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Abstract 
Prediction of indoor airflow distribution often relies on high-fidelity, computationally intensive 
computational fluid dynamics (CFD) simulations. Artificial intelligence (AI) models trained by CFD 

data can be used for fast and accurate prediction of indoor airflow, but current methods have 
limitations, such as only predicting limited outputs rather than the entire flow field. Furthermore, 
conventional AI models are not always designed to predict different outputs based on a continuous 

input range, and instead make predictions for one or a few discrete inputs. This work addresses 
these gaps using a conditional generative adversarial network (CGAN) model approach, which is 
inspired by current state-of-the-art AI for synthetic image generation. We create a new Boundary 

Condition CGAN (BC-CGAN) model by extending the original CGAN model to generate 2D airflow 
distribution images based on a continuous input parameter, such as a boundary condition. 
Additionally, we design a novel feature-driven algorithm to strategically generate training data, with 

the goal of minimizing the amount of computationally expensive data while ensuring training 
quality of the AI model. The BC-CGAN model is evaluated for two benchmark airflow cases: an 
isothermal lid-driven cavity flow and a non-isothermal mixed convection flow with a heated box. 

We also investigate the performance of the BC-CGAN models when training is stopped based   
on different levels of validation error criteria. The results show that the trained BC-CGAN model 
can predict the 2D distribution of velocity and temperature with less than 5% relative error and 

up to about 75,000 times faster when compared to reference CFD simulations. The proposed 
feature-driven algorithm shows potential for reducing the amount of data and epochs required to 
train the AI models while maintaining prediction accuracy, particularly when the flow changes 

non-linearly with respect to an input. 
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1 Introduction 

Simulation of indoor airflow distribution can be used for 
understanding indoor air quality, thermal comfort, and 
building energy efficiency. Computational fluid dynamics 
(CFD) methods are a popular approach for indoor airflow 
simulation (Li and Nielsen 2011) that numerically solve the 

governing equations of fluid flow, such as conservation of 
mass, momentum, and energy. For example, Han et al. (2021) 
used a CFD approach to simulate data center cooling scenarios 
to provide guidance for reducing energy consumption 
while meeting thermal requirements. Researchers have  
also used CFD methods to study the impact of ventilation 
strategies on thermal comfort (Gangisetti et al. 2016; Zhu   
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et al. 2021; Kong et al. 2022), evaluate dispersion of airborne 
pollutants (Jayaraman et al. 2006; Castellini et al. 2022; 
Mohamadi and Fazeli 2022), and more. While these methods 
have been useful in many applications related to indoor 
airflow, they are still limited in a number of ways. First, 
CFD simulations are computationally expensive (Cao 2019) 
and may be too slow for applications such as long-term 
evaluations (e.g., annual simulations) or optimization 
problems requiring thousands of realizations. Additionally, 
it is often infeasible to perform real-time or faster simulations 
using CFD, which can be required for emergency 
management scenarios (Wang and Chen 2008). Therefore, 
there is a need for computationally efficient methods of 
indoor airflow distribution prediction.  

Modifications to traditional CFD methods have been 
proposed to accelerate these numerical simulations, such as 
fast fluid dynamics methods (Zuo and Chen 2009, 2010). 
While these methods can be used for real-time or faster 
flow simulations, they may sacrifice some accuracy compared 
to traditional CFD methods. They are also unable to perform 
real-time simulations for more complex airflow scenarios. 
Data-driven regression methods, such as in situ adaptive 
tabulation (Pope 1997; Tian et al. 2018), can quickly predict 
key flow information, such as the occupied zone temperature. 
However, these methods are often used to predict a few key 
outputs rather than the entire flow distribution.  

Artificial intelligence (AI) methods have emerged as a 
popular approach to address some of the limitations of 
indoor airflow prediction. Zhou and Ooka (2020) analyzed 
using deep neural networks for isothermal airflow distribution 
prediction in an office room and found the trained networks 
could accurately predict the velocity distribution 1.9 million 
times faster than reference CFD simulations. Generative 
adversarial network (GAN) (Goodfellow et al. 2014) models 
have become a popular AI approach, particularly for 
generating synthetic images (Iqbal and Ali 2018; Barth et al. 
2020). Variations of the original GAN model have been 
introduced, such as conditional generative adversarial network 
(CGAN) (Mirza and Osindero 2014) models, which generate 
synthetic data based on categorical labels. In Mirza and 
Osindero (2014), the categorical labels include different single 
digit numbers and the CGAN model generates synthetic 
hand-drawn images for each specified digit. These models 
have been used for generating synthetic images of faces at 
different ages (Antipov et al. 2017), producing power demand 
profiles for different types of buildings (Ye et al. 2022), and 
predicting wireless networking environments (Zhang et al. 
2022). CGAN models trained by CFD simulations have been 
used for flow prediction, for example Chen et al. (2020) 
predicted airflow over different airfoil shapes and Wang et al. 
(2022) predicted the temperature distribution of different 
vortex generator designs for film cooling.  

While significant advances have been made to use AI 
for indoor airflow prediction, some limitations still exist. 
First, many AI models are designed to predict one or a few 
critical outputs in the airflow (e.g., average temperature in 
the occupied zone or temperature values at a few sensor 
locations) rather than the entire airflow distribution, which 
is necessary for many modeling applications. GAN and 
CGAN models have shown significant potential for image 
generation, including prediction of flow distribution, and are 
thus worthy of further research for indoor airflow prediction. 
However, they are often designed to make predictions based 
on discrete categorical inputs, for example different specific 
designs or geometries. However, in many scenarios it is 
useful to be able to make predictions based on continuous 
input parameters. For example, boundary conditions, such 
as supply airflow rate in indoor airflow simulations, may 
be optimized based on a continuous design space. This is 
because the supply airflow rate can be optimized to be any 
possible value within a defined range, rather than being 
limited to a few select values. Finally, generating training 
data for AI models using CFD simulations can be time 
consuming, and it is not always clear how much data should 
be included to train the models.  

To address the limitations discussed, we create a  
new Boundary Condition CGAN (BC-CGAN) model for 
predicting indoor airflow distribution based on a continuous 
input parameter, such as a boundary condition. Furthermore, 
we design a novel feature-driven algorithm for efficiently 
generating training data. The algorithm minimizes the 
amount of generated data while ensuring a diverse set of 
training data for AI models by selecting data points based on 
significant changes in the flow output. The feature-driven 
algorithm and BC-CGAN model are evaluated for two 
benchmark airflow cases: (1) an isothermal lid-driven cavity 
flow and (2) a non-isothermal mixed convection flow with 
a heated box. CFD simulations are used to generate the 
training, validation, and test data for both cases. Using the 
dimensionless Reynolds number as an input, the BC-CGAN 
model predicts the velocity magnitude distribution for the 
lid-driven cavity case. For the mixed convection flow with 
heated box case, the BC-CGAN model predicts the velocity 
magnitude and temperature distributions based on the heat 
flux of the box. The model is also designed to reproduce 
the existence of an obstruction in the flow, in this case the 
box within the flow. Finally, noise is added to some of the 
boundary conditions in the CFD simulations for this case 
to mimic uncertainty in experimental conditions.  

Our specific scientific contributions include: (1) creating 
a new BC-CGAN model by extending the traditional 
CGAN model to generate images of flow distribution using 
a continuous input parameter (e.g., a boundary condition); 
(2) designing a novel feature-driven algorithm to strategically 
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reduce the amount of required training data while ensuring 
training quality for AI models; and (3) demonstrating the 
BC-CGAN model framework for two benchmark flow 
cases and showing the trained model can predict airflow 
distribution with less than 5% relative error and up to 
about 75,000 times faster when compared to reference CFD 
simulations.  

The rest of this paper is organized as follows. The 
BC-CGAN model is introduced in Section 2. We then detail 
the feature-driven algorithm for generating training data 
in Section 3. Next, Section 4 outlines the entire workflow 
including generation of training data, model training, and 
model evaluation. After that, Section 5 presents the results 
for the isothermal lid-driven cavity flow case and Section 6 
shows the results for the non-isothermal mixed convection 
flow with heated box case. Finally, conclusions are drawn 
in Section 7.  

2 New boundary condition conditional generative 
adversarial network (BC-CGAN) model 

In this section, we first provide an overview of the original 
GAN and CGAN models, then detail our new BC-CGAN 
model.  

2.1 Original GAN and CGAN models 

The CGAN model used to develop BC-CGAN is based on 
the original GAN model (Goodfellow et al. 2014), but 
modified to generate images based on different classes. 
GAN-based models are selected for this study because of 
their strength in image generation (Gonog and Zhou 2019), 
which is useful for applying to prediction of indoor airflow 

distribution. Furthermore, they have been extended for 3D 
image generation applications (Cirillo et al. 2021; Sun et al. 
2022; Zhao et al. 2022), which can be beneficial for 3D 
airflow prediction. As shown in Figure 1 (left), the original 
GAN model consists of two competing neural networks: a 
generator (G) and discriminator (D). The generator receives 
a vector containing randomly generated noise (z) as an 
input and attempts to output an image accordingly (G(z)). 
The discriminator receives a mixture of real images (x) 
randomly selected from the training data and synthetic or 
“fake" images produced by the generator. The discriminator 
then attempts to correctly classify each image as real or 
fake, and the output of the discriminator (D(G(z)|x)) is 
compared with the correct classification of real or fake. 
Based on this final outcome, the weights of the generator 
(θG) and discriminator (θD) networks are updated and the 
process repeats, starting with new batches of training images 
and new noise inputs. Early in the training process, the 
generator has not learned how to output realistic images, so 
the discriminator is able to easily classify the images and 
the generator performs poorly. As the generator is trained 
over many iterations, it learns how to produce more realistic 
images and is able to fool the discriminator. Eventually, the 
generator produces images that are so realistic that the 
discriminator can no longer distinguish between the real 
and fake images. Ideally, the training process would reach  
a quasi-equilibrium state where the discriminator has a 
50-50 guess at whether images are real or fake, and the 
training process can stop. Once the model is trained, the 
discriminator is no longer needed and synthetic images can 
be generated by providing a noise input to the generator. 
Although GAN models can be difficult to train (El-Kaddoury 
et al. 2019), in part because they involve two neural networks, 

 
Fig. 1 GAN training architecture (left) and CGAN training architecture (right) 
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they have demonstrated advantages in image prediction 
over other types of models (El-Kaddoury et al. 2019).  

What differentiates the CGAN model from the original 
GAN model is the addition of labels, as shown in Figure 1 
(right). The generator receives a label (y) as an input in 
addition to the noise input and attempts to produce an 
image based on this label (G(z, y)), for example an image  
of a specific digit in Mirza and Osindero (2014). The 
discriminator then instead receives labeled real images (xy) 
mixed with labeled images produced by the generator, and 
determines whether an image is real or fake considering  
the received label. After training, synthetic images can be 
generated for a specific category by providing the generator 
with a label and noise input. The use of labels is convenient 
for generation of images based on specific categories, which 
is accomplished by assigning unique labels to the training 
data from each category. Since the original GAN model 
generates images based on the aggregated, non-categorized 
training data, the CGAN model is adopted in this work to 
utilize labels for categorizing training data. This can mean 
predicting airflow patterns for different labeled building 
designs, as in Mokhtar et al. (2020). The use of labels, 
however, also adds complexity to training the model, because 
the model needs to be trained to generate images for multiple 
categories.  

2.2 BC-CGAN model 

We extend the previously described CGAN model to create 
a new BC-CGAN model in this work that generates images 
using continuous inputs, rather than a few discrete input 
classes. An example of using discrete input classes would be 
prediction of airflow distribution in different rooms, where 
each specific room configuration would be the discrete 
input class determining the output airflow. Indoor airflow 
simulations often involve input parameters that can be 
considered continuous rather than discrete, such as a boundary 
condition like the supply airflow rate. This can be considered 
as a continuous parameter because it can have any possible 
value within a defined range (e.g., any value between 1 and 
5 kg/s), rather than only a few possible values (e.g., a few 
potential room configurations). The change in output airflow 
distribution can then be studied by varying the input 
parameter continuously within its range.  

Modifying the existing CGAN model to make predictions 
based on continuous input variables poses a challenge, since 
the original CGAN model is designed to make predictions 
based on discrete integer labels. Although a continuous 
input range can be discretized to assign labels for a CGAN 
model to many possible values within that range, this 
cannot cover every possible value, and a simpler method 
can be adopted. Thus, the structure of the CGAN models 

needs to be changed to address this challenge. First, we 
want the trained CGAN model to receive an input that 
represents a specific continuous input value. Additionally, 
it is convenient during the training process to assign 
discrete labels to the training data, but a method is needed 
to convert these labels to the actual values of the continuous 
input for the model.  

The new BC-CGAN model is shown in Figure 2. The 
difference in this model is the input to the generator, where 
the noise inputs are replaced with inputs defined specifically 
by labels, using a translator. A noise input is used in the 
previous CGAN models to generate a distribution of images 
within a category, for example different handwriting styles 
for a specific digit in Mirza and Osindero (2014). In this 
work, we want to generate a specific output given a specific 
input, rather than some distribution of outputs for a given 
input. Thus, the noise aspect is removed, since a single 
output for each input is desired rather than a distribution 
of outputs for each input. It should be noted Zheng et al. 
(2021) proposed an alternative CGAN approach considering 
continuous inputs with the noise aspect included to produce 
a distribution of outputs.  

The BC-CGAN model uses labels during the training 
process as a convenient method for categorizing training 
data using an integer value. For generating images after the 
model is trained, we want to provide the model specific input 
parameter values directly instead of labels. The translator 
is thus needed during the training process to convert the 
received integer label to a specific input parameter value 
for the generator. This allows for: (1) the convenient use of 
labels during the training process and (2) the ability for the 
generator to learn to produce images based on an input 
parameter value, therefore removing the need for labels and 
a translator after the model is trained. Since the discriminator  

 
Fig. 2 BC-CGAN training architecture 
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is only used during the training process, a simple integer 
value label can be provided to the discriminator and a 
translator is not needed to convert the label to its parameter 
value.  

The goal of the translator is to map the received labels 
to the associated input parameter values. Consider a scenario 
where the input boundary condition for a given flow is a 
characteristic velocity U0. For this case, a training label (y) 
is assigned to each training data image defined by their 
different U0 values. The purpose of the translator is then  
to map y to its corresponding U0 value. The function the 
translator uses to map these values, U0(y), is dependent 
on the training data distribution. Assume a uniformly 
distributed training dataset where each data point is chosen 
based on a change in U0 of ΔU0, calculated as:  

0 0,max 0,min trainΔ ( )U U U n= - /                        (1) 

where U0,max and U0,min are the maximum and minimum U0 
values in the training dataset, respectively, and ntrain is the 
total number of training data points in the dataset. The 
function for the translator to map y to a corresponding U0 
would then be:  

0 0 0 min( ) ΔU y U y U ,= ⋅ +                           (2) 

Finally, interpolation is used so the input to the 
generator, z(y), is a value between zero and one:  

[ ] [ ]0 0 min 0,max 0,min( ) ( )z y U y U U U,= - / -              (3) 

After training, images can be generated for a specific U0 
value by replacing U0(y) in Eq. (3) with the desired U0 value. 
This allows for prediction of images using the continuous 
input value directly and without the need for a label or 
translator. Furthermore, the BC-CGAN model can be 
trained to make predictions considering multiple boundary 
conditions by using a vector containing multiple labels. 
The translator would then output a vector based on the 
input label vector (i.e., z(y)). As a starting point, this paper 
considers one varying input parameter for each case.  

3 Novel feature-driven algorithm for generation of 
training data 

Although trained AI models can produce results quickly, 
generation of training data for the AI models can be time 
consuming (e.g., by using CFD). Using uniformly distributed 
inputs for training data generation is a simple approach, 
but this may include more training data than an AI model 
actually needs. For an indoor airflow prediction AI model, 
training data may be generated by varying the supply airflow 
rate by a constant step of Δm  in each CFD simulation. This 

may pose a problem when the outputs vary non-linearly 
with the inputs, for example if the airflow distribution varies 
non-linearly with the supply airflow rate. If the resolution 
of generated training data is not sufficiently high, a 
uniformly distributed training dataset may exclude crucial 
points in regions where the gradient of the outputs with 
respect to the inputs (xf) is high. This may exclude crucial 
data points that capture the non-linear trends between 
inputs and outputs. On the other hand, in regions where 
xf is low, a high resolution of generated training data may 
result in many redundant data points and excessive time 
required to produce the training data. When generation of 
training data is costly, a non-uniformly distributed training 
dataset can be beneficial for training AI models, since 
redundant training data points can be avoided while still 
including sufficient training data for the AI models.  

To address this problem, we propose a novel 
feature-driven algorithm to create non-uniformly distributed 
training datasets that minimize the amount of generated 
training data for AI models. The algorithm strategically 
selects training data points based on significant changes in 
the outputs with respect to the inputs. In its strategic selection, 
the algorithm includes more data points in regions where 
xf is high and excludes redundant data points in regions 
where xf is low. The feature-driven algorithm can be  
used for multiple inputs (e.g., multiple varying boundary 
conditions). However, we focus on a single varying input 
parameter in this paper and explain the algorithm in detail 
assuming one varying input.  

The feature-driven algorithm flowchart is detailed in 
Figure 3. First, initial grid points for the training dataset are 
included to provide a few baseline points, as well as to 
create a defined range for the training data. The grid points 
for the training data are defined by their different values of 
inputs, represented by x. The algorithm begins by computing 
the changes in critical outputs between neighboring grid 
points, for example between x1 and x2. For each pair of 
neighboring grid points, if the change in critical outputs 
(e.g., 2 1( ) ( )f x f x| - | ) is greater than the defined threshold, 
ε, a new grid point is added between those two points 
(e.g., at (x2 + x1)/2). In this case, a new CFD simulation is 
performed based on the input parameter defined by the 
new grid point, and the simulation output is added to the 
training data. The results from comparing neighboring grid 
points are cached to avoid performing the same comparison 
redundantly during the process. If the change in critical 
outputs does not exceed ε, then no new grid point is added 
between those two points and a CFD simulation is not 
performed. After completing this for each pair of neighboring 
grid points, the algorithm checks if any new grid points 
were added in the most recent iteration. If no new points 
were added, then the process ends since further iterations  
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Fig. 3 Flowchart of the feature-driven algorithm 

will not add any new grid points. If there were new grid 
points added in the most recent iteration, then the algorithm 
checks if a maximum resolution has been reached. The 
initial resolution is the difference between values of the initial 
neighboring grid points, e.g., x2 − x1. A defined maximum 
resolution can be useful to prevent excessive training data 
from being generated with neighboring inputs very close 
together. The process ends if the maximum resolution has 
been reached. If the maximum resolution has not been 
reached, then the resolution increases by a factor of two 
(e.g., (x2 − x1)/2). After increasing the resolution, the set of 
grid points are reset with the newly added grid points. The 
process repeats by computing the change in critical outputs 
between neighboring grid points, now with the newly 
added grid points. The process ends once either no new 
grid points are added in an iteration or once the maximum 
resolution is reached.  

4 Description of workflow 

The description of the entire workflow including 
generation of training data, model training process, and 
model evaluation is shown in Figure 4 and described in this 
section.  

The workflow begins with the data generation process. 
Initial training data points are first generated to provide 
baseline points for the feature-driven algorithm and to 
define a range for the training data. In this case, a few CFD 
simulations are performed to generate these initial points. 
Using too many initial points can potentially include 
redundant training data, so fewer initial points should be 
used to allow the algorithm to determine what data is 
necessary to be included. For the cases studied in this paper, 
we find that, for a given ε, the feature-driven algorithm only 
becomes sensitive to the initial data points when a large 
amount of initial data is included. This is because using a 
large amount of initial data may include redundant data 
points that the algorithm would not include. Using fewer 
initial data points often results in very similar training data 
sets, because the algorithm is designed to find the necessary 
data points within the input range, which are similar 
regardless of the initial data points. Thus, we use only about 
ten initial data points for the cases in this paper, which 
uniformly span the range of the studied input parameters. 

Next, the feature-driven algorithm is used to select what 
input parameter values should be used for the additional 
CFD simulations to generate the rest of the training data. 
In this paper, a few training datasets are generated with 
different settings of the feature-driven algorithm for each 
case. Additionally, uniformly distributed training datasets 
are generated for comparison against the training datasets 
produced by the feature-driven algorithm. BC-CGAN models 
are then trained using the different training datasets, where 
the initial settings of each BC-CGAN model are identical. 
We then compare the training speed and prediction 
performance for the BC-CGAN models trained by the 
different datasets. Since the training process is inherently 
stochastic, we train ten BC-CGAN models for each training 
dataset to understand their training and prediction 
performance over several runs.  

To train the BC-CGAN models, one unique label is 
assigned to each training data image within its dataset. 
Additionally, a few reference data points are generated 
using CFD simulations for validation of the BC-CGAN 
models during training. Periodically during the training 
process, the BC-CGAN model produces flow distribution 
outputs based on the validation data input values. Its 
outputs are then compared against the validation data points 
and a relative error metric is computed for each output. 
The error metric is calculated based on error between the flow  



Faulkner et al. / Building Simulation / Vol. 16, No. 7 

 

1225

outputs (e.g., velocity and/or temperature) at each point  
in the flow. If the error metric between the BC-CGAN 
prediction and validation data is below a defined threshold 
for all the validation data points, then the model is considered 
to be sufficiently trained and the training stops. Otherwise, 
training continues until this criteria is satisfied. In this 
paper, we save the trained BC-CGAN models at different 
error metric thresholds to compare the tradeoff between 
training speed and prediction performance for different 
error thresholds.  

Finally, the trained BC-CGAN models are evaluated 
against test data points that were not selected from the 
training or validation data. The test data is selected by 
using a bin sampling technique to produce ten random input 
values that span the defined input range. CFD simulations 
are then performed to generate the test data based on the 
ten input values. The BC-CGAN models are evaluated by 
generating their flow distribution outputs based on the test 
input values and computing their relative error against the 
test data. The BC-CGAN models are trained to predict 2D 
airflow distribution in this paper, but can be extended for 
3D airflow prediction in future research.  

5 Isothermal case: lid-driven cavity flow 

The first case studied in this paper is an isothermal lid-driven 
cavity flow. We begin with a description of the setup for 
this flow case. Next, we show the settings used for the 
BC-CGAN model and the generated training datasets for 
the BC-CGAN models in this case. Finally, the training and 
evaluation results for the BC-CGAN models trained by the 
different datasets are detailed.  

5.1 Case description 

The setup of the isothermal lid-driven cavity flow case is 
shown in Figure 5. This is a meaningful case because, despite 
having a simple configuration, the flow pattern changes 
significantly depending on the initial conditions and boundary 
conditions. Because of this, it is a benchmark flow case that 
is frequently studied in the literature using both physical 
experiments (Kuhlmann et al. 1997; Blohm and Kuhlmann 
2002) and numerical simulations (Burggraf 1966; Ghia et al. 
1982; Albensoeder and Kuhlmann 2005; Khan et al. 2015). 
This flow is contained in a box of length L on all sides. The  

 
Fig. 4 Description of entire workflow including generation of training data, model training, and model evaluation 
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Fig. 5 Diagram of the lid-driven cavity flow 

left, right, and bottom walls are stationary, while the lid 
moves at a constant velocity of U0 to the right. The motion 
of the lid causes a circulation pattern of the flow within the 
box. The flow is modeled as 2D, steady, incompressible, 
and isothermal in this study.  

The lid-driven cavity flow is often defined by its Reynolds 
number (Re) in the literature (Ramanan and Homsy 1994; 
Chiang et al. 1998), which characterizes the ratio of inertial 
to viscous forces in the flow. Thus, we use Re as the input 
parameter for the flow in this study. For this case, Re is 
calculated as:  

0Re U L= /                                    (4) 

where U0 is the constant velocity of the lid, L is the length 
of each side of the box, and ν is the kinematic viscosity of 
the flow.  

We define the range of Re values to be from 100 to 
10,000. We hold U0 and L constant while changing ν to 
vary the Reynolds number for the CFD simulations in this 
paper. All the other simulations settings and boundary 
conditions remain the same for each simulation, so the 
BC-CGAN models only receive Re as an input. The flow 
output we study for this case is the steady-state distribution 
of velocity magnitude. This means the training data produced 
by CFD simulations is comprised of velocity magnitude 
distribution data based on the input Re. The BC-CGAN 
models are then trained to output the velocity magnitude 
distribution based on the input Re. The CFD simulations 
used to generate the training, validation, and test data for 
this case are performed using the Fast Fluid Dynamics 
method (Zuo and Chen 2009, 2010) on an AMD RadeonTM 
Pro WX 7100 GPU. The CFD simulations use a 64 × 64 
non-uniform, structured grid, which is translated to a 
36 × 36 uniform structured grid for the model training 
and evaluation to simplify the predictions while providing 
sufficient resolution of the flow data. This prediction 

resolution was selected to balance the tradeoff of training 
time and resolution. The BC-CGAN model can be trained 
to predict a more resolved flow output, but this may increase 
the training time and require re-tuning of the model 
hyperparameters.  

5.2 BC-CGAN model settings 

The BC-CGAN model settings including neural network 
architectures and hyperparameters are described in this 
section. First, the architectures of the generator and 
discriminator are shown in Table 1 and Table 2, respectively. 
The generator uses a deconvolutional neural network 
(Zeiler et al. 2010) and the discriminator uses a convolutional 
neural network (O’Shea and Nash 2015). The generator 
receives an input defined by Re (which is the only varying 
parameter), as described in Section 2.2, and outputs a 36 × 
36 image representing the velocity magnitude distribution. 
The discriminator receives a 36 × 36 image input as well as 
a label input corresponding to a Re value. The label input 
uses one-hot encoding to give the label of the image within 
the training dataset, with total number of training data 
points of ntrain. The discriminator produces an output of zero 
or one, where zero corresponds to a classification of a “fake” 
image produced by the generator and one corresponds to  
a classification of a “real” image from the training dataset. 
The number of convolutional/ deconvolutional layers and 
filter sizes for these layers impact the training performance   

Table 1 Summary of generator architecture 

Layer Shape Activation function 

Input 200 N/A 

Reshape 9 × 9 × 128 N/A 

Deconvolution 18 × 18 × 128 ReLU 

Deconvolution 36 × 36 × 64 ReLU 

Deconvolution 36 × 36 × 32 ReLU 

Deconvolution (output) 36 × 36 × 1 Sigmoid 

Table 2 Summary of discriminator architecture 

Layer Shape Activation function 

Label input ntrain N/A 

Image input 36 × 36 × 1 N/A 

Reshape 36 × 36 × 2 N/A 

Convolution 18 × 18 × 32 LeakyReLU 

Convolution 9 × 9 × 64 LeakyReLU 

Convolution 5 × 5 × 128 LeakyReLU 

Convolution 5 × 5× 256 LeakyReLU 

Flatten 6400 N/A 

Output 1 Sigmoid 
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of the generator and discriminator. For example, reducing 
the number of layers in these neural networks can speed  
up each training step, but can also negatively affect the 
training performance and result in more overall iterations 
to successfully train the models. We selected these 
architectures for the generator and discriminator to have 
reasonable training speed and consistent convergence of 
the models. 

The hyperparameters for the BC-CGAN models were 
tuned carefully for this case. Certain hyperparameters, such 
as the learning rate, can significantly impact model training 
time and convergence or lead to overfitting (Smith 2018). For 
this case we used the Adam optimizer (Kingma and Ba 2014) 
with learning rate of 0.0002 and decay rate of 0.5. A batch 
size of 32 was used for training the models as well. 

5.3 Training datasets 

Four training datasets are generated using the novel 
feature-driven algorithm and are compared against four 
uniformly generated datasets. A summary of all the training 
datasets is included in Table 3. The uniformly distributed 
datasets are defined by their uniform step (ΔRe), which 
describes the difference in Re for which training data is 
generated. These datasets include training data points from 
Re = 100 up to Re = 10,000 by step of ΔRe. Thus, a higher 
ΔRe results in fewer training data points that are further 
apart within the defined Re range, while a lower ΔRe results 
in more training data. The selected values of ΔRe are 
chosen to be factors of the input Re range, which is 9,900 
in this case, as well as to include similar ntrain values as the 
non-uniform datasets.  

The non-uniform datasets are defined by their ε 
threshold, which is the threshold to decide whether a 
training data point is needed based on the change in 
outputs between neighboring data points, as described in 
Section 3. In this case, ε is dimensionless and is described 
by the change in velocity magnitude (Δ|U|) at any of    
the critical output locations between neighboring Re data  

Table 3 Summary of training datasets 

Uniform/non-uniform 
Uniform step 

(ΔRe) 
ε threshold 
(Δ|U|/U0)) ntrain 

Uniform  25  N/A  397 
Uniform  50  N/A  199 
Uniform  100  N/A  100 
Uniform  275  N/A  37 

Non-uniform  N/A  0.001  378 
Non-uniform  N/A  0.005  120 

Non-uniform  N/A  0.01  67 
Non-uniform  N/A  0.05  19 

points, normalized by the velocity of the moving lid (U0). 
A lower ε results in higher ntrain, since it defines a smaller 
change in outputs to determine that additional training 
data points are needed. The ε values in this case were 
chosen to provide datasets with a wide range of data points 
and study the impact of training data size on the model 
training and evaluation. The locations of the critical 
outputs used for the feature-driven algorithm in this case 
are the center points of each cell when dividing the flow 
domain into a 4 × 4 grid, resulting in 16 locations. These 
locations were chosen to include a range of possible 
locations where the flow can change, but the critical 
locations can be narrowed based on the studied flow in 
future research.  

Histograms of the non-uniform training datasets are 
shown in Figure 6. The results show a clear trend: the 
lid-driven cavity flow changes more significantly at lower 
Re values, especially between 100 and 1,000. The ε = 0.05 
dataset includes less than 5% of the training data points 
compared to the ε = 0.001 dataset, but still includes more 
of its training data between Re values of 100 and 1,000. 
This is unsurprising as the lid-driven cavity flow transitions 
from laminar to turbulent in this region of Re. In particular,  
the boundary layer near the lid and circulation pattern 
along the right wall change more significantly in this 
region of Re.  

5.4 Training results 

We select five data points as validation data for this case 
using Re values of 100, 500, 1,000, 5,000, and 10,000. These 
points span the range of Re for this study, as well as include 
more points in the lower Re regime, since we found this is 
the regime where the flow changes more significantly. 
Sample validation results of the BC-CGAN model are 
shown in Figure 7. The top row shows the validation data 
from the CFD simulations, while the remaining rows show 
the BC-CGAN predictions at different error thresholds. 
For example, the BC-CGAN prediction results at the 40% 
error threshold are the saved validation results from when 
the BC-CGAN predictions were first below the error metric 
of 40% for all five validation data points. The error metric 
in this case is computed by weighting two error calculations: 
55% root mean squared error (RMSE) and 45% maximum 
error. Rather than simply using RMSE, we include maximum 
error in this case to prevent points of large error in the 
predictions. The errors are also both normalized by U0. 
The RMSE is calculated by considering the mean squared 
normalized error in velocity magnitudes at each location in 
the 36 × 36 2D flow domain. The maximum error is then 
the highest normalized error within the 36 × 36 domain. 
Initially during the training process, we saved the validation 



Faulkner et al. / Building Simulation / Vol. 16, No. 7 

 

1228 

results for different error metric thresholds of 5%, 10%, 
15%, 25%, and 40%. Based on the qualitative results, we can 
see the BC-CGAN prediction at an error metric of 40% 
does not match well with the validation data. However, 
the BC-CGAN prediction seems to capture the trends of 
the validation data for error metrics of 15% and below. 
Consequently, for the remainder of this paper we save the 
trained BC-CGAN model and their validation results for 
error metric values of 5%, 10%, and 15%.  

The training results of the BC-CGAN models with 
different training datasets and at different error metrics are 
shown in Figure 8. The training process is performed ten 
times for each training dataset since the training process  
is inherently stochastic. During each training process, the 
model is saved once the validation results satisfy error 
metric thresholds of 5%, 10%, and 15%. The number of 
training iterations or “epochs" required to achieve these 
error thresholds is also recorded and plotted (on a log-scale) 
in Figure 8. Each box plot shows the range of the number 
of epochs required to satisfy the different error metric 
thresholds over the ten runs for each training dataset. The 
training datasets are differentiated by the number of training 
data points included in each dataset, as well as whether they 
are non-uniformly or uniformly generated sets.  

First, we see less epochs are required to train the 
models when the error metric is higher. This is because less 

training is required for a looser error threshold compared 
to a stricter one. We also see that the non-uniform training 
datasets often require less epochs, especially for the error 
thresholds of 10% and 15%. This can occur because the 
non-uniform datasets are more capable of capturing the 
non-linear trends between the input Re and output velocity 
distribution. For the 5% error metric, the non-uniform 
training dataset with 378 training data points required a 
wide range of epochs to converge. A wider range of epochs 
for model convergence often occurs for the lower error 
metrics, because there is more variability of when the 
model is able satisfy the convergence criteria for stricter error 
metrics. This seems more apparent for the non-uniform 
training datasets, especially the dataset with 378 data points. 
We found that the model often converged after around 
1,000 epochs using this dataset, but when it took more 
epochs to converge it was usually because of higher  
error for the validation data point of Re = 10,000. The 
non-uniform datasets included less training data around 
this input value since the flow changes less significantly in 
this range. This seems to have a negative impact for a few 
training runs, especially when overfitting occurs based on 
more data included in Re regions where the flow outputs 
change more significantly. Finally, it seems that using less 
training data points often leads to fewer epochs required to 
train the models, especially for the uniform datasets. This 

 
Fig. 6 Histograms of training datasets generated using the feature-driven algorithm with different ε thresholds 
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can be a result of overfitting of the models when too much 
training data is included. For the non-uniform datasets, 
decreasing the amount of training data when there is less 
than about 150 data points does not always reduce the 
number of epochs required to train the models. There 
may be an optimal amount of training data points for the 
non-uniform datasets around 50–150 data points.  

5.5 Evaluation results 

Example evaluation results of the BC-CGAN model for the 
randomly selected test data points are shown in Figure 9. 
The BC-CGAN predictions match well with the test data 
based on a qualitative comparison, even at higher error 
metrics. The BC-CGAN predictions also capture the change 
in the lid-driven cavity flow pattern over the wide range  
of Re.  

A comprehensive quantitative evaluation for the 
BC-CGAN models trained with different datasets and at 
different error metric thresholds is shown in Figure 10. The 
box plots show the range of calculated RMSE (normalized 
by U0) for the trained BC-CGAN models against the test 
data. Similar to Figure 8, the BC-CGAN models trained 
by the different datasets are differentiated by the number 
of training data points and whether they are non-uniform 
or uniform datasets. The defined training error metric 
threshold is also included in each plot for comparison.  

First, the prediction error is higher when the training 
error metric threshold is higher. However, even for the 
error metric of 15%, the prediction error is almost always 
lower than 5%. This is because the error metric in the 
training process is only satisfied once all the validation data 
points are below the metric, so it is possible one validation 
data point had much higher error compared to others. 

 
Fig. 7 Sample validation results of the BC-CGAN prediction for different error metric thresholds 
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Furthermore, the error metric used to train the models 
included a combination of max error and RMSE to ensure 
predictions without points of very high error. Since the 
evaluation results are shown in terms of just RMSE for an 
easier understanding of the results, the prediction error is 
much lower than the training error metric. Finally, we 
see the BC-CGAN models trained by the uniform dataset 
often had lower prediction error compared to those trained 
by the non-uniform datasets. This may occur because the 
BC-CGAN models trained by the non-uniform datasets 
required less training epochs to satisfy the error metric 
criteria. Thus, while their predictions for the validation 

data may be similar to those of the models trained by the 
uniform datasets, they seem to perform slightly worse 
against the test data, perhaps due to less overall training. 
We also find that the test error for the models trained    
by the non-uniform datasets tended to be higher for the 
larger Re test values, which is the region of Re where the 
non-uniform datasets included less data. Conversely, the 
models trained by the uniform datasets often had higher 
error for the smaller Re test values, which is the region of 
Re where the flow changes more non-linearly. However, 
the prediction error is still well below the threshold for all 
the BC-CGAN models. Additionally, the difference in error 

 
Fig. 8 Box plots of the number of epochs required to train the BC-CGAN model for different training datasets and error metrics 

 
Fig. 9 Example evaluation results for the trained BC-CGAN model with different error metrics 
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for the models trained by the different datasets is almost 
negligible, especially for the stricter training error metric 
thresholds. This is reasonable because the validation process 
to stop the training of the models is the same regardless of 
the dataset. So while the models trained by the different 
datasets may take different paths in their training processes, 
the final trained models should be similar in performance.  

Once trained, the BC-CGAN models can generate 
predictions with an average speed of 7 ms per prediction. 
For this case, a CFD simulation took an average of 56 s, 
which means the trained BC-CGAN prediction was on 
average about 7,900 times faster than a CFD simulation. 
However, the time to generate data and train the BC-CGAN 
models must be considered as well. For all the training 
datasets considered in this case, it took an average of 11.4 
minutes to train the models to satisfy the 5% error metric. 
We found that using less training data could often improve 
the training speed of the models while maintaining 
sufficient accuracy, and the smallest tested training dataset 
required about 17.7 minutes to generate the training data. 
If only a few predictions are needed, then it would be faster 
to use CFD simulations because of the time required to 
generate data and train the BC-CGAN model. On the other 
hand, the time savings when using the BC-CGAN model 
increases as the number of required predictions increases. 
After accounting for the time to generate data and train  
the BC-CGAN model, it becomes beneficial to use the 
BC-CGAN model over CFD simulations when more than 
31 predictions are required for this case. 

6 Non-isothermal case: mixed convection flow with 
heated box 

The next case we study is a mixed convection flow     
with heated box. This case is chosen as a more complex 
flow compared to the lid-driven cavity flow, since it is 
non-isothermal, 3D, and includes an obstacle in the flow.  
It has also been used for indoor airflow simulation studies 
in the literature (Wang and Chen 2009, 2010). We first 
describe the case setup, then summarize the BC-CGAN 
model settings and generated training datasets. Finally, the 
training and evaluation results are detailed.  

6.1 Case description 

The setup of this case is shown in Figure 11. The flow is 
contained in a room with length of L in all dimensions. A 
heated box is in the center of the room, with dimensions 
of L/2 in all dimensions. The box generates heat with a 
uniform flux of Qbox. This is meant to represent an internal 
heat load within a room, for example occupants. Cold air 
is supplied to the room through the inlet along the top of 
the left wall with a velocity of Uin and temperature of Tin. 
An outlet is located along the bottom of the right wall. The 
ceiling, floor, and remaining walls have temperatures of Tcei, 
Tflo, and Toth, respectively. The flow is modeled as steady 
and incompressible in this study.  

We select Qbox to be the input parameter for this case 
and vary this value from 0 W/m2 to 50 W/m2. Furthermore,  

 
Fig. 10 Box plots of the % normalized RMSE of the test predictions for the BC-CGAN models trained by different datasets and error 
metrics 
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Fig. 11 Diagram of the mixed convection flow with heated box 
case 

we add noise to the boundary conditions of Uin, Tin, Tcei, Tflo, 
and Toth for all the CFD simulations used to generate 
training, validation, and test data. Noise is added to Uin by 
randomly increasing or decreasing this value by up to ±5% 
of its default value of 1.36 m/s for each simulation. Similarly, 
the temperature boundary conditions are randomly 
increased or decreased by up to ±0.5 °C of their default 
values. The default values for Tin, Tcei, Tflo, and Toth are  
22.2 °C, 25.8 °C, 26.9 °C. and 27.4 °C, respectively. This 
added noise can represent uncertainty in experimental 
conditions, for example. It also adds a potential challenge 
for the BC-CGAN model, since the model is only given the 
value of Qbox as an input. Since the BC-CGAN models 
assume the other boundary conditions are unchanged, 
their values (including the added noise) are not given as an 
input. Similarly, since the geometry (including locations of 
the box, inlet, and outlet), is unchanged, these are not given 
as an input. Future research can extend the BC-CGAN 
model to consider multiple varying boundary conditions 
for this case. The CFD simulations use a 44 × 44 × 44 
non-uniform grid, similar to in Wang and Chen (2009). 
For this case, the BC-CGAN model outputs the 2D airflow 
distribution at the mid-plane of the flow. It outputs   
both the velocity and temperature distribution, since it is a 
non-isothermal flow. Thus, the CFD data is translated to 
provide a 36 × 36 uniform grid of velocity and temperature 
data at the mid-plane of the flow. The model also must 
generate the box within the surrounding flow. This can be 
useful for when AI models are needed to detect obstacles 
in the flow.  

6.2 BC-CGAN model settings 

The architectures for the generator and discriminator are 
shown in Table 4 and Table 5, respectively. While they are 
mostly similar to the architectures used in the previous case 
described in Section 5.2, there are a few key differences. 

Table 4 Summary of generator architecture 
Layer  Shape  Activation function

Input  200  N/A 
Reshape  18 × 9 × 128  N/A 

Deconvolution  36 × 18 × 128  ReLU 
Deconvolution  72 × 36 × 64  ReLU 
Deconvolution  72 × 36 × 32  ReLU 

Deconvolution (output) 72 × 36 × 1  Tanh 

Table 5 Summary of discriminator architecture 
Layer Shape  Activation function 

Label input ntrain N/A 
Image input 72 × 36 × 1  N/A 

Reshape 72 × 36 × 2  N/A 
Convolution 36 × 18 × 32  LeakyReLU 
Convolution 18 × 9 × 64  LeakyReLU 
Convolution 9 × 5 × 128  LeakyReLU 
Convolution 9 × 5× 256  LeakyReLU 

Flatten 11520  N/A 
Output 1 Sigmoid 

 
First, the generator produces a 72 × 36 output and the 
discriminator receives 72 × 36 image inputs. This is because 
the flow outputs in this study are the 36 × 36 distribution of 
both velocity and temperature. The other key difference is 
the output layer of the generator uses the Tanh activation 
function rather than Sigmoid. The activation function in 
the output layer outputs the value of velocity or temperature 
in the flow based on the information received at that node 
within the layer. In the training data for this case, a value 
of −1 is assigned to the points where the box is located to 
differentiate it from the fluid flow (represented by normalized 
velocity/temperature values from 0 to 1). Thus, the Tanh 
activation function is chosen for the generator in this case, 
because it can output values from −1 to 1 while the Sigmoid 
activation function only outputs values from 0 to 1. For this 
case, we used the Adam optimizer with learning rate of 
0.0001 and decay rate of 0.25, as well as a batch size of 32 
for training the models. 

6.3 Training datasets 

Two training datasets are generated using the feature-driven 
algorithm and are compared against three uniformly 
generated datasets, summarized in Table 6. The thresholds 
for the non-uniform datasets are dimensionless values of 
0.05 and 0.10 and are chosen to provide two different sizes 
for the non-uniform datasets. These thresholds correspond 
to a relative change in either velocity magnitude or 
temperature. If this threshold is exceeded for significant 
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Table 6 Summary of training datasets 
Uniform/ 

non-uniform 
Uniform step 

(ΔW/m2) ε threshold 
Total number of 

training data points

Uniform 0.5 N/A 101 
Uniform 2 N/A 26 
Uniform 25 N/A 3 

Non-uniform N/A 0.05 40 
Non-uniform N/A 0.10 14 

 
changes in either velocity or temperature at any of the 
critical output locations, a new point is added. The change 
in velocity magnitude is normalized by the maximum 
velocity for the case, which is the inlet velocity (Uin). The 
change in temperature is normalized by the difference 
between the maximum and minimum temperatures for the 
entire case (Tmax − Tmin ), where Tmax comes from the highest 
Qbox scenario and Tmin is the cold inlet air temperature. The 
locations of the critical outputs are the center points of the 
cells when dividing the flow into a 5 × 5 grid, resulting 
in 25 locations. 

Uniform steps of 0.5, 2, and 25 W/m2 are chosen to 
produce three uniform datasets with very different amounts 
of training data. In the previous case in Section 5, we found 
that using less training data often reduced the number of 
epochs required to train the models. Thus, we include the 
training dataset with uniform step of 25 W/m2 to observe 
the impact of using very few training data points on the 
training and prediction performance of the BC-CGAN 
models. Furthermore, the training data points in this dataset 
are identical to the validation data points for this case. This 
was done intentionally to observe the impact on the 
performance of the BC-CGAN models when the training 
data is more biased towards the validation data.  

Histograms of the two non-uniform training datasets 
generated by the feature-driven algorithm are shown in 
Figure 12. Unlike the lid-driven cavity case, there is not a 
clear trend in the non-linearity between the inputs and 
outputs. It seems that there are more changes in the flow 

between Qbox values of 25–40, as shown in Figure 12(a).  
In this region, the flow pattern in the room transitions 
from being dominated by the cold supply airflow to being 
significantly impacted by the thermal plume from the heated 
box. We see more noticeable changes in the boundary 
layers around the box because of this effect in this region. 
However, these changes do not seem to be very large, as 
shown by the more uniform training dataset in Figure 12(b) 
with the looser ε threshold.  

6.4 Training results 

Sample validation results of the BC-CGAN model are 
shown in Figure 13. The validation data points selected for 
this case are Qbox values of 0, 25, and 50 W/m2. The error 
metric is computed only using RMSE in this case, instead 
of a combination of RMSE and max error as in the previous 
case. This change was made because it was difficult for the 
model training to converge using a stricter error metric for 
this more complex flow case. Additionally, the error metric 
combines the error for both velocity and temperature by 
scaling the ranges of both these values from 0 to 1. The 
RMSE is then calculated by considering the mean squared 
error using the scaled errors for both velocity and temperature 
at each location in the 36 × 36 2D flow domain. Because 
of the change in error metric calculation for this case, the 
BC-CGAN predictions are qualitatively more different 
than the reference CFD simulations, especially for error 
metric thresholds of 10% and 15%. The change in velocity 
magnitude is more subtle for this case, since the input 
parameter is a heat flux rather than Re. The most noticeable 
difference in velocity magnitude is between the right side  
of the box and the right wall. The boundary layer along  
the right wall thins as Qbox increases. There is also a more 
noticeable boundary layer along the right side of the box  
as Qbox increases, because the heat of the box causes the 
surrounding air to heat up and rise. The velocity magnitude 
just above the box also slightly increases with Qbox because  

 
Fig. 12 Histograms of training datasets generated using the feature-driven algorithm with different ε thresholds 
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of this buoyant flow. The change in temperature distribution 
for the different Qbox values is more apparent, since the 
increase in Qbox creates a significant thermal boundary layer 
surrounding the box.  

The quantitative training results of the BC-CGAN 
model with different training datasets is shown in Figure 14. 
Similar to before, the higher error metric results in less 
epochs to train the models. Reducing the amount of training 

data seems to decrease the number of required epochs to 
train the models, until the uniform training dataset with 
only three data points. It seems that the training epochs can 
increase when the amount of training data is drastically 
reduced, especially for the looser error metric thresholds. 
The non-uniform dataset with the least amount of training 
data typically requires the least number of epochs to train 
the models, while the non-uniform dataset with the most  

 
Fig. 13 Validation results for velocity and temperature prediction with different error metrics 

 
Fig. 14 Box plots of the number of epochs required to train the BC-CGAN model for different training datasets and error metrics 
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amount of training data often requires the most epochs to 
train the models. This discrepancy is likely because the 
outputs did not vary as non-linearly with the inputs for this 
case compared to the previous lid-driven cavity case. 

6.5 Evaluation results 

Example evaluation results of the BC-CGAN model for the 
randomly selected test data points are shown in Figure 15. 
The BC-CGAN predictions capture the main trends and 
features of the velocity and temperature distributions at 
different Qbox values. However, the qualitative differences 
between the BC-CGAN predictions and reference test data 
are more apparent for this case compared to the previous. 
This is because the error metric is calculated entirely based 
on RMSE for this case rather than a combination of RMSE 
and max error, so locations with higher error may persist 
in these predictions.  

The comprehensive quantitative evaluation results for 
the BC-CGAN models trained with different datasets is 
shown in Figure 16. The results show the error threshold is 
satisfied by the predictions from all the datasets except the 
smallest training dataset with only three points. This shows 
the consequences of drastically reducing the amount of 
training data, since it is not able to capture the trends across 
the range of Qbox as well. Additionally, the non-uniform 
training dataset with more training data points often 
performs the best in terms of its predictions. This was also 
the training dataset that typically required the most epochs 
to train the models. The results from this case as well as the 
previous case appear to show a tradeoff between training 
epochs and prediction performance. While some training 
datasets may take more time to satisfy the validation criteria, 
they can perform better on a wider range of test data, perhaps 
 because of the additional training. The difference in error 
is more apparent for the looser error metric thresholds 

 
Fig. 15 Evaluation results for velocity and temperature prediction for the trained BC-CGAN model with different error metric thresholds
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compared to the 5% error threshold. The change in error 
among the models trained by the different datasets is 
almost negligible for this strict error threshold, except for 
the dataset with only three data points. Tuning either the 
uniform step of the input parameter or ε for the training 
datasets may help balance training time and evaluation 
performance.  

For this case, the BC-CGAN models can generate 
predictions with an average speed of 11 ms per prediction, 
while a CFD simulation took an average of 13.7 minutes. 
Both the BC-CGAN prediction and CFD simulation times 
are higher for this case because of the additional complexity 
compared to the lid-driven cavity flow, with the increase in 
CFD time being more significant. The trained BC-CGAN 
prediction was on average about 75,680 times faster   
than a CFD simulation for this case. It took an average   
of 18 minutes to train the models to satisfy the 5% error 
metric, when considering all the training datasets used in 
this case except for the one with only three data points, 
which was found to have poor evaluation performance. 
When excluding that dataset, it took a minimum of 3.2 hr 
to generate training data. After accounting for the time to 
generate data and train the BC-CGAN models, it becomes 
beneficial to use the BC-CGAN approach over CFD 
simulations when more than 15 predictions are required 
for this case. The results for this case show the significant 
potential of this model for accelerating flow prediction with 
more complex cases.  

7 Conclusion 

In this paper, we proposed a new BC-CGAN model for fast 
prediction of indoor airflow distribution. We extended the 
original CGAN model to make predictions based on a 
continuous input parameter, such as a boundary condition, 
rather than a discrete parameter, like a specific design. We 
also designed a novel feature-driven algorithm for generating 
training data for AI models. The algorithm includes training 
data points based on significant changes between the flow 
outputs and inputs, with the goal of minimizing the amount 
of generated training data while ensuring training quality. 
The new BC-CGAN model and feature-driven algorithm 
are evaluated for two benchmark flow cases: an isothermal 
lid-driven cavity flow and non-isothermal mixed convection 
flow with a heated box.  

The results show the trained model can predict velocity 
and temperature distribution with less than 5% normalized 
RMSE and up to 75,000 times faster than reference CFD 
simulations. For the lid-driven cavity case, the trained 
models were able to make predictions for the test data with 
much less than 5% normalized RMSE, even for the higher 
error metric threshold cases. This is because we could use  
a stricter error metric that combined RMSE and max 
error during the training process, which allowed for the 
predictions to produce images without points of very high 
error. For the more complex mixed convection flow with 
heated box case, this type of training error metric could not 

 
Fig. 16 Box plots of the % normalized RMSE of the test predictions for the BC-CGAN models trained by different datasets and error 
metrics 
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be used, since it was difficult for the models to converge 
during training with this method. Despite this, the trained 
BC-CGAN models for this case make predictions below 
their error threshold for the test data, except for the models 
trained by the dataset with only three data points. While 
reducing the amount of training data often reduces the 
training time in this paper, drastically reducing the amount 
of training data caused the BC-CGAN models to perform 
poorly against the test data.  

Use of the feature-driven algorithm often reduces the 
epochs required to train the BC-CGAN models for the 
lid-driven cavity flow case, since it was able to capture   
the non-linear trend between the change in flow outputs 
and inputs. However, the feature-driven algorithm did not 
always produce this same effect for the mixed convection 
flow with heated box case, perhaps because there was not a 
clear non-linear trend between the flow outputs and inputs. 
For both cases, there is an apparent tradeoff between 
training time and test performance. The BC-CGAN models 
that took longer to train often performed better on the test 
data compared to the BC-CGAN models that were trained 
quicker. For the lid-driven cavity case, the increase in test 
prediction error was very small for the models that were 
trained quicker, particularly since all the models were very 
accurate because of the use of max error in the training 
process. The change in error for the predictions on the test 
data in the mixed convection flow with heated box case 
was more significant when the error metric threshold was 
higher. A strict error metric in this case resulted in small 
changes in test error among the models trained by the 
different datasets, except for the dataset with only three 
data points, which performed poorly for this case.  

Future studies can be conducted based on the work in 
this paper. First, more practical applications can be studied, 
for example data center airflow scenarios. One input 
parameter was used for each of the studies in this paper, but 
the BC-CGAN models and feature-driven algorithm can be 
evaluated for applications with multiple input parameters. 
This is important for expanding the BC-CGAN models to 
more applications, for example optimizing both supply airflow 
rate and temperature considering the indoor environment. 
Additionally, the models in this paper were trained to predict 
2D airflow distributions, but a 3D prediction may be necessary 
for certain applications. The impacts of the additional 
complexity when considering multiple inputs and 3D outputs 
on the model training and evaluation needs to be studied in 
future research. Incremental training, by either expanding 
the training range to new data or using “online” training 
when deploying the models (Jain et al. 2014; Pérez-Sánchez 
et al. 2018) can be performed to improve the models over 
time with new data. Finally, the trained BC-CGAN models 
can be used for a long-term evaluation or optimization study 

that requires many realizations to show the computational 
benefits of using this model over other numerical methods 
in these scenarios. They can also provide real-time or faster 
predictions of airflow distribution, which can be useful for 
emergency management scenarios. 
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