equal to zero. Such an insensitive response of 
AGNRs to the shear strain is consistent with a recent  
TB calculation by Lu and Guo [35]. 

In contrast to the shear case, it has been revealed that 
uniaxial strain has a significant effect on the electronic 
structure and conductivity of AGNRs [21, 25, 29, 32, 
34, 35]. Uniaxial strain will move some bands towards 
the Fermi level, while moving the others away [25]. 
For the purpose of further analysis, we repeated the 
calculations under uniaxial strain and briefly list the 
main DFT results in Fig. 6. It was confirmed that the 
energy gap gapE  was effectively modified in a periodic 
zigzag pattern, while there are also distinct phases for 
the three groups of NA = 3p, 3p+1, and 3p+2 (Fig. 6(a)). 
The slope of εgap A( )E  is almost identical for various 
NA values, while both the peak value and the period of  
the pattern decrease with increasing NA (Fig. 6(b)). 

The effects of shear and uniaxial strains on AGNRs 
can be understood by the shift of Fermi points we 
described in the previous section and the fact [45, 46] 
that the k value of the allowed electronic states of carbon 



 Nano Res (2010) 3: 545–556 

 

550

nanotubes and GNRs lie on parallel lines (Fig. 7). The 
allowed k-lines of the three groups of AGNRs have 
different crossing situations with the K point (Fig. 7(a)), 
resulting in different energy gaps. When a uniaxial 
strain is applied, the Fermi points deviate from K, 
moving in a direction perpendicular to the allowed 
k-lines (Fig. 7(b)), and thus make some bands closer 

(to the Fermi level) while the others move further away. 
When the Fermi points arrive at the middle of two 
neighboring k-lines (the position “1” in Fig. 7(b)), the 
energy gap reaches its maximum. When the Fermi 
points land on the k-lines (the position “2” in Fig. 7(b)), 
the energy gap is decreased to zero. The interval 
between neighboring k-lines decreases with increasing 

 
Figure 5 The effect of shear strain on AGNRs. (a) The electronic structure of AGNRs with a width NA = 12 under the shear strain γ = 0,
5%, 10%. Only four bands close to the Fermi level are shown. (b) The energy gap as a function of γ for AGNRs with NA = 12, 13, 14.
Solid lines are a quadratic fitting. Inset is the magnification of the NA = 12 case 

 
Figure 6 The calculated energy gap of AGNRs as a function of the uniaxial strain εA: (a) examples for three groups with ribbon widths
NA = 3p, 3p+1, and 3p+2; (b) examples for the group NA = 3p 
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ribbon width of the GNRs, so the maximum gap and 
the strain required to obtain such a maximum will 
also decrease. This is the microscopic origin underlying 
the observations in Fig. 6. For the shear strain, the 
movement of the Fermi points is parallel to the allowed 
k-lines, and so has no effect on the energy gap under 
the linear approximation. From Eq. (6) and Fig. 3(b), 
it can also be noted that the effect of uniaxial elongation 
along the armchair direction is equivalent to that of 
compression along the transverse (zigzag) direction, 
which provides a natural explanation for the observed 
symmetric change of the gap of AGNRs for uniaxial 
strains along the nearest-neighbor (armchair) and  
second nearest neighbor (zigzag) directions [32]. 

In a recent paper by Lu and Guo [35], an analytical 
solution at k = 0 (the Γ  point) was obtained for AGNRs 
with consideration of edge distortion and third nearest 
neighbor coupling to interpret the response of the 
band gap to uniaxial and shear strains. In contrast, 
our approach (considering only nearest neighbor 
interactions), gives a full analytical dispersion relation 
near the Fermi points, and interprets the properties of 
AGNRs by relating them to the higher dimensional 
state space of graphene. Thus, the underlying origin 
of the observed properties can be described in the 
higher space: strains shift the Dirac points, and the 
energy gap decreases to zero when the Dirac points 
reach the allowed k-lines of AGNRs. This approach  
is also helpful in revealing the difference between 
uniaxial and shear strains, e.g., uniaxial and shear 
strains generally play similar roles (Eq. (6)), while the 
distinct behavior of shear in not affecting the energy 
gap is just incidental because it shifts the Fermi points  
in a direction parallel to the allowed k-lines. 

The ribbon width plays an important role in the 
universal scaling properties of nanostructures [44, 47]. 
According to Eqs. (6), (8) and the allowed k-lines 
determined by the hard-wall boundary condition [48], 
we obtain an analytic expression for the half-period 
(ΔεA, defined as the strain interval between the neigh- 
boring turning points in Fig. 6) and the maximal value  
of the energy gap of AGNRs under uniaxial strain:  

( )
π

π

ε
ν

⎧Δ = ⋅⎪ ++⎪
⎨
⎪ =⎪ +⎩

A
AA

max 0
gap

A

1
13 1

3
1

t NS

tE
N

         (10) 

A comparison between the prediction and the DFT 
calculation is provided in Fig. 8. Parameters obtained 
in infinite graphene sheets, i.e., 0t = 2.67 eV, νA = 0.145 
and tS = 1.29, are used in the prediction. Although no 
direct fitting is applied to the AGNRs, the agreement  
between the theory and the DFT calculation is excellent. 
This suggests the edges in AGNRs play a role mainly 
via the confinement effect. In the work of Sun et al. [25], 
an empirical formula, =max

Agap 14.06E N was obtained by 
fitting the calculated data for AGNRs, and the resulting 
constant 14.06 is very close to the factor π 03 t (= 14.5) 
in our prediction. It is also noted that tS  affects only 
ΔεA, but not max

gapE . If the Harrison relation ( tS = 1.0) is 
adopted, then the theoretical prediction (the dotted line  
in Fig. 8(a)) will overestimate the ΔεA values. 

3.3 ZGNRs: The effects of edge states 

Given the success in explaining the strain effects on 
AGNRs in terms of Fermi-point shifting and discrete 

 
Figure 7 Schematic parallel k-lines for allowed electronic states in (a) and (b) AGNRs and (c) ZGNRs. Thick lines are part of the 
Brillouin zone boundary with the vertex K, and thin lines represent the allowed k-lines for GNRs. The line with the arrow in (b) indicates
the shift of Fermi point under uniaxial strain 
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k-lines, one may expect that ZGNRs obey similar rules. 
If this is true, shear strain will open an energy gap  
in ZGNRs while the uniaxial strain will have no 
effect because the allowed k-lines in ZGNRs are 
perpendicular to those in AGNRs (see Fig. 7). Such a 
prediction was indeed verified for carbon nanotubes 
[18]. However, our DFT calculations indicate that this 
is not the case for ZGNRs (Fig. 9). They show that 
neither uniaxial nor shear strains can open an energy 
gap in ZGNRs when spin polarization is not considered 
(Figs. 9(a) and 9(b)). It has been suggested that a gap 
will be opened in ZGNRs when spin polarization is 
considered [49], and the resulting half-metallicity has 
potential applications in spintronics [49, 50]. Our DFT 
calculations with spin polarization reveal that the 
effects of both uniaxial and shear strains on the gap 
are still weak in this situation (Figs. 9(c) and 9(d)). 
Another interesting feature is that the k-range of the 
edge states (which appear as the flat curve segments 
near E = 0) expands under uniaxial strain (Fig. 9(c)) 
while remains unchanged under shear strain (Fig. 9(d)) 
(the spin-unpolarized calculations show similar trends,  
and are not discussed here). 

Why do ZGNRs behave abnormally when compared 
with AGNRs? As indicated by Lu and Guo [35], the key 
lies in the existence of edge states in ZGNRs (Fig. 10). 
Following the derivation in Refs. [51, 52], the edge states  
for infinite width are given by  

φ φ φ+ ++ − + − =i ( 1) i ( 1) i
1 2 3( )e ( 1)e ( 1)e 0n n nm t m t m tk k k      

  (11) 

which yields 

φ φ −⎛ ⎞
= +⎜ ⎟

⎝ ⎠
i32

0
1 1

( ) e
m

ttm
t t

k            (12) 

Thus the condition for the edge states to exist is  

−+ ≤
i32

1 1

e 1tt
t t

k               (13) 

When there is no strain, = = =1 2 3 0t t t t , and the critical 
k value for edge states is 

π
=(0)

c
2
3

k                 (14) 

When there is strain, = = =1 2 3 0t t t t  is no longer 
applicable. By linearly expanding it  as in Ref. [18], 
the deviation of the critical k value for edge states,  
Δ = − (0)

c c ck k k , is determined from Eq. (13) as 

σ ν θ γ θΔ = + +c 3[ (1 )cos 2 sin 2 ]k       (15) 

For the strain application scheme in DFT calculations 
on AGNRs, θ = 90°, so Eq. (15) predicts that ck  will 
become smaller under uniaxial strain while remaining 
invariant under shear strain, which is consistent with 
the results in Fig. 9. A quantitative comparison also   

 

Figure 8 (a) The half-period ΔεA and (b) the maximal value max
gapE  of the energy gap under uniaxial strain as a function of the ribbon

width of AGNRs. Circles are DFT calculation results while solid lines are the theoretical prediction using Eq. (10) and the dotted line in
(a) is the prediction using the Harrison relation (St = 1.0) 
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Figure 9 ((a), (b)) The spin-unpolarized and ((c), (d)) spin-polarized electronic structure of ZGNRs with a width NZ = 12 under various 
strains. Only four bands close to the Fermi level are shown in ((c), (d)). (e) A local magnification of (c) to demonstrate the variation of 
the energy gap. (f) Energy gap as a function of εZ under spin polarization, where solid squares are DFT calculation data while the solid 
line is a linear fit 
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Figure 10 Schematic graphics of edge states in ZGNRs. The 
magnitude of the wavefunction at each carbon site is indicated by 
the radius of the circle 

confirms the validity of Eq. (15) (data not shown). 
(Small) strain can modify the k-range of edge states, 
but cannot eliminate their existence, which is the reason 
why the energy gap of ZGNRs is unaffected by both 
uniaxial and shear strains. The insensitivity of the gap 
with respect to strain suggests that ZGNRs may act as  
ideal conducting wires in graphene electronics.  

It was shown in a TB calculation that an energy gap 
in ZGNRs will be opened up by a tensile strain under 
spin polarization [35]. A closer inspection of our DFT 
results confirms such a behavior (Fig. 9(e)), e.g., the 
gap increases slightly from 0.29 to 0.34 eV when a 10% 
uniaxial strain is applied. The separation of the valence 
and conduction bands in AGNRs is induced by the spin 
polarization interaction and the band separation at the  
zone boundary (X) can be approximated as [35, 53] 

 ↑ ↓= −gap 1, 1,( )XE U n n              (16) 

where U describes the strength of the polarization 
interaction, and ↑1,n ( ↓1,n ) is the spin-up (-down) 
population on a sublattice. ↑ ↓−1, 1,n n  is proportional 
to the population of edge states, and thus proportional 
to the k-range of the edge states. Under the approxi- 
mation that the relative variation of gapE  under a strain 

is equal to that of gap
XE , we combine Eqs. (15) and  

(16) and obtain the effect of uniaxial strain on gap in  
AGNRs as  

π
π π

ε
ν

ε ε

⎛ ⎞ ⎛ ⎞−
= = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

gap A c
A

A gap A

( )d d 3 3 (1 )
d (0) d 3

E k
E

  (17) 

Analysis of the DFT gap data (Fig. 9(f)) reveals the 
existence of a slight curvature, while the slope at ε =A 0 

gives a value of 
ε

ε

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

gap A

A gap

( )d
d (0)

E
E

 of 1.51, reasonably 

consistent with the predicted value of 
π

ν+ =A
3 3 (1 ) 1.93. 

The theoretical value is also close to the empirical 
value of 1.6 obtained in the TB calculation of Lu and 
Guo [35]. The k-range of edge states remains invariant 
under shear strain, so the energy gap does not change  
with shear strain under a linear approximation. 

4. Summary 

We have calculated the electronic structures of gra- 
phene and GNRs under various uniaxial and shear 
strains with a first-principles approach, and formulated 
an underlying mechanism via an analytic TB theory. 
The effect of strain on graphene is to drive the Fermi 
points away from the K points while keeping the 
cone-like energy dispersion, and thus does not open 
an energy gap. The energy gap of AGNRs is insensitive 
to shear strain, but is modified by uniaxial stain in a 
zigzag pattern, which is caused by the moving of the 
graphene Fermi points between discrete k-lines of 
allowed electronic states. For the ZGNRs, the energy 
gap is determined by the edge states, and can be 
slightly regulated by uniaxial strain via variation of 
the population of edge states, but is robust under  
shear strain. 
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