

Research A
rticle

Advances in M
odeling and

Sim
ulation Tools

E-mail: wangda.zuo@psu.edu

Fast prediction of indoor airflow distribution inspired by synthetic
image generation artificial intelligence

Cary A. Faulkner1, Dominik S. Jankowski2, John E. Castellini Jr.1, Wangda Zuo3 (), Philipp Epple4, Michael D. Sohn5,
Ali Taleb Zadeh Kasgari6, Walid Saad6

1. Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
2. HySON Institut, Sonneberg, Germany
3. Department of Architectural Engineering, Pennsylvania State University, University Park, PA, USA
4. Department of Mechanical Engineering, Coburg University of Applied Sciences, Coburg, Germany
5. Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
6. Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, USA

Abstract
Prediction of indoor airflow distribution often relies on high-fidelity, computationally intensive
computational fluid dynamics (CFD) simulations. Artificial intelligence (AI) models trained by CFD

data can be used for fast and accurate prediction of indoor airflow, but current methods have
limitations, such as only predicting limited outputs rather than the entire flow field. Furthermore,
conventional AI models are not always designed to predict different outputs based on a continuous

input range, and instead make predictions for one or a few discrete inputs. This work addresses
these gaps using a conditional generative adversarial network (CGAN) model approach, which is
inspired by current state-of-the-art AI for synthetic image generation. We create a new Boundary

Condition CGAN (BC-CGAN) model by extending the original CGAN model to generate 2D airflow
distribution images based on a continuous input parameter, such as a boundary condition.
Additionally, we design a novel feature-driven algorithm to strategically generate training data, with

the goal of minimizing the amount of computationally expensive data while ensuring training
quality of the AI model. The BC-CGAN model is evaluated for two benchmark airflow cases: an
isothermal lid-driven cavity flow and a non-isothermal mixed convection flow with a heated box.

We also investigate the performance of the BC-CGAN models when training is stopped based
on different levels of validation error criteria. The results show that the trained BC-CGAN model
can predict the 2D distribution of velocity and temperature with less than 5% relative error and

up to about 75,000 times faster when compared to reference CFD simulations. The proposed
feature-driven algorithm shows potential for reducing the amount of data and epochs required to
train the AI models while maintaining prediction accuracy, particularly when the flow changes

non-linearly with respect to an input.

Keywords
artificial intelligence;

indoor airflow;

conditional generative adversarial

 network;

computational fluid dynamics

Article History
Received: 20 October 2022

Revised: 13 December 2022

Accepted: 03 January 2023

© Lawrence Berkeley National Laboratory,

under exclusive licence to Tsinghua

University Press 2023

1 Introduction

Simulation of indoor airflow distribution can be used for
understanding indoor air quality, thermal comfort, and
building energy efficiency. Computational fluid dynamics
(CFD) methods are a popular approach for indoor airflow
simulation (Li and Nielsen 2011) that numerically solve the

governing equations of fluid flow, such as conservation of
mass, momentum, and energy. For example, Han et al. (2021)
used a CFD approach to simulate data center cooling scenarios
to provide guidance for reducing energy consumption
while meeting thermal requirements. Researchers have
also used CFD methods to study the impact of ventilation
strategies on thermal comfort (Gangisetti et al. 2016; Zhu

BUILD SIMUL (2023) 16: 1219–1238
https://doi.org/10.1007/s12273-023-0989-1

Faulkner et al. / Building Simulation / Vol. 16, No. 7

1220

et al. 2021; Kong et al. 2022), evaluate dispersion of airborne
pollutants (Jayaraman et al. 2006; Castellini et al. 2022;
Mohamadi and Fazeli 2022), and more. While these methods
have been useful in many applications related to indoor
airflow, they are still limited in a number of ways. First,
CFD simulations are computationally expensive (Cao 2019)
and may be too slow for applications such as long-term
evaluations (e.g., annual simulations) or optimization
problems requiring thousands of realizations. Additionally,
it is often infeasible to perform real-time or faster simulations
using CFD, which can be required for emergency
management scenarios (Wang and Chen 2008). Therefore,
there is a need for computationally efficient methods of
indoor airflow distribution prediction.

Modifications to traditional CFD methods have been
proposed to accelerate these numerical simulations, such as
fast fluid dynamics methods (Zuo and Chen 2009, 2010).
While these methods can be used for real-time or faster
flow simulations, they may sacrifice some accuracy compared
to traditional CFD methods. They are also unable to perform
real-time simulations for more complex airflow scenarios.
Data-driven regression methods, such as in situ adaptive
tabulation (Pope 1997; Tian et al. 2018), can quickly predict
key flow information, such as the occupied zone temperature.
However, these methods are often used to predict a few key
outputs rather than the entire flow distribution.

Artificial intelligence (AI) methods have emerged as a
popular approach to address some of the limitations of
indoor airflow prediction. Zhou and Ooka (2020) analyzed
using deep neural networks for isothermal airflow distribution
prediction in an office room and found the trained networks
could accurately predict the velocity distribution 1.9 million
times faster than reference CFD simulations. Generative
adversarial network (GAN) (Goodfellow et al. 2014) models
have become a popular AI approach, particularly for
generating synthetic images (Iqbal and Ali 2018; Barth et al.
2020). Variations of the original GAN model have been
introduced, such as conditional generative adversarial network
(CGAN) (Mirza and Osindero 2014) models, which generate
synthetic data based on categorical labels. In Mirza and
Osindero (2014), the categorical labels include different single
digit numbers and the CGAN model generates synthetic
hand-drawn images for each specified digit. These models
have been used for generating synthetic images of faces at
different ages (Antipov et al. 2017), producing power demand
profiles for different types of buildings (Ye et al. 2022), and
predicting wireless networking environments (Zhang et al.
2022). CGAN models trained by CFD simulations have been
used for flow prediction, for example Chen et al. (2020)
predicted airflow over different airfoil shapes and Wang et al.
(2022) predicted the temperature distribution of different
vortex generator designs for film cooling.

While significant advances have been made to use AI
for indoor airflow prediction, some limitations still exist.
First, many AI models are designed to predict one or a few
critical outputs in the airflow (e.g., average temperature in
the occupied zone or temperature values at a few sensor
locations) rather than the entire airflow distribution, which
is necessary for many modeling applications. GAN and
CGAN models have shown significant potential for image
generation, including prediction of flow distribution, and are
thus worthy of further research for indoor airflow prediction.
However, they are often designed to make predictions based
on discrete categorical inputs, for example different specific
designs or geometries. However, in many scenarios it is
useful to be able to make predictions based on continuous
input parameters. For example, boundary conditions, such
as supply airflow rate in indoor airflow simulations, may
be optimized based on a continuous design space. This is
because the supply airflow rate can be optimized to be any
possible value within a defined range, rather than being
limited to a few select values. Finally, generating training
data for AI models using CFD simulations can be time
consuming, and it is not always clear how much data should
be included to train the models.

To address the limitations discussed, we create a
new Boundary Condition CGAN (BC-CGAN) model for
predicting indoor airflow distribution based on a continuous
input parameter, such as a boundary condition. Furthermore,
we design a novel feature-driven algorithm for efficiently
generating training data. The algorithm minimizes the
amount of generated data while ensuring a diverse set of
training data for AI models by selecting data points based on
significant changes in the flow output. The feature-driven
algorithm and BC-CGAN model are evaluated for two
benchmark airflow cases: (1) an isothermal lid-driven cavity
flow and (2) a non-isothermal mixed convection flow with
a heated box. CFD simulations are used to generate the
training, validation, and test data for both cases. Using the
dimensionless Reynolds number as an input, the BC-CGAN
model predicts the velocity magnitude distribution for the
lid-driven cavity case. For the mixed convection flow with
heated box case, the BC-CGAN model predicts the velocity
magnitude and temperature distributions based on the heat
flux of the box. The model is also designed to reproduce
the existence of an obstruction in the flow, in this case the
box within the flow. Finally, noise is added to some of the
boundary conditions in the CFD simulations for this case
to mimic uncertainty in experimental conditions.

Our specific scientific contributions include: (1) creating
a new BC-CGAN model by extending the traditional
CGAN model to generate images of flow distribution using
a continuous input parameter (e.g., a boundary condition);
(2) designing a novel feature-driven algorithm to strategically

Faulkner et al. / Building Simulation / Vol. 16, No. 7

1221

reduce the amount of required training data while ensuring
training quality for AI models; and (3) demonstrating the
BC-CGAN model framework for two benchmark flow
cases and showing the trained model can predict airflow
distribution with less than 5% relative error and up to
about 75,000 times faster when compared to reference CFD
simulations.

The rest of this paper is organized as follows. The
BC-CGAN model is introduced in Section 2. We then detail
the feature-driven algorithm for generating training data
in Section 3. Next, Section 4 outlines the entire workflow
including generation of training data, model training, and
model evaluation. After that, Section 5 presents the results
for the isothermal lid-driven cavity flow case and Section 6
shows the results for the non-isothermal mixed convection
flow with heated box case. Finally, conclusions are drawn
in Section 7.

2 New boundary condition conditional generative
adversarial network (BC-CGAN) model

In this section, we first provide an overview of the original
GAN and CGAN models, then detail our new BC-CGAN
model.

2.1 Original GAN and CGAN models

The CGAN model used to develop BC-CGAN is based on
the original GAN model (Goodfellow et al. 2014), but
modified to generate images based on different classes.
GAN-based models are selected for this study because of
their strength in image generation (Gonog and Zhou 2019),
which is useful for applying to prediction of indoor airflow

distribution. Furthermore, they have been extended for 3D
image generation applications (Cirillo et al. 2021; Sun et al.
2022; Zhao et al. 2022), which can be beneficial for 3D
airflow prediction. As shown in Figure 1 (left), the original
GAN model consists of two competing neural networks: a
generator (G) and discriminator (D). The generator receives
a vector containing randomly generated noise (z) as an
input and attempts to output an image accordingly (G(z)).
The discriminator receives a mixture of real images (x)
randomly selected from the training data and synthetic or
“fake" images produced by the generator. The discriminator
then attempts to correctly classify each image as real or
fake, and the output of the discriminator (D(G(z)|x)) is
compared with the correct classification of real or fake.
Based on this final outcome, the weights of the generator
(θG) and discriminator (θD) networks are updated and the
process repeats, starting with new batches of training images
and new noise inputs. Early in the training process, the
generator has not learned how to output realistic images, so
the discriminator is able to easily classify the images and
the generator performs poorly. As the generator is trained
over many iterations, it learns how to produce more realistic
images and is able to fool the discriminator. Eventually, the
generator produces images that are so realistic that the
discriminator can no longer distinguish between the real
and fake images. Ideally, the training process would reach
a quasi-equilibrium state where the discriminator has a
50-50 guess at whether images are real or fake, and the
training process can stop. Once the model is trained, the
discriminator is no longer needed and synthetic images can
be generated by providing a noise input to the generator.
Although GAN models can be difficult to train (El-Kaddoury
et al. 2019), in part because they involve two neural networks,

Fig. 1 GAN training architecture (left) and CGAN training architecture (right)

Faulkner et al. / Building Simulation / Vol. 16, No. 7

1222

they have demonstrated advantages in image prediction
over other types of models (El-Kaddoury et al. 2019).

What differentiates the CGAN model from the original
GAN model is the addition of labels, as shown in Figure 1
(right). The generator receives a label (y) as an input in
addition to the noise input and attempts to produce an
image based on this label (G(z, y)), for example an image
of a specific digit in Mirza and Osindero (2014). The
discriminator then instead receives labeled real images (xy)
mixed with labeled images produced by the generator, and
determines whether an image is real or fake considering
the received label. After training, synthetic images can be
generated for a specific category by providing the generator
with a label and noise input. The use of labels is convenient
for generation of images based on specific categories, which
is accomplished by assigning unique labels to the training
data from each category. Since the original GAN model
generates images based on the aggregated, non-categorized
training data, the CGAN model is adopted in this work to
utilize labels for categorizing training data. This can mean
predicting airflow patterns for different labeled building
designs, as in Mokhtar et al. (2020). The use of labels,
however, also adds complexity to training the model, because
the model needs to be trained to generate images for multiple
categories.

2.2 BC-CGAN model

We extend the previously described CGAN model to create
a new BC-CGAN model in this work that generates images
using continuous inputs, rather than a few discrete input
classes. An example of using discrete input classes would be
prediction of airflow distribution in different rooms, where
each specific room configuration would be the discrete
input class determining the output airflow. Indoor airflow
simulations often involve input parameters that can be
considered continuous rather than discrete, such as a boundary
condition like the supply airflow rate. This can be considered
as a continuous parameter because it can have any possible
value within a defined range (e.g., any value between 1 and
5 kg/s), rather than only a few possible values (e.g., a few
potential room configurations). The change in output airflow
distribution can then be studied by varying the input
parameter continuously within its range.

Modifying the existing CGAN model to make predictions
based on continuous input variables poses a challenge, since
the original CGAN model is designed to make predictions
based on discrete integer labels. Although a continuous
input range can be discretized to assign labels for a CGAN
model to many possible values within that range, this
cannot cover every possible value, and a simpler method
can be adopted. Thus, the structure of the CGAN models

needs to be changed to address this challenge. First, we
want the trained CGAN model to receive an input that
represents a specific continuous input value. Additionally,
it is convenient during the training process to assign
discrete labels to the training data, but a method is needed
to convert these labels to the actual values of the continuous
input for the model.

The new BC-CGAN model is shown in Figure 2. The
difference in this model is the input to the generator, where
the noise inputs are replaced with inputs defined specifically
by labels, using a translator. A noise input is used in the
previous CGAN models to generate a distribution of images
within a category, for example different handwriting styles
for a specific digit in Mirza and Osindero (2014). In this
work, we want to generate a specific output given a specific
input, rather than some distribution of outputs for a given
input. Thus, the noise aspect is removed, since a single
output for each input is desired rather than a distribution
of outputs for each input. It should be noted Zheng et al.
(2021) proposed an alternative CGAN approach considering
continuous inputs with the noise aspect included to produce
a distribution of outputs.

The BC-CGAN model uses labels during the training
process as a convenient method for categorizing training
data using an integer value. For generating images after the
model is trained, we want to provide the model specific input
parameter values directly instead of labels. The translator
is thus needed during the training process to convert the
received integer label to a specific input parameter value
for the generator. This allows for: (1) the convenient use of
labels during the training process and (2) the ability for the
generator to learn to produce images based on an input
parameter value, therefore removing the need for labels and
a translator after the model is trained. Since the discriminator

Fig. 2 BC-CGAN training architecture

Faulkner et al. / Building Simulation / Vol. 16, No. 7

1223

is only used during the training process, a simple integer
value label can be provided to the discriminator and a
translator is not needed to convert the label to its parameter
value.

The goal of the translator is to map the received labels
to the associated input parameter values. Consider a scenario
where the input boundary condition for a given flow is a
characteristic velocity U0. For this case, a training label (y)
is assigned to each training data image defined by their
different U0 values. The purpose of the translator is then
to map y to its corresponding U0 value. The function the
translator uses to map these values, U0(y), is dependent
on the training data distribution. Assume a uniformly
distributed training dataset where each data point is chosen
based on a change in U0 of ΔU0, calculated as:

0 0,max 0,min trainΔ ()U U U n= - / (1)

where U0,max and U0,min are the maximum and minimum U0
values in the training dataset, respectively, and ntrain is the
total number of training data points in the dataset. The
function for the translator to map y to a corresponding U0
would then be:

0 0 0 min() ΔU y U y U ,= ⋅ + (2)

Finally, interpolation is used so the input to the
generator, z(y), is a value between zero and one:

[] []0 0 min 0,max 0,min() ()z y U y U U U,= - / - (3)

After training, images can be generated for a specific U0
value by replacing U0(y) in Eq. (3) with the desired U0 value.
This allows for prediction of images using the continuous
input value directly and without the need for a label or
translator. Furthermore, the BC-CGAN model can be
trained to make predictions considering multiple boundary
conditions by using a vector containing multiple labels.
The translator would then output a vector based on the
input label vector (i.e., z(y)). As a starting point, this paper
considers one varying input parameter for each case.

3 Novel feature-driven algorithm for generation of
training data

Although trained AI models can produce results quickly,
generation of training data for the AI models can be time
consuming (e.g., by using CFD). Using uniformly distributed
inputs for training data generation is a simple approach,
but this may include more training data than an AI model
actually needs. For an indoor airflow prediction AI model,
training data may be generated by varying the supply airflow
rate by a constant step of Δm in each CFD simulation. This

may pose a problem when the outputs vary non-linearly
with the inputs, for example if the airflow distribution varies
non-linearly with the supply airflow rate. If the resolution
of generated training data is not sufficiently high, a
uniformly distributed training dataset may exclude crucial
points in regions where the gradient of the outputs with
respect to the inputs (xf) is high. This may exclude crucial
data points that capture the non-linear trends between
inputs and outputs. On the other hand, in regions where
xf is low, a high resolution of generated training data may
result in many redundant data points and excessive time
required to produce the training data. When generation of
training data is costly, a non-uniformly distributed training
dataset can be beneficial for training AI models, since
redundant training data points can be avoided while still
including sufficient training data for the AI models.

To address this problem, we propose a novel
feature-driven algorithm to create non-uniformly distributed
training datasets that minimize the amount of generated
training data for AI models. The algorithm strategically
selects training data points based on significant changes in
the outputs with respect to the inputs. In its strategic selection,
the algorithm includes more data points in regions where
xf is high and excludes redundant data points in regions
where xf is low. The feature-driven algorithm can be
used for multiple inputs (e.g., multiple varying boundary
conditions). However, we focus on a single varying input
parameter in this paper and explain the algorithm in detail
assuming one varying input.

The feature-driven algorithm flowchart is detailed in
Figure 3. First, initial grid points for the training dataset are
included to provide a few baseline points, as well as to
create a defined range for the training data. The grid points
for the training data are defined by their different values of
inputs, represented by x. The algorithm begins by computing
the changes in critical outputs between neighboring grid
points, for example between x1 and x2. For each pair of
neighboring grid points, if the change in critical outputs
(e.g., 2 1() ()f x f x| - |) is greater than the defined threshold,
ε, a new grid point is added between those two points
(e.g., at (x2 + x1)/2). In this case, a new CFD simulation is
performed based on the input parameter defined by the
new grid point, and the simulation output is added to the
training data. The results from comparing neighboring grid
points are cached to avoid performing the same comparison
redundantly during the process. If the change in critical
outputs does not exceed ε, then no new grid point is added
between those two points and a CFD simulation is not
performed. After completing this for each pair of neighboring
grid points, the algorithm checks if any new grid points
were added in the most recent iteration. If no new points
were added, then the process ends since further iterations

Faulkner et al. / Building Simulation / Vol. 16, No. 7

1224

Fig. 3 Flowchart of the feature-driven algorithm

will not add any new grid points. If there were new grid
points added in the most recent iteration, then the algorithm
checks if a maximum resolution has been reached. The
initial resolution is the difference between values of the initial
neighboring grid points, e.g., x2 − x1. A defined maximum
resolution can be useful to prevent excessive training data
from being generated with neighboring inputs very close
together. The process ends if the maximum resolution has
been reached. If the maximum resolution has not been
reached, then the resolution increases by a factor of two
(e.g., (x2 − x1)/2). After increasing the resolution, the set of
grid points are reset with the newly added grid points. The
process repeats by computing the change in critical outputs
between neighboring grid points, now with the newly
added grid points. The process ends once either no new
grid points are added in an iteration or once the maximum
resolution is reached.

4 Description of workflow

The description of the entire workflow including
generation of training data, model training process, and
model evaluation is shown in Figure 4 and described in this
section.

The workflow begins with the data generation process.
Initial training data points are first generated to provide
baseline points for the feature-driven algorithm and to
define a range for the training data. In this case, a few CFD
simulations are performed to generate these initial points.
Using too many initial points can potentially include
redundant training data, so fewer initial points should be
used to allow the algorithm to determine what data is
necessary to be included. For the cases studied in this paper,
we find that, for a given ε, the feature-driven algorithm only
becomes sensitive to the initial data points when a large
amount of initial data is included. This is because using a
large amount of initial data may include redundant data
points that the algorithm would not include. Using fewer
initial data points often results in very similar training data
sets, because the algorithm is designed to find the necessary
data points within the input range, which are similar
regardless of the initial data points. Thus, we use only about
ten initial data points for the cases in this paper, which
uniformly span the range of the studied input parameters.

Next, the feature-driven algorithm is used to select what
input parameter values should be used for the additional
CFD simulations to generate the rest of the training data.
In this paper, a few training datasets are generated with
different settings of the feature-driven algorithm for each
case. Additionally, uniformly distributed training datasets
are generated for comparison against the training datasets
produced by the feature-driven algorithm. BC-CGAN models
are then trained using the different training datasets, where
the initial settings of each BC-CGAN model are identical.
We then compare the training speed and prediction
performance for the BC-CGAN models trained by the
different datasets. Since the training process is inherently
stochastic, we train ten BC-CGAN models for each training
dataset to understand their training and prediction
performance over several runs.

To train the BC-CGAN models, one unique label is
assigned to each training data image within its dataset.
Additionally, a few reference data points are generated
using CFD simulations for validation of the BC-CGAN
models during training. Periodically during the training
process, the BC-CGAN model produces flow distribution
outputs based on the validation data input values. Its
outputs are then compared against the validation data points
and a relative error metric is computed for each output.
The error metric is calculated based on error between the flow

Faulkner et al. / Building Simulation / Vol. 16, No. 7

1225

outputs (e.g., velocity and/or temperature) at each point
in the flow. If the error metric between the BC-CGAN
prediction and validation data is below a defined threshold
for all the validation data points, then the model is considered
to be sufficiently trained and the training stops. Otherwise,
training continues until this criteria is satisfied. In this
paper, we save the trained BC-CGAN models at different
error metric thresholds to compare the tradeoff between
training speed and prediction performance for different
error thresholds.

Finally, the trained BC-CGAN models are evaluated
against test data points that were not selected from the
training or validation data. The test data is selected by
using a bin sampling technique to produce ten random input
values that span the defined input range. CFD simulations
are then performed to generate the test data based on the
ten input values. The BC-CGAN models are evaluated by
generating their flow distribution outputs based on the test
input values and computing their relative error against the
test data. The BC-CGAN models are trained to predict 2D
airflow distribution in this paper, but can be extended for
3D airflow prediction in future research.

5 Isothermal case: lid-driven cavity flow

The first case studied in this paper is an isothermal lid-driven
cavity flow. We begin with a description of the setup for
this flow case. Next, we show the settings used for the
BC-CGAN model and the generated training datasets for
the BC-CGAN models in this case. Finally, the training and
evaluation results for the BC-CGAN models trained by the
different datasets are detailed.

5.1 Case description

The setup of the isothermal lid-driven cavity flow case is
shown in Figure 5. This is a meaningful case because, despite
having a simple configuration, the flow pattern changes
significantly depending on the initial conditions and boundary
conditions. Because of this, it is a benchmark flow case that
is frequently studied in the literature using both physical
experiments (Kuhlmann et al. 1997; Blohm and Kuhlmann
2002) and numerical simulations (Burggraf 1966; Ghia et al.
1982; Albensoeder and Kuhlmann 2005; Khan et al. 2015).
This flow is contained in a box of length L on all sides. The

Fig. 4 Description of entire workflow including generation of training data, model training, and model evaluation

Faulkner et al. / Building Simulation / Vol. 16, No. 7

1226

Fig. 5 Diagram of the lid-driven cavity flow

left, right, and bottom walls are stationary, while the lid
moves at a constant velocity of U0 to the right. The motion
of the lid causes a circulation pattern of the flow within the
box. The flow is modeled as 2D, steady, incompressible,
and isothermal in this study.

The lid-driven cavity flow is often defined by its Reynolds
number (Re) in the literature (Ramanan and Homsy 1994;
Chiang et al. 1998), which characterizes the ratio of inertial
to viscous forces in the flow. Thus, we use Re as the input
parameter for the flow in this study. For this case, Re is
calculated as:

0Re U L= / (4)

where U0 is the constant velocity of the lid, L is the length
of each side of the box, and ν is the kinematic viscosity of
the flow.

We define the range of Re values to be from 100 to
10,000. We hold U0 and L constant while changing ν to
vary the Reynolds number for the CFD simulations in this
paper. All the other simulations settings and boundary
conditions remain the same for each simulation, so the
BC-CGAN models only receive Re as an input. The flow
output we study for this case is the steady-state distribution
of velocity magnitude. This means the training data produced
by CFD simulations is comprised of velocity magnitude
distribution data based on the input Re. The BC-CGAN
models are then trained to output the velocity magnitude
distribution based on the input Re. The CFD simulations
used to generate the training, validation, and test data for
this case are performed using the Fast Fluid Dynamics
method (Zuo and Chen 2009, 2010) on an AMD RadeonTM
Pro WX 7100 GPU. The CFD simulations use a 64 × 64
non-uniform, structured grid, which is translated to a
36 × 36 uniform structured grid for the model training
and evaluation to simplify the predictions while providing
sufficient resolution of the flow data. This prediction

resolution was selected to balance the tradeoff of training
time and resolution. The BC-CGAN model can be trained
to predict a more resolved flow output, but this may increase
the training time and require re-tuning of the model
hyperparameters.

5.2 BC-CGAN model settings

The BC-CGAN model settings including neural network
architectures and hyperparameters are described in this
section. First, the architectures of the generator and
discriminator are shown in Table 1 and Table 2, respectively.
The generator uses a deconvolutional neural network
(Zeiler et al. 2010) and the discriminator uses a convolutional
neural network (O’Shea and Nash 2015). The generator
receives an input defined by Re (which is the only varying
parameter), as described in Section 2.2, and outputs a 36 ×
36 image representing the velocity magnitude distribution.
The discriminator receives a 36 × 36 image input as well as
a label input corresponding to a Re value. The label input
uses one-hot encoding to give the label of the image within
the training dataset, with total number of training data
points of ntrain. The discriminator produces an output of zero
or one, where zero corresponds to a classification of a “fake”
image produced by the generator and one corresponds to
a classification of a “real” image from the training dataset.
The number of convolutional/ deconvolutional layers and
filter sizes for these layers impact the training performance

Table 1 Summary of generator architecture

Layer Shape Activation function

Input 200 N/A

Reshape 9 × 9 × 128 N/A

Deconvolution 18 × 18 × 128 ReLU

Deconvolution 36 × 36 × 64 ReLU

Deconvolution 36 × 36 × 32 ReLU

Deconvolution (output) 36 × 36 × 1 Sigmoid

Table 2 Summary of discriminator architecture

Layer Shape Activation function

Label input ntrain N/A

Image input 36 × 36 × 1 N/A

Reshape 36 × 36 × 2 N/A

Convolution 18 × 18 × 32 LeakyReLU

Convolution 9 × 9 × 64 LeakyReLU

Convolution 5 × 5 × 128 LeakyReLU

Convolution 5 × 5× 256 LeakyReLU

Flatten 6400 N/A

Output 1 Sigmoid

Faulkner et al. / Building Simulation / Vol. 16, No. 7

1227

of the generator and discriminator. For example, reducing
the number of layers in these neural networks can speed
up each training step, but can also negatively affect the
training performance and result in more overall iterations
to successfully train the models. We selected these
architectures for the generator and discriminator to have
reasonable training speed and consistent convergence of
the models.

The hyperparameters for the BC-CGAN models were
tuned carefully for this case. Certain hyperparameters, such
as the learning rate, can significantly impact model training
time and convergence or lead to overfitting (Smith 2018). For
this case we used the Adam optimizer (Kingma and Ba 2014)
with learning rate of 0.0002 and decay rate of 0.5. A batch
size of 32 was used for training the models as well.

5.3 Training datasets

Four training datasets are generated using the novel
feature-driven algorithm and are compared against four
uniformly generated datasets. A summary of all the training
datasets is included in Table 3. The uniformly distributed
datasets are defined by their uniform step (ΔRe), which
describes the difference in Re for which training data is
generated. These datasets include training data points from
Re = 100 up to Re = 10,000 by step of ΔRe. Thus, a higher
ΔRe results in fewer training data points that are further
apart within the defined Re range, while a lower ΔRe results
in more training data. The selected values of ΔRe are
chosen to be factors of the input Re range, which is 9,900
in this case, as well as to include similar ntrain values as the
non-uniform datasets.

The non-uniform datasets are defined by their ε
threshold, which is the threshold to decide whether a
training data point is needed based on the change in
outputs between neighboring data points, as described in
Section 3. In this case, ε is dimensionless and is described
by the change in velocity magnitude (Δ|U|) at any of
the critical output locations between neighboring Re data

Table 3 Summary of training datasets

Uniform/non-uniform
Uniform step

(ΔRe)
ε threshold
(Δ|U|/U0)) ntrain

Uniform 25 N/A 397
Uniform 50 N/A 199
Uniform 100 N/A 100
Uniform 275 N/A 37

Non-uniform N/A 0.001 378
Non-uniform N/A 0.005 120

Non-uniform N/A 0.01 67
Non-uniform N/A 0.05 19

points, normalized by the velocity of the moving lid (U0).
A lower ε results in higher ntrain, since it defines a smaller
change in outputs to determine that additional training
data points are needed. The ε values in this case were
chosen to provide datasets with a wide range of data points
and study the impact of training data size on the model
training and evaluation. The locations of the critical
outputs used for the feature-driven algorithm in this case
are the center points of each cell when dividing the flow
domain into a 4 × 4 grid, resulting in 16 locations. These
locations were chosen to include a range of possible
locations where the flow can change, but the critical
locations can be narrowed based on the studied flow in
future research.

Histograms of the non-uniform training datasets are
shown in Figure 6. The results show a clear trend: the
lid-driven cavity flow changes more significantly at lower
Re values, especially between 100 and 1,000. The ε = 0.05
dataset includes less than 5% of the training data points
compared to the ε = 0.001 dataset, but still includes more
of its training data between Re values of 100 and 1,000.
This is unsurprising as the lid-driven cavity flow transitions
from laminar to turbulent in this region of Re. In particular,
the boundary layer near the lid and circulation pattern
along the right wall change more significantly in this
region of Re.

5.4 Training results

We select five data points as validation data for this case
using Re values of 100, 500, 1,000, 5,000, and 10,000. These
points span the range of Re for this study, as well as include
more points in the lower Re regime, since we found this is
the regime where the flow changes more significantly.
Sample validation results of the BC-CGAN model are
shown in Figure 7. The top row shows the validation data
from the CFD simulations, while the remaining rows show
the BC-CGAN predictions at different error thresholds.
For example, the BC-CGAN prediction results at the 40%
error threshold are the saved validation results from when
the BC-CGAN predictions were first below the error metric
of 40% for all five validation data points. The error metric
in this case is computed by weighting two error calculations:
55% root mean squared error (RMSE) and 45% maximum
error. Rather than simply using RMSE, we include maximum
error in this case to prevent points of large error in the
predictions. The errors are also both normalized by U0.
The RMSE is calculated by considering the mean squared
normalized error in velocity magnitudes at each location in
the 36 × 36 2D flow domain. The maximum error is then
the highest normalized error within the 36 × 36 domain.
Initially during the training process, we saved the validation

Faulkner et al. / Building Simulation / Vol. 16, No. 7

1228

results for different error metric thresholds of 5%, 10%,
15%, 25%, and 40%. Based on the qualitative results, we can
see the BC-CGAN prediction at an error metric of 40%
does not match well with the validation data. However,
the BC-CGAN prediction seems to capture the trends of
the validation data for error metrics of 15% and below.
Consequently, for the remainder of this paper we save the
trained BC-CGAN model and their validation results for
error metric values of 5%, 10%, and 15%.

The training results of the BC-CGAN models with
different training datasets and at different error metrics are
shown in Figure 8. The training process is performed ten
times for each training dataset since the training process
is inherently stochastic. During each training process, the
model is saved once the validation results satisfy error
metric thresholds of 5%, 10%, and 15%. The number of
training iterations or “epochs" required to achieve these
error thresholds is also recorded and plotted (on a log-scale)
in Figure 8. Each box plot shows the range of the number
of epochs required to satisfy the different error metric
thresholds over the ten runs for each training dataset. The
training datasets are differentiated by the number of training
data points included in each dataset, as well as whether they
are non-uniformly or uniformly generated sets.

First, we see less epochs are required to train the
models when the error metric is higher. This is because less

training is required for a looser error threshold compared
to a stricter one. We also see that the non-uniform training
datasets often require less epochs, especially for the error
thresholds of 10% and 15%. This can occur because the
non-uniform datasets are more capable of capturing the
non-linear trends between the input Re and output velocity
distribution. For the 5% error metric, the non-uniform
training dataset with 378 training data points required a
wide range of epochs to converge. A wider range of epochs
for model convergence often occurs for the lower error
metrics, because there is more variability of when the
model is able satisfy the convergence criteria for stricter error
metrics. This seems more apparent for the non-uniform
training datasets, especially the dataset with 378 data points.
We found that the model often converged after around
1,000 epochs using this dataset, but when it took more
epochs to converge it was usually because of higher
error for the validation data point of Re = 10,000. The
non-uniform datasets included less training data around
this input value since the flow changes less significantly in
this range. This seems to have a negative impact for a few
training runs, especially when overfitting occurs based on
more data included in Re regions where the flow outputs
change more significantly. Finally, it seems that using less
training data points often leads to fewer epochs required to
train the models, especially for the uniform datasets. This

Fig. 6 Histograms of training datasets generated using the feature-driven algorithm with different ε thresholds

Faulkner et al. / Building Simulation / Vol. 16, No. 7

1229

can be a result of overfitting of the models when too much
training data is included. For the non-uniform datasets,
decreasing the amount of training data when there is less
than about 150 data points does not always reduce the
number of epochs required to train the models. There
may be an optimal amount of training data points for the
non-uniform datasets around 50–150 data points.

5.5 Evaluation results

Example evaluation results of the BC-CGAN model for the
randomly selected test data points are shown in Figure 9.
The BC-CGAN predictions match well with the test data
based on a qualitative comparison, even at higher error
metrics. The BC-CGAN predictions also capture the change
in the lid-driven cavity flow pattern over the wide range
of Re.

A comprehensive quantitative evaluation for the
BC-CGAN models trained with different datasets and at
different error metric thresholds is shown in Figure 10. The
box plots show the range of calculated RMSE (normalized
by U0) for the trained BC-CGAN models against the test
data. Similar to Figure 8, the BC-CGAN models trained
by the different datasets are differentiated by the number
of training data points and whether they are non-uniform
or uniform datasets. The defined training error metric
threshold is also included in each plot for comparison.

First, the prediction error is higher when the training
error metric threshold is higher. However, even for the
error metric of 15%, the prediction error is almost always
lower than 5%. This is because the error metric in the
training process is only satisfied once all the validation data
points are below the metric, so it is possible one validation
data point had much higher error compared to others.

Fig. 7 Sample validation results of the BC-CGAN prediction for different error metric thresholds

Faulkner et al. / Building Simulation / Vol. 16, No. 7

1230

Furthermore, the error metric used to train the models
included a combination of max error and RMSE to ensure
predictions without points of very high error. Since the
evaluation results are shown in terms of just RMSE for an
easier understanding of the results, the prediction error is
much lower than the training error metric. Finally, we
see the BC-CGAN models trained by the uniform dataset
often had lower prediction error compared to those trained
by the non-uniform datasets. This may occur because the
BC-CGAN models trained by the non-uniform datasets
required less training epochs to satisfy the error metric
criteria. Thus, while their predictions for the validation

data may be similar to those of the models trained by the
uniform datasets, they seem to perform slightly worse
against the test data, perhaps due to less overall training.
We also find that the test error for the models trained
by the non-uniform datasets tended to be higher for the
larger Re test values, which is the region of Re where the
non-uniform datasets included less data. Conversely, the
models trained by the uniform datasets often had higher
error for the smaller Re test values, which is the region of
Re where the flow changes more non-linearly. However,
the prediction error is still well below the threshold for all
the BC-CGAN models. Additionally, the difference in error

Fig. 8 Box plots of the number of epochs required to train the BC-CGAN model for different training datasets and error metrics

Fig. 9 Example evaluation results for the trained BC-CGAN model with different error metrics

Faulkner et al. / Building Simulation / Vol. 16, No. 7

1231

for the models trained by the different datasets is almost
negligible, especially for the stricter training error metric
thresholds. This is reasonable because the validation process
to stop the training of the models is the same regardless of
the dataset. So while the models trained by the different
datasets may take different paths in their training processes,
the final trained models should be similar in performance.

Once trained, the BC-CGAN models can generate
predictions with an average speed of 7 ms per prediction.
For this case, a CFD simulation took an average of 56 s,
which means the trained BC-CGAN prediction was on
average about 7,900 times faster than a CFD simulation.
However, the time to generate data and train the BC-CGAN
models must be considered as well. For all the training
datasets considered in this case, it took an average of 11.4
minutes to train the models to satisfy the 5% error metric.
We found that using less training data could often improve
the training speed of the models while maintaining
sufficient accuracy, and the smallest tested training dataset
required about 17.7 minutes to generate the training data.
If only a few predictions are needed, then it would be faster
to use CFD simulations because of the time required to
generate data and train the BC-CGAN model. On the other
hand, the time savings when using the BC-CGAN model
increases as the number of required predictions increases.
After accounting for the time to generate data and train
the BC-CGAN model, it becomes beneficial to use the
BC-CGAN model over CFD simulations when more than
31 predictions are required for this case.

6 Non-isothermal case: mixed convection flow with
heated box

The next case we study is a mixed convection flow
with heated box. This case is chosen as a more complex
flow compared to the lid-driven cavity flow, since it is
non-isothermal, 3D, and includes an obstacle in the flow.
It has also been used for indoor airflow simulation studies
in the literature (Wang and Chen 2009, 2010). We first
describe the case setup, then summarize the BC-CGAN
model settings and generated training datasets. Finally, the
training and evaluation results are detailed.

6.1 Case description

The setup of this case is shown in Figure 11. The flow is
contained in a room with length of L in all dimensions. A
heated box is in the center of the room, with dimensions
of L/2 in all dimensions. The box generates heat with a
uniform flux of Qbox. This is meant to represent an internal
heat load within a room, for example occupants. Cold air
is supplied to the room through the inlet along the top of
the left wall with a velocity of Uin and temperature of Tin.
An outlet is located along the bottom of the right wall. The
ceiling, floor, and remaining walls have temperatures of Tcei,
Tflo, and Toth, respectively. The flow is modeled as steady
and incompressible in this study.

We select Qbox to be the input parameter for this case
and vary this value from 0 W/m2 to 50 W/m2. Furthermore,

Fig. 10 Box plots of the % normalized RMSE of the test predictions for the BC-CGAN models trained by different datasets and error
metrics

Faulkner et al. / Building Simulation / Vol. 16, No. 7

1232

Fig. 11 Diagram of the mixed convection flow with heated box
case

we add noise to the boundary conditions of Uin, Tin, Tcei, Tflo,
and Toth for all the CFD simulations used to generate
training, validation, and test data. Noise is added to Uin by
randomly increasing or decreasing this value by up to ±5%
of its default value of 1.36 m/s for each simulation. Similarly,
the temperature boundary conditions are randomly
increased or decreased by up to ±0.5 °C of their default
values. The default values for Tin, Tcei, Tflo, and Toth are
22.2 °C, 25.8 °C, 26.9 °C. and 27.4 °C, respectively. This
added noise can represent uncertainty in experimental
conditions, for example. It also adds a potential challenge
for the BC-CGAN model, since the model is only given the
value of Qbox as an input. Since the BC-CGAN models
assume the other boundary conditions are unchanged,
their values (including the added noise) are not given as an
input. Similarly, since the geometry (including locations of
the box, inlet, and outlet), is unchanged, these are not given
as an input. Future research can extend the BC-CGAN
model to consider multiple varying boundary conditions
for this case. The CFD simulations use a 44 × 44 × 44
non-uniform grid, similar to in Wang and Chen (2009).
For this case, the BC-CGAN model outputs the 2D airflow
distribution at the mid-plane of the flow. It outputs
both the velocity and temperature distribution, since it is a
non-isothermal flow. Thus, the CFD data is translated to
provide a 36 × 36 uniform grid of velocity and temperature
data at the mid-plane of the flow. The model also must
generate the box within the surrounding flow. This can be
useful for when AI models are needed to detect obstacles
in the flow.

6.2 BC-CGAN model settings

The architectures for the generator and discriminator are
shown in Table 4 and Table 5, respectively. While they are
mostly similar to the architectures used in the previous case
described in Section 5.2, there are a few key differences.

Table 4 Summary of generator architecture
Layer Shape Activation function

Input 200 N/A
Reshape 18 × 9 × 128 N/A

Deconvolution 36 × 18 × 128 ReLU
Deconvolution 72 × 36 × 64 ReLU
Deconvolution 72 × 36 × 32 ReLU

Deconvolution (output) 72 × 36 × 1 Tanh

Table 5 Summary of discriminator architecture
Layer Shape Activation function

Label input ntrain N/A
Image input 72 × 36 × 1 N/A

Reshape 72 × 36 × 2 N/A
Convolution 36 × 18 × 32 LeakyReLU
Convolution 18 × 9 × 64 LeakyReLU
Convolution 9 × 5 × 128 LeakyReLU
Convolution 9 × 5× 256 LeakyReLU

Flatten 11520 N/A
Output 1 Sigmoid

First, the generator produces a 72 × 36 output and the
discriminator receives 72 × 36 image inputs. This is because
the flow outputs in this study are the 36 × 36 distribution of
both velocity and temperature. The other key difference is
the output layer of the generator uses the Tanh activation
function rather than Sigmoid. The activation function in
the output layer outputs the value of velocity or temperature
in the flow based on the information received at that node
within the layer. In the training data for this case, a value
of −1 is assigned to the points where the box is located to
differentiate it from the fluid flow (represented by normalized
velocity/temperature values from 0 to 1). Thus, the Tanh
activation function is chosen for the generator in this case,
because it can output values from −1 to 1 while the Sigmoid
activation function only outputs values from 0 to 1. For this
case, we used the Adam optimizer with learning rate of
0.0001 and decay rate of 0.25, as well as a batch size of 32
for training the models.

6.3 Training datasets

Two training datasets are generated using the feature-driven
algorithm and are compared against three uniformly
generated datasets, summarized in Table 6. The thresholds
for the non-uniform datasets are dimensionless values of
0.05 and 0.10 and are chosen to provide two different sizes
for the non-uniform datasets. These thresholds correspond
to a relative change in either velocity magnitude or
temperature. If this threshold is exceeded for significant

Faulkner et al. / Building Simulation / Vol. 16, No. 7

1233

Table 6 Summary of training datasets
Uniform/

non-uniform
Uniform step

(ΔW/m2) ε threshold
Total number of

training data points

Uniform 0.5 N/A 101
Uniform 2 N/A 26
Uniform 25 N/A 3

Non-uniform N/A 0.05 40
Non-uniform N/A 0.10 14

changes in either velocity or temperature at any of the
critical output locations, a new point is added. The change
in velocity magnitude is normalized by the maximum
velocity for the case, which is the inlet velocity (Uin). The
change in temperature is normalized by the difference
between the maximum and minimum temperatures for the
entire case (Tmax − Tmin), where Tmax comes from the highest
Qbox scenario and Tmin is the cold inlet air temperature. The
locations of the critical outputs are the center points of the
cells when dividing the flow into a 5 × 5 grid, resulting
in 25 locations.

Uniform steps of 0.5, 2, and 25 W/m2 are chosen to
produce three uniform datasets with very different amounts
of training data. In the previous case in Section 5, we found
that using less training data often reduced the number of
epochs required to train the models. Thus, we include the
training dataset with uniform step of 25 W/m2 to observe
the impact of using very few training data points on the
training and prediction performance of the BC-CGAN
models. Furthermore, the training data points in this dataset
are identical to the validation data points for this case. This
was done intentionally to observe the impact on the
performance of the BC-CGAN models when the training
data is more biased towards the validation data.

Histograms of the two non-uniform training datasets
generated by the feature-driven algorithm are shown in
Figure 12. Unlike the lid-driven cavity case, there is not a
clear trend in the non-linearity between the inputs and
outputs. It seems that there are more changes in the flow

between Qbox values of 25–40, as shown in Figure 12(a).
In this region, the flow pattern in the room transitions
from being dominated by the cold supply airflow to being
significantly impacted by the thermal plume from the heated
box. We see more noticeable changes in the boundary
layers around the box because of this effect in this region.
However, these changes do not seem to be very large, as
shown by the more uniform training dataset in Figure 12(b)
with the looser ε threshold.

6.4 Training results

Sample validation results of the BC-CGAN model are
shown in Figure 13. The validation data points selected for
this case are Qbox values of 0, 25, and 50 W/m2. The error
metric is computed only using RMSE in this case, instead
of a combination of RMSE and max error as in the previous
case. This change was made because it was difficult for the
model training to converge using a stricter error metric for
this more complex flow case. Additionally, the error metric
combines the error for both velocity and temperature by
scaling the ranges of both these values from 0 to 1. The
RMSE is then calculated by considering the mean squared
error using the scaled errors for both velocity and temperature
at each location in the 36 × 36 2D flow domain. Because
of the change in error metric calculation for this case, the
BC-CGAN predictions are qualitatively more different
than the reference CFD simulations, especially for error
metric thresholds of 10% and 15%. The change in velocity
magnitude is more subtle for this case, since the input
parameter is a heat flux rather than Re. The most noticeable
difference in velocity magnitude is between the right side
of the box and the right wall. The boundary layer along
the right wall thins as Qbox increases. There is also a more
noticeable boundary layer along the right side of the box
as Qbox increases, because the heat of the box causes the
surrounding air to heat up and rise. The velocity magnitude
just above the box also slightly increases with Qbox because

Fig. 12 Histograms of training datasets generated using the feature-driven algorithm with different ε thresholds

Faulkner et al. / Building Simulation / Vol. 16, No. 7

1234

of this buoyant flow. The change in temperature distribution
for the different Qbox values is more apparent, since the
increase in Qbox creates a significant thermal boundary layer
surrounding the box.

The quantitative training results of the BC-CGAN
model with different training datasets is shown in Figure 14.
Similar to before, the higher error metric results in less
epochs to train the models. Reducing the amount of training

data seems to decrease the number of required epochs to
train the models, until the uniform training dataset with
only three data points. It seems that the training epochs can
increase when the amount of training data is drastically
reduced, especially for the looser error metric thresholds.
The non-uniform dataset with the least amount of training
data typically requires the least number of epochs to train
the models, while the non-uniform dataset with the most

Fig. 13 Validation results for velocity and temperature prediction with different error metrics

Fig. 14 Box plots of the number of epochs required to train the BC-CGAN model for different training datasets and error metrics

Faulkner et al. / Building Simulation / Vol. 16, No. 7

1235

amount of training data often requires the most epochs to
train the models. This discrepancy is likely because the
outputs did not vary as non-linearly with the inputs for this
case compared to the previous lid-driven cavity case.

6.5 Evaluation results

Example evaluation results of the BC-CGAN model for the
randomly selected test data points are shown in Figure 15.
The BC-CGAN predictions capture the main trends and
features of the velocity and temperature distributions at
different Qbox values. However, the qualitative differences
between the BC-CGAN predictions and reference test data
are more apparent for this case compared to the previous.
This is because the error metric is calculated entirely based
on RMSE for this case rather than a combination of RMSE
and max error, so locations with higher error may persist
in these predictions.

The comprehensive quantitative evaluation results for
the BC-CGAN models trained with different datasets is
shown in Figure 16. The results show the error threshold is
satisfied by the predictions from all the datasets except the
smallest training dataset with only three points. This shows
the consequences of drastically reducing the amount of
training data, since it is not able to capture the trends across
the range of Qbox as well. Additionally, the non-uniform
training dataset with more training data points often
performs the best in terms of its predictions. This was also
the training dataset that typically required the most epochs
to train the models. The results from this case as well as the
previous case appear to show a tradeoff between training
epochs and prediction performance. While some training
datasets may take more time to satisfy the validation criteria,
they can perform better on a wider range of test data, perhaps
 because of the additional training. The difference in error
is more apparent for the looser error metric thresholds

Fig. 15 Evaluation results for velocity and temperature prediction for the trained BC-CGAN model with different error metric thresholds

Faulkner et al. / Building Simulation / Vol. 16, No. 7

1236

compared to the 5% error threshold. The change in error
among the models trained by the different datasets is
almost negligible for this strict error threshold, except for
the dataset with only three data points. Tuning either the
uniform step of the input parameter or ε for the training
datasets may help balance training time and evaluation
performance.

For this case, the BC-CGAN models can generate
predictions with an average speed of 11 ms per prediction,
while a CFD simulation took an average of 13.7 minutes.
Both the BC-CGAN prediction and CFD simulation times
are higher for this case because of the additional complexity
compared to the lid-driven cavity flow, with the increase in
CFD time being more significant. The trained BC-CGAN
prediction was on average about 75,680 times faster
than a CFD simulation for this case. It took an average
of 18 minutes to train the models to satisfy the 5% error
metric, when considering all the training datasets used in
this case except for the one with only three data points,
which was found to have poor evaluation performance.
When excluding that dataset, it took a minimum of 3.2 hr
to generate training data. After accounting for the time to
generate data and train the BC-CGAN models, it becomes
beneficial to use the BC-CGAN approach over CFD
simulations when more than 15 predictions are required
for this case. The results for this case show the significant
potential of this model for accelerating flow prediction with
more complex cases.

7 Conclusion

In this paper, we proposed a new BC-CGAN model for fast
prediction of indoor airflow distribution. We extended the
original CGAN model to make predictions based on a
continuous input parameter, such as a boundary condition,
rather than a discrete parameter, like a specific design. We
also designed a novel feature-driven algorithm for generating
training data for AI models. The algorithm includes training
data points based on significant changes between the flow
outputs and inputs, with the goal of minimizing the amount
of generated training data while ensuring training quality.
The new BC-CGAN model and feature-driven algorithm
are evaluated for two benchmark flow cases: an isothermal
lid-driven cavity flow and non-isothermal mixed convection
flow with a heated box.

The results show the trained model can predict velocity
and temperature distribution with less than 5% normalized
RMSE and up to 75,000 times faster than reference CFD
simulations. For the lid-driven cavity case, the trained
models were able to make predictions for the test data with
much less than 5% normalized RMSE, even for the higher
error metric threshold cases. This is because we could use
a stricter error metric that combined RMSE and max
error during the training process, which allowed for the
predictions to produce images without points of very high
error. For the more complex mixed convection flow with
heated box case, this type of training error metric could not

Fig. 16 Box plots of the % normalized RMSE of the test predictions for the BC-CGAN models trained by different datasets and error
metrics

Faulkner et al. / Building Simulation / Vol. 16, No. 7

1237

be used, since it was difficult for the models to converge
during training with this method. Despite this, the trained
BC-CGAN models for this case make predictions below
their error threshold for the test data, except for the models
trained by the dataset with only three data points. While
reducing the amount of training data often reduces the
training time in this paper, drastically reducing the amount
of training data caused the BC-CGAN models to perform
poorly against the test data.

Use of the feature-driven algorithm often reduces the
epochs required to train the BC-CGAN models for the
lid-driven cavity flow case, since it was able to capture
the non-linear trend between the change in flow outputs
and inputs. However, the feature-driven algorithm did not
always produce this same effect for the mixed convection
flow with heated box case, perhaps because there was not a
clear non-linear trend between the flow outputs and inputs.
For both cases, there is an apparent tradeoff between
training time and test performance. The BC-CGAN models
that took longer to train often performed better on the test
data compared to the BC-CGAN models that were trained
quicker. For the lid-driven cavity case, the increase in test
prediction error was very small for the models that were
trained quicker, particularly since all the models were very
accurate because of the use of max error in the training
process. The change in error for the predictions on the test
data in the mixed convection flow with heated box case
was more significant when the error metric threshold was
higher. A strict error metric in this case resulted in small
changes in test error among the models trained by the
different datasets, except for the dataset with only three
data points, which performed poorly for this case.

Future studies can be conducted based on the work in
this paper. First, more practical applications can be studied,
for example data center airflow scenarios. One input
parameter was used for each of the studies in this paper, but
the BC-CGAN models and feature-driven algorithm can be
evaluated for applications with multiple input parameters.
This is important for expanding the BC-CGAN models to
more applications, for example optimizing both supply airflow
rate and temperature considering the indoor environment.
Additionally, the models in this paper were trained to predict
2D airflow distributions, but a 3D prediction may be necessary
for certain applications. The impacts of the additional
complexity when considering multiple inputs and 3D outputs
on the model training and evaluation needs to be studied in
future research. Incremental training, by either expanding
the training range to new data or using “online” training
when deploying the models (Jain et al. 2014; Pérez-Sánchez
et al. 2018) can be performed to improve the models over
time with new data. Finally, the trained BC-CGAN models
can be used for a long-term evaluation or optimization study

that requires many realizations to show the computational
benefits of using this model over other numerical methods
in these scenarios. They can also provide real-time or faster
predictions of airflow distribution, which can be useful for
emergency management scenarios.

Acknowledgements

This research was supported in part by the U.S. Defense
Threat Reduction Agency and performed under U.S.
Department of Energy Contract No. DE-AC02-05CH11231.
This research was also partially supported by the National
Science Foundation under Awards No. IIS-1802017, CBET-
2217410, CNS-2025377, and CNS-2241361.

References

Albensoeder S, Kuhlmann HC (2005). Accurate three-dimensional
lid-driven cavity flow. Journal of Computational Physics, 206:
536–558.

Antipov G, Baccouche M, Dugelay JL (2017). Face aging with
conditional generative adversarial networks. In: Proceedings of
2017 IEEE International Conference on Image Processing (ICIP),
Beijing, China.

Barth R, Hemming J, Van Henten EJ (2020). Optimising realism of
synthetic images using cycle generative adversarial networks for
improved part segmentation. Computers and Electronics in
Agriculture, 173: 105378.

Blohm C, Kuhlmann HC (2002). The two-sided lid-driven cavity:
Experiments on stationary and time-dependent flows. Journal
of Fluid Mechanics, 450: 67–95.

Burggraf OR (1966). Analytical and numerical studies of the structure
of steady separated flows. Journal of Fluid Mechanics, 24: 113–151.

Cao S (2019). Challenges of using CFD simulation for the design
and online control of ventilation systems. Indoor and Built
Environment, 28: 3–6.

Castellini JE, Faulkner CA, Zuo W, et al. (2022). Assessing the use of
portable air cleaners for reducing exposure to airborne diseases
in a conference room with thermal stratification. Building and
Environment, 207: 108441.

Chen D, Gao X, Xu C, et al. (2020). FlowGAN: a conditional
generative adversarial network for flow prediction in various
conditions. In: Proceedings of 2020 IEEE 32nd International
Conference on Tools with Artificial Intelligence (ICTAI),
Baltimore, MD, USA.

Chiang TP, Sheu WH, Hwang RR (1998). Effect of Reynolds number
on the eddy structure in a lid-driven cavity. International Journal
for Numerical Methods in Fluids, 26: 557–579.

Cirillo MD, Abramian D, Eklund A (2021). Vox2Vox: 3D-GAN for
brain tumour segmentation, In: Proceedings of International
MICCAI Brainlesion Workshop.

El-Kaddoury M, Mahmoudi A, Himmi MM (2019). Deep generative
models for image generation: A practical comparison between
variational autoencoders and generative adversarial networks, In:
Proceedings of International Conference on Mobile, Secure, and
Programmable Networking.

Faulkner et al. / Building Simulation / Vol. 16, No. 7

1238

Gangisetti K, Claridge DE, Srebric J, et al. (2016). Influence of
reduced VAV flow settings on indoor thermal comfort in an
office space. Building Simulation, 9: 101–111.

Ghia U, Ghia KN, Shin CT (1982). High-Re solutions for incompressible
flow using the Navier-Stokes equations and a multigrid method.
Journal of Computational Physics, 48: 387–411.

Gonog L, Zhou Y (2019). A review: Generative adversarial networks.
In: Proceedings of the 14th IEEE Conference on Industrial
Electronics and Applications (ICIEA), Xi’an, China.

Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. (2014). Generative
adversarial nets. In: Advances in Neural Information Processing
Systems 27 (NIPS 2014).

Han X, Tian W, VanGilder J, et al. (2021). An open source fast fluid
dynamics model for data center thermal management. Energy
and Buildings, 230: 110599.

Iqbal T, Ali H (2018). Generative adversarial network for medical
images (MI-GAN). Journal of Medical Systems, 42: 231.

Jain LC, Seera M, Lim CP, et al. (2014). A review of online learning in
supervised neural networks. Neural Computing and Applications,
25: 491–509.

Jayaraman B, Finlayson EU, Sohn MD, et al. (2006). Tracer gas
transport under mixed convection conditions in an experimental
atrium: comparison between experiments and CFD predictions.
Atmospheric Environment, 40: 5236–5250.

Khan MAI, Delbosc N, Noakes CJ, et al. (2015). Real-time flow
simulation of indoor environments using lattice Boltzmann
method. Building Simulation, 8: 405–414.

Kingma DP, Ba J (2014). Adam: A method for stochastic optimization.
arXiv: 1412.6980.

Kong X, Chang Y, Li N, et al. (2022). Comparison study of thermal
comfort and energy saving under eight different ventilation modes
for space heating. Building Simulation, 15: 1323–1337.

Kuhlmann HC, Wanschura M, Rath HJ (1997). Flow in two-sided
lid-driven cavities: non-uniqueness, instabilities, and cellular
structures. Journal of Fluid Mechanics, 336: 267–299.

Li Y, Nielsen PV (2011). CFD and ventilation research. Indoor Air, 21:
442–453.

Mirza M, Osindero S (2014). Conditional generative adversarial nets.
arXiv: 1411.1784.

Mohamadi F, Fazeli A (2022). A review on applications of CFD
modeling in COVID-19 pandemic. Archives of Computational
Methods in Engineering, 29: 3567–3586.

Mokhtar S, Sojka A, Davila CC (2020). Conditional generative
adversarial networks for pedestrian wind flow approximation.
In: Proceedings of the 11th Annual Symposium on Simulation
for Architecture and Urban Design.

O’Shea K, Nash R (2015). An introduction to convolutional neural
networks. arXiv: 1511.08458.

Pérez-Sánchez B, Fontenla-Romero O, Guijarro-Berdiñas B (2018). A
review of adaptive online learning for artificial neural networks.
Artificial Intelligence Review, 49: 281–299.

Pope SB (1997). Computationally efficient implementation of combustion
chemistry using in situ adaptive tabulation. Combustion Theory
and Modelling, 1: 41–63.

Ramanan N, Homsy GM (1994). Linear stability of lid-driven cavity
flow. Physics of Fluids, 6: 2690–2701.

Smith LN (2018). A disciplined approach to neural network hyper-
parameters: part 1—learning rate, batch size, momentum, and
weight decay. arXiv: 1803.09820.

Sun L, Chen J, Xu Y, et al. (2022). Hierarchical amortized GAN for
3D high resolution medical image synthesis. IEEE Journal of
Biomedical and Health Informatics, 26: 3966–3975.

Tian W, Sevilla TA, Li D, et al. (2018). Fast and self-learning indoor
airflow simulation based on in situ adaptive tabulation. Journal
of Building Performance Simulation, 11: 99–112.

Wang L, Chen Q (2008). Applications of a coupled multizone-CFD
model to calculate airflow and contaminant dispersion in built
environments for emergency management. HVAC&R Research,
14: 925–939.

Wang M, Chen Q (2009). Assessment of various turbulence models
for transitional flows in an enclosed environment (RP-1271).
HVAC&R Research, 15: 1099–1119.

Wang M, Chen Q (2010). On a hybrid RANS/LES approach for
indoor airflow modeling (RP-1271). HVAC&R Research, 16:
731–747.

Wang Y, Wang W, Tao G, et al. (2022). Optimization of the
semi-sphere vortex generator for film cooling using generative
adversarial network. International Journal of Heat and Mass
Transfer, 183: 122026.

Ye Y, Strong M, Lou Y, et al. (2022). Evaluating performance of
different generative adversarial networks for large-scale building
power demand prediction. Energy and Buildings, 269: 112247.

Zeiler MD, Krishnan D, Taylor GW, et al. (2010). Deconvolutional
networks. In: Proceedings of 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, San
Francisco, CA, USA.

Zhang Q, Ferdowsi A, Saad W, et al. (2022). Distributed conditional
generative adversarial networks (GANs) for data-driven millimeter
wave communications in UAV networks. IEEE Transactions on
Wireless Communications, 21: 1438–1452.

Zhao X, Ma F, Güera D, et al. (2022). Generative multiplane images:
Making a 2D GAN 3D-Aware. In: Proceedings of European
Conference on Computer Vision.

Zheng Y, Zhang Y, Zheng Z (2021). Continuous conditional generative
adversarial networks (cGAN) with generator regularization. arXiv:
2103.14884.

Zhou Q, Ooka R (2020). Comparison of different deep neural
network architectures for isothermal indoor airflow prediction.
Building Simulation, 13: 1409–1423.

Zhu X, Shi T, Jin X, et al. (2021). Multi-sensor information fusion
based control for VAV systems using thermal comfort constraints.
Building Simulation, 14: 1047–1062.

Zuo W, Chen Q (2009). Real-time or faster-than-real-time simulation
of airflow in buildings. Indoor Air, 19: 33–44.

Zuo W, Chen Q (2010). Fast and informative flow simulations in
a building by using fast fluid dynamics model on graphics
processing unit. Building and Environment, 45: 747–757.

