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Abstract 
The application of machine learning (ML) modelling in daylight prediction has been a promising 
approach for reliable and effective visual comfort assessment. Although many advancements 

have been made, no standardized ML modelling framework exists in daylight assessment. In this 
study, 625 different building layouts were generated to model useful daylight illuminance (UDI). 
Two state-of-the-art ML algorithms, eXtreme Gradient Boosting (XGBoost) and random forest (RF), 

were employed to analyze UDI in four categories: UDI-f (fell short), UDI-s (supplementary), UDI-a 
(autonomous), and UDI-e (exceeded). A feature (internal finish) was introduced to the framework 
to better reflect real-world representation. The results show that XGBoost models predict UDI 

with a maximum accuracy of R2 = 0.992. Compared to RF, the XGBoost ML models can significantly 
reduce prediction errors. Future research directions have been specified to advance the proposed 
framework by introducing new features and exploring new ML architectures to standardize ML 

applications in daylight prediction. 
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1 Introduction 

The main purpose of buildings is to provide comfortable 
indoor environments to achieve specific needs, such as 
housing and working. A comfortable indoor environment 
involves thermal, acoustic, visual, and air quality comfort 
(Chen et al. 2022). Often, comfort assessment is complex 
in the early design phase due to limitations in quantifying 
comfort (Pérez-Fargallo et al. 2018). However, building 
modelling tools have emerged to close this gap and improve 
the performance of buildings in the aforementioned 
comfortable aspects (Ghobad and Glumac 2018; Lv et al. 
2019; Peng et al. 2020). The advancements in simulating 
thermal comfort and the air quality of indoor environments 
have been significant. Unfortunately, simulating the visual 
comfort aspect in these modelling tools has not developed 
at the same pace in terms of ease of use (Yngvesson and 
Adolfsson 2018). 

The European standard EN 12665 defines visual 

comfort as “a subjective condition of visual well-being 
induced by the visual environment” (Michael and 
Heracleous 2017). One important factor is the indoor 
environment’s distribution and illuminance (Carlucci et al. 
2015). For example, if the indoor space is exceedingly 
illuminated, the occupant might be visually uncomfortable 
because of glare potential and vice versa. The principal 
source of illumination in buildings is by allowing daylight 
for passive lighting, which helps significantly in reducing 
the energy consumption that lighting fixtures use (Day et al. 
2019). Visual comfort is an important factor for improved 
cognitive conditions of occupants, ultimately improving 
their performance in workplaces or residential buildings. 
Exceeded or absent illumination of indoor spaces drives 
occupants to put a cognitive load on spatial awareness 
processing, which might distract or exhaust them and 
become unproductive as they should be (Shi et al. 2021;  
Liu et al. 2022). Therefore, designing energy-efficient   
and thermally comfortable buildings is as important as 
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List of symbols 

ANN artificial neural network 
d distance from a light sensor to a corner of a  
 window 
I internal finish 
MAE mean absolute error 
ML machine learning 
MLM machine learning model 
RF random forest 
RMSE root mean square error 
R2 coefficient of determination 

UDI useful daylight illuminance 
UDI-a useful daylight illuminance (autonomous) 
UDI-e useful daylight illuminance (exceeded) 
UDI-f useful daylight illuminance (fell-short) 
UDI-s useful daylight illuminance (supplementary) 
w rotation of a window with correspondence  
 to a light sensor 
x distance from a light sensor to a perimeter  
 obstacle 
XGBoost eXtreme Gradient Boosting 

   

designing them for visually comfortable indoor spaces 
(Carlucci et al. 2015). 

Recently, machine learning modelling (MLM) has 
become the mainstream in many scientific fields (Manfren 
et al. 2022). In this modelling approach, an algorithm is 
trained on an established dataset of inputs and objectives 
(Arashpour et al. 2022). In data-driven modelling, the 
computational effort is significantly reduced compared to 
traditional mathematical modelling (Arashpour et al. 2021; 
Thrampoulidis et al. 2021). Moreover, MLM is a robust 
technique that enables processing the complex computation 
of daylight engineering problems with minimal data and 
computational effort, especially in huge early stage planning 
(Ayoub 2020). For example, He et al. (2021) developed 
surrogate MLM to replace traditional daylight simulation 
tools using pixel-to-pixel visualisation datasets. Their findings 
reveal that the developed MLM can be 84 times faster than 
the standard DAYSIM/Radiance approach in handling 
layouts with 8732 light sensors. Finally, newly developed 
daylight metrics can be predicted by MLMs, which is not 
possible with current daylight modelling tools using a 
standard set of metrics (Chi 2022). 

ML method in the daylight and visual comfort domain 
has been used in different ways but without creating standard 
approaches for this domain (Ngarambe et al. 2022). Arbab 
et al. (2021) developed four MLMs, including an artificial 
neural network (ANN) model to predict the illuminance 
inside a test room using a synthetically generated dataset. 
The MLMs were trained to predict the raw illuminance in 
(lux) by changing the louvres design only. Their findings 
revealed that the ANN model was the most accurate MLM 
to replace typical simulation approaches of louver designs. 
In addition, Lin and Tsay (2021) proposed a new concept 
of replacing typical geometrical design characteristics of test 
rooms with “intermediary features” to be the key features 
for ML development. These features were correlated with 
the indoor daylighting conditions of the test room. The 

results showed that the proposed MLM predicts daylight 
availability with an accuracy of R2 = 0.91 with 90% savings 
in time compared with typical ray tracing simulation tools. 

ML has also been used to optimize daylighting and 
visual comfort during the operational phase of buildings’ 
lifecycle. Gunay et al. (2017) developed a discrete-time 
Markov logistic regression model approximation using a 
recursive algorithm to predict light fixture switching and 
blind control patterns inside a controlled building. Their 
approach minimized lighting energy consumption by around 
25% without compromising the occupants’ visual comfort 
in office and laboratory environments. Moreover, Luo et al. 
(2022) developed an ML-assisted model for automated 
louvres control. Their model-based control strategy was based 
on an efficient-compact set of variables that have been 
identified using a three-phase identification process, i.e., 
filtering features, embedding ML algorithms, and wrapping 
the model by trimming the least important features until 
the desired performance is reached. Their findings revealed 
that spatiotemporal features, such as the distance between 
occupant grid and each louver, dominate other features in 
terms of importance in developing MLM to replace repetitive 
typical simulation techniques. 

The abovementioned literature review shows that there 
are potentials for standardizing ML application in daylight 
and visual comfort assessment. Hence, this study advances 
the current approach and elevates the domain towards a 
standardized stream. Deconstruction of building spatial 
layout components is obtained from the literature, and an 
important building characteristic (internal finish) is 
introduced as a training feature. In addition, a recently 
developed ML training technique (eXtreme Gradient Boosting) 
(XGBoost) is tested on the presented spatial components 
approach. Answers to the following research questions are 
of this paper’s concern: 
‐  How accurate an XGBoost ML model is in predicting 

daylight? 
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‐  How does the XGBoost ML model perform against 
another popular decision tree ML model in predicting 
daylight? 

‐  What is the potential scalability of standardizing this 
approach in daylight ML modelling? 

The contribution of this study to the literature lies in 
three main aspects. First, a new feature is introduced to an 
established daylight ML modelling approach. Second, the 
application of state-of-the-art ML algorithms (i.e., XGBoost) 
in daylight ML modelling is explored. Finally, the daylighting 
conditions of a southern hemisphere region are used to 
expose this approach to new horizons. 

The content structure of the paper is as follows: Section 2 
highlights the theory behind the spatial component 
deconstruction approach and the application of ML modelling 
in the daylight and visual comfort domain. Section 3 presents 
the detailed methodology used to apply the presented theories 
in a simulated environment. Section 4 provides the results 
of this study with discussions. Finally, Section 5 presents the 
conclusions of this research. 

2 Theory 

2.1 Daylight 

Daylight is the main factor influencing occupants’ visual 
comfort (Davoodi et al. 2020). Many metrics have been 
explored to interpret how comfortably is the indoor space 
lit. The literature is not unanimous about which metric is 
best (Wagiman et al. 2021). The useful daylight illuminance 
(UDI) is one of the most interpretive metrics for daylight 
performance, refined in 2012 by Mardaljevic et al. after 
being firstly introduced in 2005 as a daylight metric (Nabil 
and Mardaljevic 2005; Mardaljevic et al. 2012). This metric, 
widely served in the literature, is calculated using hourly sky 
conditions (including the sun movement) from an existing 
dataset and has shown a robust assessment of indoor 
passive illuminance (Fang et al. 2022; Khidmat et al. 2022; 
Montaser Koohsari and Heidari 2022). In general, UDI 
provides a fraction of the time when the illuminance of a 
specific spot is within a nominated range. The illuminance 
of a specific spot is measured in lux, equal to the illumination 
of a 1 m2 surface that is 1 m away from a single light source 
(Blackwell 2000). Because the daylight illuminance range 
includes desirable and undesirable levels of illuminance, 
UDI is introduced as four bins levels, including UDIfell-short 

(UDI-f) with an illuminance of less than 100 lux, UDIsupplementary 
(UDI-s) for the values between 100 lux to 300 lux, 
UDIautonomous (UDI-a) for the values between 300 lux to 
3000 lux, and UDIexceeded (UDI-e) for the values of more 
than 3000 lux (Mardaljevic et al. 2012). Figure 1 shows a 
visualization of the UDI four bins’ categories. The classification 

 
Fig. 1 UDI range with four bins of illuminance levels 

of the UDI range helps achieve visually comfortable indoor 
environments in an early design phase and in determining 
possible glare and underlit spaces. 

2.2 Building layout generation 

Building layout generation is an essential process for 
generating a synthetic training dataset. The 4-square method 
presented by Le-Thanh et al. (2022) is a recent technique to 
generate different building layouts with a simple concept. 
There are four equal squares stacked to represent one large 
square. Each square moves towards a specific direction 
within a specific range to make a 4-square clockwise shift 
process. This process enables the modeler to generate a 
different building layout each time a slight movement of 
any square occurs (details in Appendix A). In addition, a 
random population of windows on one or more sides of 
the layout can be done to allow daylight illuminance. 
Several thresholds can be done to regulate the population of 
windows so they do not take the unusual window-to-wall 
ratios or be populated on undesirable sides of the layout. 
The detailed movements and directions of the 4-square 
method are shown in Table 1. 

2.3 Decision trees ensemble models 

Ensemble trees ML models combine weak ML models, 
such as decision trees, to generate a superior ML model 
that performs better than a weak ML model (Belitz and 
Stackelberg 2021; Arashpour et al. 2023). The two most 
popular techniques for developing decision tree-based 
ensemble models are bagging and boosting (González et al. 
2020). Each decision tree is built using a randomly selected 
subset of the training dataset in bagging. The average 
prediction of decision trees for a given data point is the 
estimation of the bagging ensemble ML model (Zhang et al. 
2022). A well-known representation of the bagging technique   

Table 1 4-square method movements and directions to generate 
different building layouts 

Square Movement range Unit Axis of movement (to the x-axis)

A 0–2000 mm 0° 

B 0–2000 mm 270° 

C 0–2000 mm 180° 

D 0–2000 mm 90° 
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is random forest (RF), in which each subset is chosen through 
a random selection process with replacement. RF handles 
higher dimensionality and missing data very well; however, 
since it ultimately takes the average of multiple decision 
trees, it might not be exact in objectives’ values (Wang et al. 
2019).  

On the other hand, boosting technique organizes weak 
ML models differently. In decision tree-based boosting, 
decision trees are trained sequentially to minimize prediction 
error (Lou et al. 2016; Oyedele et al. 2021). Although 
boosting generates highly accurate models, it might be 
prone to overfitting if hyperparameters are mistuned 
(Arashpour 2023). eXtreme Gradient Boosting (XGBoost) 
is the cutting-edge representation of the boosting training 
techniques of ML models (Chen and Guestrin 2016). 
Figure 2 illustrates the training concept for both bagging 
and boosting.  

2.4 Training data typology 

Enabling ML models to predict daylight illuminance in 
different building layouts depends on many variables. The 
prediction of UDI cannot be made for the whole building 
layout at once, and it must be done using a sensor-based 
followed by collective gathering. Initially, the layout floor 
surface is deconstructed into a mesh of sensors that capture 
daylight illuminance in an hourly-based routine, as shown 
in Figure 3. Then, the annual amount of illuminance is 
estimated to identify the sensors’ four bins’ values, i.e., 
UDI-f, UDI-s, UDI-a, and UDI-e. These objectives are used 
to develop every sensor’s ML model separately based on 
several variables (Le-Thanh et al. 2022). 

First, the perimeter distance from the sensor to every 
surrounding obstacle, e.g., walls, is calculated. The sensor 
becomes the source of 60 rays in 360° that measure how far 
each obstacle is from the sensor and in which direction. 
This information is stored in distance variables x1, …, x60 

(details in Appendix A). Second, the distance from every 

sensor to each corner of the 4 windows’ is calculated by a 
set of 4 distance rays generated from the sensor to the 
windows’ corners. This information is stored in distance 
variables dn1, …, dn4, where n is the window number. 

It should be noted that the maximum number of 
windows is set to 4 in this study. Third, the position of the 
sensor in accordance with the window is determined by the 
variable w. It is the angle between a north y-axis generated 
from every sensor and the beginning or the end of every 
window. Because the maximum number of windows is set 
to 4, this information is stored in variables wn1, …, wn2, 
where n is the window number. Detailed information 
about these variables can be found in reference (Le-Thanh 
et al. 2022). Finally, we have introduced a variable to this 
approach called I. It is the total reflectance of the internal 
finish of a building layout. Internal finishes (or reflectance 
by internal surfaces) significantly influence the distribution 
of UDI within the internal space (Brembilla et al. 2022; 
Montaser Koohsari and Heidari 2022). Because this is not  
a sensor-based generated variable, sensors of the same 
building layouts are assigned with the same I. 

Therefore, the structure of the training dataset is a matrix 
of m rows and 89 columns, where m is the number of sensors, 
and 89 is the sum of x, d, w, and I variables, in addition to 
the objectives UDI-f, UDI-s, UDI-a, and UDI-e.  

3 Research method 

3.1 Model development 

In this study, a new approach is made by performing 
daylight illuminance ML predictions using a weather 
dataset for a southern hemisphere region. Unlike regions in 
the northern hemisphere, the sun’s path is tilted towards 
the north, making the northside façade more exposed to 
daylight illuminance than the south side (Alsharif et al. 
2022). Melbourne, Victoria, is the location for the case study 
and all daylight simulations. The exact weather dataset  

 
Fig. 2 A schematic illustration of (a) Bagging and (b) Boosting techniques 
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Fig. 3 Customized mesh of sensors to capture UDI 

 
Fig. 4 The sun’s path in the southern hemisphere 

is “AUS_VIC.Melbourne.948680_(RMY)”. Therefore, the 
machine learning models (MLMs) generated from this study 
cannot be generalized for use in other regions. The sun’s 
path in the southern hemisphere is shown in Figure 4. 

Figure 5 shows the workflow that generates and evaluates 
four ML models for UDI-f, UDI-s, UDI-a, and UDI-e. As a 
beginning, 625 different building layouts are generated based 
on the 4-square method mentioned in Section 2.2. In this 
step, Grasshopper is used within Rhino 7 environment to 
code the building layout generation module. In parallel   
to the building layout generation, windows are populated 
randomly on one or more sides of each generated layout 
with several thresholds. The height of the building layout is 
fixed to 2700 mm, and the sill height is constrained to 1250 mm, 
with a window height of 1200 mm. Then, the working level 
plane (750 mm) is deconstructed into a mesh of sensors 
varying from 184 to 256 depending on the layout’s size. It 
should be noted that the glazing system used in this study 
is a double-glazed system with 80% transmittance. 

After generating the building layouts, ClimateStudio 
software is incorporated in Grasshopper to perform daylight 
simulation of all 625 cases to obtain the objectives UDI-f, 
UDI-s, UDI-a, and UDI-e of every sensor in every building 

layout. This process will generate a matrix of 126,967 × 89, 
where 126,967 is the number of total sensors, and 89 are the 
variables and objectives explained in Section 2.4. The obtained 
matrix is the dataset used for developing the ML models. 

The dataset is divided into the training dataset (80%) 
and the testing dataset (20%). The division is based on the 
building layout and a total of 497 building layouts (101,630 
sensors) for training and 128 building layouts (25,337 
sensors) for testing. The training dataset is used to develop 
four ML models for four different predictions, i.e., UDI-f, 
UDI-s, UDI-a, and UDI-e, using the XGBoost algorithm 
for decision tree-based boosting models. After the training 
phase is complete, the testing dataset is fed to the generated 
MLMs using only the variables x, d, w, and I, while holding 
out the objectives UDI-f, UDI-s, UDI-a, and UDI-e. Finally, 
the predicted results are compared against the testing 
dataset to evaluate the performance of the MLMs. 

3.2 Decision trees algorithms and hyperparameters 
tuning 

Ensemble MLMs require hyperparameter tuning to predict 
objectives precisely, especially in the case of boosting models 
(Veloso et al. 2021). RF and XGBoost models are developed 
using the same dataset to compare their performances. In 
addition, hyperparameters tuning is conducted to maximize 
the predictions’ accuracy. 

Hyperparameters in MLM determine the learning process 
(Yang and Shami 2020). The tuning of these parameters 
changes the performance of MLMs. In this study, the 
tuned hyperparameters include the number of estimators, 
maximum depth, and learning rate. 

The number of estimators is the number of decision 
trees used to generate the ensemble model. In some cases, 
more decision trees are preferred depending on the complexity 
of the interrelated variables. However, this comes with the 
cost of the high computational effort needed. Also, it may 
overfit the model to the training data if an excessive number 
of decision trees is assigned (Papadopoulos et al. 2018). 

The maximum depth hyperparameter determines how 
many branches each decision tree has. This is a highly 
critical parameter due to its role in controlling overfitting 
the model. Higher depth causes a decision tree to overlearn 
relations of a specific sample and make it inaccurate to 
make generalizations with new datasets, while the opposite 
happens if shallow decision trees are assigned to the model 
(Shekar and Dagnew 2019). 

The learning rate is the amount of shrinkage assigned 
to model features to make the model conservative. The 
algorithm assigns weight to every decision tree during the 
training process. Reducing the learning rate hyperparameter 
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makes the model less flexible to learn new complexities 
throughout the dataset, while increasing it makes the model 
oscillate around ideal values and minimum errors (Park 
and Ho 2021). 

The hyperparameters’ tuning process involves establishing 
a range of values and training the models using a job list  
of all possible combinations of hyperparameters. Finally, 
the hyperparameters combination with minimum error is 
nominated as the tuned model (Veloso et al. 2021). The 
proposed ranges start with minimum values used in similar 

approaches and end with assumed values with the plan of 
expanding the range if the MLMs do not reach their best 
performance by that end. The scoring metric for assessing 
the accuracy of hyperparameters tuning is the root mean 
square error (RMSE) and is calculated using a cross-validation 
approach. The dataset is divided into (k = 10) folds, and the 
MLMs are developed using (k – 1 = 9) folds. The generated 
models are scored based on the remaining fold, and RMSE 
is calculated. The pseudocode explaining the hyperparameters 
tuning process is expressed in Figure 6. 

 
Fig. 5 Overall workflow used in the study 

 
Algorithm: Pseudocode for MLMs hyperparameters tuning 

Input: 
dataset = matrix101630×89 
n = number of estimators (= 100, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000) 
eta = learning rate (= 0.005, 0.01, 0.05, 0.1, 0.5, 1) 
d = maximum depth (= 5, 7, 10, 12, 15, 20, 25, 30) 
j = number of possible combinations of n, eta, d (j= 432) 
XGBoost = f (n, eta, d) 
 
start 
for run = 1 to j do 
     n = n(1-run), eta = eta(1-run), d = d(1-run) 
     split dataset into k (=10) folds 
     for i = 1 to k do 
   testing_data = fold i 
   training_data = all the data except those in ith fold 
   develop XGBoost using training_data 
   calculate the test error e using testing_data 
          save e 
     end 
      save XGBoost 
end  
save the best XGBoost (minimum e) 
report parameters n, eta, d for the best XGBoost 
finish 

Fig. 6 Pseudocode for MLMs hyperparameters tuning 
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3.3 ML models evaluation 

To evaluate the accuracy of the MLMs models, error 
metrics consisting of RMSE, mean absolute error (MAE), 
and coefficient of determination (R2) are used, defined as 
follows in Eq. (1)–(3):  
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i i
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where Xi,real is the actual simulation result, Xi,mdl is the 
prediction by MLMs models, X  is the average of results, 
and n is the number of data records. Better performance of 
the MLMs is indicated when lower values of RMSE, MAE, 
and higher values of R2 are obtained and vice versa. It should 
be noted that these metrics are calculated for eight models, 
each model of the four models (UDI-f, UDI-s, UDI-a, and 
UDI-e) using the two algorithms, RF and XGBoost. 

4 Results 

4.1 Hyperparameters tuning 

Figure 7 demonstrates the performance of the MLMs (i.e., 
UDI-f, UDI-s, UDI-a, and UDI-e) with tuning the number 
of estimators (or trees) using the RMSE as the scoring 
metric for both models, RF and XGBoost. All models 
improved significantly before reaching 1000 decision trees 
in size. XGBoost models almost always perform better than 
RF models. The exception is for models UDI-a and UDI-e  

 
Fig. 7 Comparison of MLM prediction performances 

before reaching the 1000 decision trees size. This might be 
attributed to the lack of enough boosting due to the limited 
number of decision trees. 

The best performing values of all hyperparameters (i.e., 
No. of estimators, maximum depth, learning rate) are 
nominated for developing the MLMs and evaluated in the 
testing phase. Table 2 shows the best values after tuning 
these hyperparameters. The best number of estimators is 
not different for the UDI-f, UDI-s, and UDI-e models 
when using RF or XGBoost of 1000, 1500, and 2000 trees, 
respectively. However, it is different for the UDI-a model 
with 2500 trees in XGBoost against 1500 trees in RF. For 
the maximum depth of trees, the RF model shows its best 
performance with a depth of 20 in all models, while 10 is 
the best depth for trees in the XGBoost model.  

The learning rate is a hyperparameter only for XGBoost 
models. The best learning rate value is 0.05 for UDI-f, UDI-s, 
and UDI-a models, while 0.01 is the optimum learning rate 
value for the UDI-e model.  

4.2 Models’ evaluation 

The testing dataset is used to predict UDI-f, UDI-s, UDI-a, 
and UDI-e by feeding the variables x, d, w, and I to the 
developed MLMs, as in Figure 5. Then, the predicted UDI 
values are evaluated against the UDI values preserved in 
the testing dataset. Table 3 shows the RMSE, MAE, and R2 
for the MLMs, i.e., RF and XGBoost. 

RF models show competitive performance in predicting 
UDI with a minimum R2 of 0.88 in the UDI-f model. The 
most accurate RF model is the UDI-e model with RMSE, 
MAE, and R2 of 6.91, 4.39, and 0.96, respectively. The UDI-s 
and UDI-a come in second and third in terms of accuracy 
with RMSE, MAE, and R2 of 3.86%, 1.56%, and 0.94 for the 
UDI-s model, and 7.71, 5.36, and 0.94 for the UDI-a model 
respectively. 

On the other hand, XGBoost models deliver excellent 
performing MLMs in predicting UDI values with a minimum 
R2 of 0.972 in the UDI-f model. UDI-a is the most accurate 
MLM with RMSE, MAE, and R2 of 2.72, 1.48, and 0.992, 
respectively. The second and third most accurate models are 
the UDI-e and UDI-s, respectively, with RMSE, MAE, and 
R2 of 3.24, 2.07, and 0.991 for the UDI-e, and 1.71, 0.67, 
and 0.988 for the UDI-s respectively. 

Figure 8 illustrates a scatter plot of the predicted UDI-f, 
UDI-s, UDI-a, and UDI-e values against the simulated 
values for the same sensors in the testing dataset using the 
XGBoost models. It can be noticed that UDI-a and UDI-e 
models have an excellent distribution of UDI values that 
helps the MLMs learn better the interrelationship between 
variables. Differently, UDI-f model has a poor distribution, 
which is potentially the reason behind this model being the 
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least accurate. This distribution is attributed to the nature 
of UDI-f narrow threshold of 0–100 lux, which is rare in 
the dataset. 

4.3 ML models performance 

The MLMs perform very well, especially the XGBoost 
models, as shown in Table 3. However, a significant 
improvement can be noticed when looking at the UDI-f 
model. The UDI-f model represents the fell-short areas in 
providing adequate lighting over a year. It is different from 
other models because its nature is almost always insignificant 
except in narrow corners that light cannot always access.  

In XGBoost models, the accuracy of the UDI-f model has 
increased significantly from the RF models due to the 
sequential learning provided in XGBoost. Unlike in RF 
models, decision trees in XGBoost are not trained until 
their predecessors are trained. Therefore, the pattern of 
these unusual underlit areas is easier to be captured by 
such ML models. In RF models, decision trees are trained 
in parallel, which makes them more prone to miss the rare 
existence of the UDI-f model being significant. 

Differently, the UDI-e model is highly accurate when 
using either of the training algorithms. As mentioned in 
Section 2.1, the UDI-e model determines when the sensors 
are exceedingly lit over a year. Usually, daylight exists the 

Table 2 Hyperparameters after tuning for both models RF and XGBoost 
 

UDI-f UDI-s UDI-a UDI-e 

Hyperparameter XGBoost RF XGBoost RF XGBoost RF XGBoost RF 

No. of estimators 1000 1000 1500 1500 2500 1500  2000 2000  

Maximum depth 10 20 10 20 10 20  10 20  

Learning rate 0.05 — 0.05 — 0.05 — 0.01 — 

Table 3 Error metrics of both MLMs RF and XGBoost 
 

UDI-f (%) UDI-s (%) UDI-a (%) UDI-e (%) 

Metric XGBoost RF XGBoost RF XGBoost RF XGBoost RF 

RMSE 1.41 2.83 1.71 3.86 2.72 7.71 3.24 6.91 

MAE 0.36 0.76 0.67 1.56 1.48 5.36 2.07 4.39 

R2 0.972 0.88 0.988 0.94 0.992 0.94 0.991 0.96 

 
Fig. 8 Comparison between predicted and simulated samples for the testing dataset (XGBoost): (a) UDI-f model, (b) UDI-s model, 
(c) UDI-a model, (d) UDI-e model 
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most in areas beside windows. Therefore, the high accuracy 
in predicting UDI-e can be attributed to the rational 
correlation between the location of windows and exceedingly 
lit areas. 

Another interesting observation is the absence of a 
correlation between models’ prediction errors (RMSE and 
MAE) and models’ accuracy (R2). For example, the UDI-f 
model has a lower error in predicting the percentage of time 
a lighting condition is than the UDI-a model. However, the 
UDI-a has a higher prediction accuracy than the UDI-f 
model. This may be attributed to the ubiquity of patterns 
in the information of each model. In the same example, the 

UDI-a model has more patterns within its dataset than the 
UDI-f model. The range of illuminance of the UDI-f model 
is narrower than in the UDI-a model, as demonstrated  
in Figure 1. This makes the accuracy of prediction more 
possible despite the prediction error. The UDI-e model 
has the advantage of being accurate due to the reason 
mentioned before of having a direct relationship with 
windows location. 

4.4 Comparison between predicted and simulated results 

Figure 9 illustrates a 3-dimensional representation of 

  
Case n1 Case n2 

Metric 
Simulated Predicted Simulated Predicted 

UDI-f 
(0 – 100 lux) 

UDI-s 
(100 – 300 lux) 

UDI-a 
(300 – 3000 lux) 

UDI-e 
(>3000 lux) 

Fig. 9 3D illustration of predicted and simulated UDI values 
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randomly generated 2 cases, n1 and n2. The illustration 
compares these cases when simulated and predicted for the 
four models, UDI-f, UDI-s, UDI-a, and UDI-e. Case n1 has 
1 window oriented towards the west and has 184 sensors. 
Case n2 has 2 windows oriented toward the west and north 
and has 211 sensors. The four UDI ranges are illustrated 
with four different colors. Sensors with low UDI values 
have brighter shades and become gradually saturated with 
the specified color as UDI values increase. The variable I 
denoting the internal finishing is determined using the 
total visible reflectance (Rvis) of the internal finish; it is 0.65 
and 0.5 for the cases n1 and n2, respectively. 

When looking at predictions of the UDI-f model 
illustrated in red color in Figure 9, the MLM can capture 
the general lack of illuminance pattern in the layout. In 
case n1, almost all sensors are not “fell-short” in daylight 
illuminance throughout the year, except for the far south- 
eastern corner of the layout. This may be attributed to the 
inability of daylight to access this pocketed corner away 
from the only window available. The prediction of the 
developed XGBoost model was accurate enough to capture 
this pattern and provide the under-lit area. In case n2, 
the same pattern exists in addition to the eastern corner 
of the layout. The predictions in case n2 tend to be slightly 
exaggerated compared to case n1. However, the collective 
pattern of under-lit areas is similar to the simulated model.  

Next, the UDI-s model denotes areas with an illuminance 
of 100–300 lux throughout the year. In the case of n1, the 
simulated model shows the far areas from the window as 
supplementarily lit but not under or autonomously lit. This 
pattern is captured successfully but with counting sensors 
previously captured by the UDI-f model. This contradiction 
can be avoided by introducing a new framework in future 
research that enables UDI models to correct each other in a 
hierarchical method and exclude already counted sensors 
in predecessor models. The current framework develops 
each model on a separate objective and makes predictions 
independent of other models. In case n2, the MLM also 
captures the general pattern of the simulated model. However, 
areas close to walls seem to be either overestimated or 
underestimated. Luckily, the outcome is not considered as 
individual sensors but as a whole layout that enables the 
modeler to notice outlier sensors in the mesh of sensors. 

The UDI-a model represents the autonomously lit places 
where mostly desirable illumination exists. In the case of n1, 
the simulated model illuminance is within the UDI-a levels 
in the areas around the window but not the closest. This is 
an expected pattern as these areas are exposed to daylight 
during most of the day to provide 300–3000 lux illumination 
levels over the year. The predicted results of sensors follow 
a similar pattern collectively with excellent predictions. This 

is attributed to the verity of patterns within the dataset to 
enable detailed development of the UDI-a XGBoost model. 
The wide range of UDI-a illuminance helps in providing 
more results in the dataset for better development. Similarly, 
the simulated case n2 shows UDI-a ranges around the two 
windows but not just under them. The prediction also shows 
an outstanding ability to generate a similar pattern, especially 
in the corner between the two windows with detailed and 
complex geometrical characteristics.   

Finally, the UDI-e model presenting the exceedingly 
illuminated areas within the layout is color-coded blue 
in Figure 9. In this model, the direct relationship between 
these areas and windows location helps the model easily 
predict using variables w and d from the dataset. In the case 
of n1, the simulated model shows exceedingly illuminated 
areas close to windows. This is due to the continuous 
exposure of these sensors to daylight throughout the year. 
The MLM model predicts these sensors accurately. In case n2, 
the exceedingly illuminated sensors exist in the common 
area between the two windows. Similar to case n1, the MLM 
predicts these sensors efficiently for the reasons above. In 
models UDI-a and UDI-e, the XGBoost generated accurate 
models for different reasons, including various patterns 
within the dataset and direct correlation (high sensitivity) 
with specific variables. 

5 Conclusion 

The presented study develops ensemble machine learning 
(EML) models for useful daylight illuminance (UDI) 
predictions. The development advances ML daylight 
modelling approaches in different fronts. A new feature 
to the ML training dataset I (internal finish) is introduced, 
and state-of-the-art EML algorithms, eXtreme Gradient 
Boosting and Random Forest, are employed. The XGBoost 
models are compared with another random forest (RF) 
algorithm-generated model set. The framework of this study 
consists of four main stages: synthetic dataset generation, 
dataset preparation, ML model training, and evaluation. 

Four ML models describing the condition of UDI were 
developed to predict the visual comfort of building layouts, 
namely, UDI-f (fell short), UDI-s (supplementary), UDI-a 
(autonomous), and UDI-e (exceeded). Deconstruction of 
building layout to standardized spatial components is 
performed for a customized mesh of sensors using variables 
x (distance from a sensor to obstacles), d (distance from a 
sensor to corners of windows), w (orientation of windows 
with correspondence to sensors), and the new variable I 
(internal finish). The following are the main findings of 
this study: 
‐  All generated EML models performed very well with a 
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minimum coefficient of determination of R2 = 0.88 for 
RF models, and R2 = 0.972 for XGBoost models. These 
models are chosen after tuning the hyperparameters. 

‐  The UDI-a model is the best-performing model among 
all with R2 = 0.992. This is due to the completeness of the 
dataset, including a wide range of illuminance values. In 
addition, UDI-a performs the second best (R2 = 0.991), 
which can be explained by the unique relationship 
between this model and windows. The areas immediately 
around windows are exposed to daylight almost all day. 
Hence, the pattern of this model is efficiently captured 
by the EML models. 

‐  The developed framework is generalizable since it is 
open to introducing new features in different cases and 
the ability to choose efficient ML algorithms that need 
reasonable computational resources. 

Some limitations of the current study should be 
highlighted. Firstly, specific weather data for a southern 
hemisphere region has been used to generate the training 
dataset. Therefore, different locations need other datasets 
generated based on their weather data. Second, the developed 
frameworks generated test rooms that are limited in area, 
windows, and number of zones. Third, the training dataset 
used to develop the models are synthetic data (simulated). 
Finally, the outcomes of the developed models in their current 
state are only useful for early-phase qualitative judgments. 
Designers can infer general illuminance patterns and potential 
discomfort situations using the proposed framework. The 
framework is not ready for precise illuminance predictions 
of a single sensor. 

Future research can consider a higher level of complexity 
in generating building layouts. The utilized method in this 
study forms standard layouts by overlapping four squares. 
Moreover, additional features can be introduced to the 
training dataset to improve prediction performance in 
complex designs. 

Appendix A 

Figure A1 demonstrates the 4-square method employed  
in this study. In this method, 4 squares (A, B, C, and D) 
move clockwise in an increment of 1 mm with a range of 
[0–2000 mm]. This movement enables the formation of 
any regular plan (2 examples are shown where red dots are 
the original positions centres, and blue dots are the centres 
after random movements are applied). Random number  
of windows ranging of [1–4] is populated to the output 
building layouts at random locations (1 window on the 
left side example, 4 windows on the right side example). 
Combined with 4-square method, a total of 625 unique 
building layouts were generated. 

Figure A2 illustrates the variable x “a spatial component”.   

 
Fig. A1 4-square method to generate building layouts with random 
number of windows (1–4) 

 
Fig. A2 An illustration of the variable x for a sensor in a building 
layout 

It denotes 60 distances on a 360° space plan from the light 
sensor to any obstacle surrounds it. 
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