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Abstract 
Indoor air quality becomes increasingly important, partly because the COVID-19 pandemic increases 

the time people spend indoors. Research into the prediction of indoor volatile organic compounds 
(VOCs) is traditionally confined to building materials and furniture. Relatively little research 
focuses on estimation of human-related VOCs, which have been shown to contribute significantly 

to indoor air quality, especially in densely-occupied environments. This study applies a machine 
learning approach to accurately estimate the human-related VOC emissions in a university 
classroom. The time-resolved concentrations of two typical human-related (ozone-related) VOCs 

in the classroom over a five-day period were analyzed, i.e., 6-methyl-5-hepten-2-one (6-MHO), 
4-oxopentanal (4-OPA). By comparing the results for 6-MHO concentration predicted via five 
machine learning approaches including the random forest regression (RFR), adaptive boosting 

(Adaboost), gradient boosting regression tree (GBRT), extreme gradient boosting (XGboost), and 
least squares support vector machine (LSSVM), we find that the LSSVM approach achieves the 
best performance, by using multi-feature parameters (number of occupants, ozone concentration, 

temperature, relative humidity) as the input. The LSSVM approach is then used to predict the 
4-OPA concentration, with mean absolute percentage error (MAPE) less than 5%, indicating high 
accuracy. By combining the LSSVM with a kernel density estimation (KDE) method, we further 

establish an interval prediction model, which can provide uncertainty information and viable 
option for decision-makers. The machine learning approach in this study can easily incorporate 
the impact of various factors on VOC emission behaviors, making it especially suitable for concentration 

prediction and exposure assessment in realistic indoor settings.  
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1 Introduction 

Modern people spend most of their time in indoor 
environments, and the work-from-home policy caused by 
the COVID-19 epidemic further increases the time people 
spend indoors (Klepeis et al. 2001; Galanti et al. 2021). 
Currently, poor indoor air quality is a severe threat to human 
health (WHO 2007; Salthammer et al. 2010; Landrigan et al. 
2018; Abouleish 2021; Bu et al. 2021; Cui et al. 2022). 
Previous studies on indoor pollution tended to focus on 
pollutants introduced by outdoor air, or from building 
materials, such as particulate matter, formaldehyde, benzene, 

and some other volatile organic compounds (VOCs), while 
relatively few studies have been conducted on human-related 
emissions (Weschler 2009; Tang et al. 2015; He et al. 2019; 
Tian et al. 2021; NASEM 2022; Zhao et al. 2022). Amann  
et al. (2014) reported a variety of VOCs appeared in exhaled 
breath and skin emanations. A study by Tang et al. (2016) 
showed that human-emitted VOCs accounted for about 
60% of the total VOC mass in a well-ventilated classroom. 
Occupants can also pollute indoor air due to the use of 
personal care products (Yang et al. 2018a). Wisthaler and 
Weschler (2010) found the reaction of squalene in human 
skin with indoor ozone can generate some primary products 

BUILD SIMUL (2023) 16: 915–925 
https://doi.org/10.1007/s12273-022-0976-y 

 



Liu et al. / Building Simulation / Vol. 16, No. 6 

 

916 

such as 6-methyl-5-hepten-2-one (6-MHO), and secondary 
products such as 4-oxopentanal (4-OPA). 6-MHO and 
4-OPA have been confirmed to irritate the human digestive 
tract and respiratory tract, causing allergies, while some other 
ozone/squalene products can lead to comedogenic skin, 
inflammatory acne, and other skin diseases (Fruekilde et al. 
1998; Jarvis et al. 2005; Anderson et al. 2012; Pham et al. 
2015; Wolkoff et al. 2016). These studies all show that the 
presence of occupants can significantly impact indoor air 
quality, especially in densely-populated indoor settings. 

At present, the emissions of VOCs from building 
materials and furniture are well characterized (Little et al. 
1994; Yang et al. 2001; Xiong et al. 2011; Liu et al. 2013; 
Zhang et al. 2016; Zhou et al. 2018; Wang et al. 2022; Hu et al. 
2023). As for the ozone-initiated human VOC emissions, the 
most common method is to use mechanistic-based models for 
concentration prediction. Lakey et al. (2017) developed a 
kinetic multilayer model to describe the reaction characteristics 
of ozone with squalene, and achieved good prediction results 
in a simulated office. This model was further improved  
by incorporating the impact of clothing (Lakey et al. 2019). 
Moreover, a physical-chemical model considering the 
in-body/off-body ozone/squalene reactions, external convection 
along the skin surface, internal diffusion inside the skin, 
indoor surface uptake was proposed to more systematically 
predict the characteristics of reaction products in different 
phases (Zhang et al. 2021a). Generally, the prediction 
performance of mechanistic-based models depend significantly 
on the availability and accuracy of various key transport 
parameters in the model, and it is often a challenging 
problem to determine these parameters, especially for realistic 
indoor settings. Moreover, ideal assumptions are usually 
made to simplify complicated scenarios, which will further 
impact the prediction accuracy, especially when the indoor 
environmental conditions change over time.  

A common problem in today’s scientific community is 
that, the ability to collect and generate observational data far 
outstrips the ability to absorb and interpret it (Reichstein  
et al. 2019). Machine learning can extract relevant information 
and knowledge from various data streams in a data-driven 
manner, allowing it to comprehend the rules behind the 
things. Recently, machine learning and mathematical statistics 
have been widely applied in the environmental field (Wei 
et al. 2019). Machine learning approaches include classical 
algorithms such as perceptron and decision trees, ensemble 
methods with good robustness, and artificial neural networks 
(ANN). Although ANN has absolute advantages in the fields 
of visual and audio recognition, they may not perform well 
for standard regression prediction issues. 

In the indoor field, the most often examined contaminant 
using machine learning is particulate matter (PM) (Wei  
et al. 2019). Park et al. (2018) adopted a feed-forward 

back-propagation network to predict PM10 concentration 
in Seoul subway stations. In addition, ensemble learning has 
recently been used to forecast indoor PM concentration 
(Yuchi et al. 2019; Xu et al. 2020; Li et al. 2021). The Japan 
Environment and Children’s Study Programme Office used 
random forest regression (RFR) to conduct detailed studies 
of variables affecting indoor PM (Nishihama et al. 2021). 
There are also lots of studies on indoor CO2 that use machine 
learning approaches. Khazaei et al. (2019) and Skön et al. 
(2012) used fully connected networks to evaluate CO2 
levels in dwellings. Taheri and Razban (2021) proposed an 
energy-saving ventilation strategy based on the prediction 
of indoor CO2 through support vector regression (SVM) 
and other models. Kallio et al. (2021) studied the influence 
of different feature inputs and prediction periods on indoor 
CO2 prediction. Indoor radon has been studied by kernel 
regression and Bayesian spatial quantile regression in 
Switzerland (Kropat et al. 2015). Indoor formaldehyde and 
VOC predictions using statistical models are still sparse, 
and are limited to a few methods (Wei et al. 2019). Chen  
et al. (2018) revealed that among several machine learning 
methods, SVM had the best prediction performance for 
CO2 and TVOC in the classroom, whereas formaldehyde 
was difficult to predict. Zhang et al. (2021b, 2022) used the 
back propagation (BP) network and long short-term memory 
network (LSTM) to predict concentrations of some VOCs 
emitted from furniture in a controlled chamber under 
different conditions. In that study (Zhang et al. 2022), the 
machine learning approach to ozone-initiated VOCs only 
employed a single-feature LSTM model to predict 6-MHO 
and 4-OPA concentrations in a classroom. In fact, VOC 
emissions in a classroom are likely to be affected by multiple 
factors, such as number of occupants, ozone concentration, 
temperature and humidity. Since the number of occupants 
were not considered in Zhang et al.’s approach, the predictions 
deviated from the observations when occupancy changed 
greatly. Adding more relevant factor inputs will improve 
the prediction performance (Chen et al. 2018).  

In addition, the mechanistic-based or statistical models 
mentioned above can only deliver point prediction, and 
cannot show the probability and fluctuation range of the 
predicted results. Interval models can provide an effective 
range in which pollutant output lies with a specified 
probability. Therefore, combining a point prediction model 
with an interval prediction model will provide more useful 
information for decision-makers. Interval prediction includes 
parameter estimation, kernel density estimation, and some 
other estimation methods (Zhang et al. 2014). There are 
currently few studies using interval prediction for indoor air 
pollutants, with a primary focus on PM in the atmosphere 
(Song et al. 2015; Xu et al. 2017).  

In this study, we set out to use machine learning 
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approaches to achieve rapid and accurate predictions    
of indoor human-related VOCs. 6-MHO and 4-OPA 
concentrations due to the reactions of ozone with squalene 
in a university classroom were predicted by five machine 
learning approaches under different feature combinations, 
with the least squares support vector machine (LSSVM) 
achieving the best performance. The LSSVM was then 
combined with a kernel density estimation method, to construct 
a robust prediction system for indoor human-related VOCs, 
which could provide decision-makers with more useful 
information about indoor air quality. 

2 Methodology 

2.1 Introduction of some typical machine learning 
approaches  

The indoor VOC concentration is often affected by 
multiple factors, and traditional machine learning models 
such as linear regression and regression tree are difficult to 
capture the concentration changes accurately. Compared 
with traditional models, ensemble models are flexible in 
solving complex non-linear regression problems (Sagi and 
Rokach 2018). Although ANN are powerful, they tend to 
be relatively complex, and require more experience to tune 
the model and more computing time. In this study, we 
select random forest regression (RFR), adaptive boosting 
(Adaboost), gradient boosting regression tree (GBRT) and 
extreme gradient boosting (XGboost), as representative 
ensemble machine learning models. Moreover, a prior study 
demonstrated that SVM had good performance for indoor 
TVOC prediction (Chen et al. 2018). Inspired by this work, 
we also select an improved SVM, the least squares SVM 
(LSSVM) approach for analysis, which inherits the advantages 
of SVM and can also enhance the speed and accuracy. 
Since the mathematical underpinning of each approach  
(or model or algorithm) is very complicated, we give only a 
brief introduction to the core concepts or formulas of each 
approach here.  
(1) Random forest regression (RFR) 
RFR was proposed by Breiman (2001), the creator of the 
bagging method. It samples the training dataset and builds 
multiple independent tree models through the bootstrap 
method. For the regression problem, the final output is the 
average of all the basic learner results. RFR has the advantages 
of simple principle, easy implementation, and low com-
putational cost. Furthermore, using a tree model as the 
base learner makes it easier to interpret. 
(2) Adaptive boosting (Adaboost) 
As an adaptive ensemble learning algorithm, Adaboost can 

automatically increase the weight of mis-predicted samples 
in an iterative manner, so that the basic learner can be 
adjusted according to the prediction performance of the 
current model (Domingo and Osamu 2000). Thus, a set of 
basic learners with complementary performance can be 
obtained. Finally, an ensemble model with better performance 
will be constructed by means of a weighted average. 
Adaboost can freely choose basic learners, e.g., linear 
regression, perceptron. In this study, the regression tree 
is selected as the basic learner to construct the Adaboost 
ensemble model for prediction.  
(3) Gradient boosting regression tree (GBRT) 

GBRT is another typical algorithm of the boosting class, 
where, for a given training set (xi, yi), GBRT generates a 
new base learner fm(x) by fitting the current model residuals 
rm,i = yi − fm−1(xi). The estimation model for GBRT can be 
expressed as (Friedman 2001): 

( ) ( )
1

;
M

M m
m

f x R x θ
=

=å                             (1) 

where, R(x; θm) represents the regression tree model; θm are 
the regression tree parameters; M is the number of trees. 
(4) Extreme gradient boosting (XGboost) 

The XGboost algorithm was proposed by Chen and Guestrin 
(2016). As an improved form of the GBRT algorithm, it 
still adopts the tree model as the base estimator, and uses 
the forward step algorithm to build the ensemble model. 
Since XGboost explicitly adds the tree model complexity 
as a regularization term to the optimization objective, the 
model’s ability to resist over-fitting is greatly enhanced. 
In addition, the traditional GBRT only uses the first-order 
derivative information when optimizing the loss function, 
while XGboost performs the second-order Taylor expansion 
of the objective function and uses the first-order and 
second-order derivative information at the same time, which 
makes the model establishment more accurate. Its loss 
function for the t-th iteration is expressed as: 
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where, ( 1)( , )t
i il y y -  is the loss function of the (t−1)th 

iteration; ft is the newly created tree model for this iteration; 
gi, hi are the first and second order gradient statistics of the 
loss function, respectively; Ω(ft) is the tree model complexity 
function, expressed as: 
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where, λ and γ are regularization coefficients; T is the 
number of leaves; ωj is the weight of the leaves. 
(5) Least square SVM (LSSVM) 

SVM was pioneered by Cortes and Vapnik (1995). The core 
idea is to find support vectors to maximize the interval, 
and formalize the problem as a solvable convex quadratic 
programming problem. Further, SVM maps low-dimensional 
features to high-dimensional space by a kernel trick, which 
can effectively solve complex nonlinear problems and 
greatly reduce the computational difficulty. The LSSVM 
model can be obtained by replacing the inequality constraints 
of the SVM optimization problem with equality constraints 
and introducing the L2 regular term of the sample error ei, 
as follows: 

2 2

, 1
T

1arg min
2 2

subject to ( ) , 1,2,...,

N

i
b i

i i
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φ x b e i N
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⋅ + + =

å
W

W

W
          (4) 

where, φ is the nonlinear mapping function, which maps 
the training data into a higher dimensional linear feature 
space; λ is the regularization coefficient; ei is the sample 
error; W is weight vector; b is the bias. 

To solve the LSSVM optimization problem, a Lagrange 
function is constructed as: 
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where, αi are Lagrange multipliers. 
A more specific mathematical formulation and 

explanation for LSSVM can be obtained in the literature 
(Wang and Hu 2005). 

2.2 Interval prediction based on kernel density estimation 

Kernel density estimation (KDE) is a nonparametric density 
estimation technique, for looking at data distribution by 
using only the given samples without any assumption of 
prior distribution (Yang et al. 2018b). Compared with the 
parametric method, the KDE method can describe the 
distribution of data more accurately and is more reliable. 
Therefore, this study uses the KDE method to establish  
an error distribution model of the predicted VOC con-
centrations, so as to realize the interval prediction. 

For data series {x1, x2, ..., xi}, the probability density 
function (PDF) calculated by KDE is: 

( )
1

1 n
i

i
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The cumulative distribution function (CDF) is 
expressed as: 
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where, n is the length of offered datasets; K(x) is the kernel 
function; h is the bandwidth for adjusting the width of the 
probability density curve. This study uses a Gaussian kernel 
function and the reference method for bandwidth selection, 
i.e., h ≈1.06σn−0.2, σ is the standard deviation of offered 
samples. 

2.3 Metrics for evaluating the model performance 

There are various indicators that can be used to evaluate 
the performance of a point prediction model and an 
interval prediction model. To conduct a more comprehensive 
evaluation of the prediction performance of different models, 
two metrics are used, i.e., the mean absolute percentage error 
(MAPE), and the coefficient of determination (R2), which 
are defined as: 
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where, yexp,i is experimental data; ypre,i is predicted data; y  
is the average of the experimental data. 

MAPE is a scale-independent metric, which is suitable 
for comparing the prediction accuracy between different 
pollutants. The value range is (0, +∞), and a MAPE less 
than 20% represents a decent prediction. R2 reflects the 
variance between the predicted value and the real value, 
with values varying from 0 to 1. The closer R2 is to 1, the 
better the model prediction performance is. 

Another two metrics are used to assess the interval 
prediction performance, i.e., the IF coverage probability 
(IFCP), and the IF average width (IFAW), which are 
defined as:  

1

1IFCP N
ii

c
N =

= å                               (10) 

1
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i ii

U L
N =

= -å                         (11) 

where, ci is the Boolean value, 1 means within the 
prediction interval, 0 means outside the prediction interval; 
Ui is the upper bound of the prediction interval; Li is the 
lower bound of the the prediction interval. The interval 
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prediction model’s performance improves as IFCP gets 
closer to 1. 

3 Results and discussion 

3.1 Parameter settings for different machine learning 
approaches  

The experiments were performed over five weekdays in   
a densely-occupied realistic indoor setting, in this case a 
typical university classroom. Ambient ozone was introduced 
directly from the outside through a single-pass ventilation 
system. The number of occupants in the classroom was 
recorded manually. A proton-transfer-reaction time-of-flight 
mass spectrometer (PTR-TOF-MS) was used to measure 
VOC concentrations. The experimental data for 6-MHO, 
4-OPA, ozone and CO2 concentrations, as well as the 
temperature, relative humidity, number of occupants, are 
used for this analysis. More detailed descriptions of the 
classroom’s characteristics and experimental protocol can 
be found in previous publications (Tang et al. 2016; Yang 
et al. 2018a; Xiong et al. 2019). 

The parameters of machine learning approaches are 
divided into: hyperparameters that need to be set artificially 
in advance (e.g., learning rate) and weight parameters that 
the algorithm automatically learns and adjusts based on 
training datasets. To make full use of the dataset to select 
the optimal hyperparameters, the k-fold cross validation 
method is often adopted. However, considering that the 
data of this study has the time-series characteristics, the 
use of k-fold cross validation will lead to the problem of 
using future data for training and past data for validation. 
Therefore, we use a combination of time-series cross validation 
and grid search to obtain the optimal hyperparameters. 
Time-series cross validation is a statistical validation 
technique used to evaluate the performance of models in 
machine learning, and grid search is a way of tuning 
parameters. Additional information about these functions 
and their implementations is available in Yasin et al. (2016). 
We performed parameter optimization for each feature 
combination, and Table 1 lists the optimal combination 
of hyperparameters for the five different machine learning 
approaches based on 6-MHO concentration. The experimental 
data from the first four days were used for training and 
optimization, and the data from the fifth day were used for 
evaluating the prediction performance. 

The above five machine learning approaches use different 
combinations of features for prediction (see detail in the 
following Figure 2), including the VOC concentration 
(6-MHO), occupancy, ozone concentration, temperature and 
relative humidity. These features are normalized between 
−1 and 1 by using Z-score standardization. This study uses  

Table 1 Parameter settings of the different machine learning 
approaches 

Machine learning 
approach Name of parameter Set value 

Number of estimators 40 
RFR 

Max depth 3 

Base estimator DecisionTreeRegressor

Number of estimators 60 

Max depth 3 
Adaboost 

Learning rate 0.05 

Number of estimators 80 

Max depth 4 GBRT 

Learning rate 0.01 

Number of estimators 60 

Max depth 1 

Gamma 0.01 

Learning rate 0.1 

XGboost 

Booster gbtree 

Kernel linear 
LSSVM 

Penalty parameter C 1 
 

 
scikit-learn (Pedregosa et al. 2011) as a tool for implementing 
machine learning algorithms. 

3.2 Correlation analysis of the experimental data 

Temperature, relative humidity, number of occupants, ozone 
concentration, CO2 concentration, 6-MHO and 4-OPA 
concentration were all recorded in the classroom over the 
five-workday period. The correlation matrix between 6-MHO 
concentration and other related features is shown in the 
following heat map (Figure 1). 

 
Fig. 1 Heat map representation of the correlation matrix 
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The correlation (η) between different features is 
calculated as (Taheri and Razban 2021): 

cov( , )
var( ) var( )

i j

i j

x x
η

x x
=

⋅
                           (12) 

where, cov(xi, xj) is the covariance of two features; var(xi), 
var(xj) are the variances of the two features, respectively. 

If the η of two features is greater than 0.7 or less than 
−0.7, they can be considered to be the same feature, and 
one of them needs to be removed (Géron 2022). Generally, 
the human-related VOC concentration should be related 
to the number of occupants (occupancy), as well as the 
CO2 concentration in the classroom. Our results indicate 
that the change of occupancy and CO2 concentration is 
very similar, with η between them reaching 0.91 (shown 
in Figure 1). Therefore, these two features (occupancy, CO2 
concentration) is essentially one feature and should be 
combined. Since the main indoor VOCs in this study are 
produced by the reactions between squalene in human skin 
and ozone, we select the number of occupants (equivalent 
to CO2 concentration) as a feature for analysis. In addition, 
when the machine learning algorithm incorporates the 
features most associated with the prediction target, the 
prediction performance of the established model will be 
improved (Skön et al. 2012). Figure 1 indicates that all the 
features positively correlate with 6-MHO concentration, with 
number of occupants being the most-correlated feature, 
with η of 0.65, followed by ozone concentration, temperature, 
and relative humidity, with η of 0.29, 0.27 and 0.011, 
respectively. For 4-OPA, similar results are obtained. 
Considering that the heat map is very similar for 6-MHO 
and 4-OPA, the heat map of 4-OPA is not given here. In 
the following sections, number of occupants is shown to be 
strongly correlated with the prediction of the target VOCs. 
Furthermore, due to the complexity and difference between 
different algorithms, the influence of adding the same 
feature is varied. 

3.3 Prediction comparison for different machine learning 
approaches 

In this section, we examine the impact of different feature 
combinations on the prediction performance of the five 
machine learning approaches when predicing 6-MHO 
concentration, so as to select the appropriate approach and 
feature combination. Since the performance of machine 
learning approaches is heavily dependent on the quantity 
and quality of the training data, models can often accurately 
imitate the rule of training data while performing poorly in 
prediction. In general, effective measures for overcoming 
model overfitting and improving their generalization ability, 

are to increase the amount of training data or to introduce 
additional beneficial features. In this study, the indoor 
6-MHO and 4-OPA are produced by the reactions of ozone 
with squalene in human skin oils. Therefore, ozone levels 
and occupants will significantly affect the production 
rate, which may also be impacted by indoor temperature 
and humidity. Thus, the number of occupants, target VOC 
concentration, ozone concentration, temperature, and 
relative humidity are selected as useful features for this 
study. Then, according to the correlation coefficient obtained 
in Section 3.2, five feature combinations are obtained by 
adding these features successively from high to low (η with 
6-MHO concentration).  

Figure 2 shows the prediction performance of the  
five machine learning approaches for different feature 
combinations, which is evaluated by MAPE for the test 
data of 6-MHO concentration. This figure indicates that 
the performances of all approaches have been improved by 
adding the number of occupants, and the improvement in 
the performance of LSSVM and GBRT are very significant. 
When the other three features are added, however, the 
performance of the five approaches doesn’t indicate the 
same tendency. In the case of LSSVM, adding the above four 
features can improve the results to a certain extent, and the 
degree of improvement is positively correlated with the 
correlation coefficient. However, the performance of GBRT 
gradually deteriorates after adding ozone concentration, 
temperature, and relative humidity features. When modelling 
with combinations of all five features, LSSVM has the best 
performance, with a MAPE as low as 8.9%, while the results 
of GBRT deteriorate to achieve the same as univariate 
prediction. The results of the remaining three approaches 
are similar, but all of them are better than using only a single 

 
Fig. 2 Evaluation of the performance of five machine learning 
approaches under different feature combinations by MAPE (C: 
concentration, P: number of occupants, O: ozone, T: temperature, 
RH: relative humidity) 
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variable for prediction. Generally speaking, a certain 
feature has diverse effects for different machine learning 
approaches. The RFR is insensitive to the above features, 
while LSSVM can learn more useful information based 
on each feature. 

To further assess the prediction performance, another 
metric, R2, is also used. Figure 3 shows that the R2 for most 
of the machine learning approaches follow similar trends. 
By adding the feature of number of occupants, the R2 of all 
approaches increases by about 6%–14%. The highest R2 is 
0.886, achieved by the LSSVM using all features, while the 
lowest is 0.69, obtained by GBRT. Based on the above 
analysis with MAPE and R2, we select the LSSVM approach 
using multi-feature parameters (number of occupants, 
ozone concentration, temperature and relative humidity) 
as input, to establish a prediction model to estimate the 
concentrations of human-related VOCs. 

3.4 Prediction of 6-MHO and 4-OPA concentrations with 
LSSVM 

According to the analysis in Section 3.3, we chose to use 
the multi-feature LSSVM approach to establish prediction 
models for 6-MHO and 4-OPA concentations in the 
classroom. Results indicate that the MAPEs between model 
predictions and experimental data for 6-MHO and 4-OPA 
are 8.93% and 4.98%, and the R2 are 0.886 and 0.806, 
respectively, demonstrating high accuracy. 

Figure 4 provides a visual comparision between the 
LSSVM model predictions and the experimental data for 
6-MHO and 4-OPA concentrations on the fifth testing day. 
This figure indicates that the LSSVM approach can fairly 
accurately capture the VOC concentration profiles, with 
relatively small deviations. The time period where prediction 

 
Fig. 3 Evaluation of the performance of five machine learning 
approaches under different feature combinations by R2 (C: 
concentration, P: number of occupants, O: ozone, T: temperature, 
RH: relative humidity) 

is poor, is between 11:10 and 13:40. According to experimental 
records, the number of students in the classroom fluctuated 
greatly during this period, which resulted in a significant 
change in the VOC concentration. It is difficult for an LSSVM 
to accurately learn this sudden change. For the time 
periods when the number of students is relatively stable, 
the LSSVM works well in taking into account the change 
pattern of the predictor.  

To examine the applicability of the LSSVM approach in 
other realistic indoor settings, we analyze the data in an 
occupied residence in a recent study (Zhang et al. 2021a). 
Figure 5 shows the comparison of model predictions with 
field measurements for 6-MHO and 4-OPA in a bedroom 

 
Fig. 4 Comparison between LSSVM model predictions and 
experimental data for (a) 6-MHO and (b) 4-OPA concentrations 
on the fifth testing day 

 
Fig. 5 Comparison of model prediction with measured data for 
6-MHO and 4-OPA in a residence in literature for one day 
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of the residence. We can see that most of the data are located 
at the line y = x, implying good consistency between them. 
This analysis demonstrates the universality of the present 
model for different indoor environments. 

3.5 Comparison of LSSVM with LSTM predictions 

In a prior study, a long short-term memory (LSTM) 
approach was applied to predict the VOC concentrations in 
a classroom (Zhang et al. 2022). As a type of deep learning 
approach, LSTM incorporates a gating mechanism (forgetting 
gate, input gate, and output gate) within the neural units, 
which can cope with the vanishing gradient problem and 
capture the information between the input before and  
after. LSTM is currently widely used in the area of natural 
language processing. In Zhang et al.’s study, they just applied 
single-feature LSTM model for prediction, i.e., just the 
VOC concentration was involved. Zhang et al. (2022) used 
the VOC concentration at previous time to predict the VOC 
concentration at next time (called univariate prediction). 
This procedure has been widely applied in prior time-series 
predictions with machine learning (Chen et al. 2018; Park 
et al. 2018; Taheri and Razban 2021). Since the number of 
occupants was not considered, the predictions deviated 
from the observations when occupancy changed greatly. In 
this section, we make a comparison between the present 
multi-feature LSSVM approach and the prior single-feature 
LSTM approach. Figure 6 shows the comparison for the 
prediction of 6-MHO and 4-OPA concentrations. According 
to Zhang et al.’s study, the prediction performance of 
LSTM was poor around the first class in the morning due 
to the significant variation in the number of students. The 
prediction from the multi-feature LSSVM approach during 
this period is significantly better than that of LSTM. At 8:40, 
the MAPEs between the LSTM prediction and experimental 
data for 6-MHO and 4-OPA are 31.9% and 32.6%, 
respectively, whereas the prediction errors for the LSSVM 
approach are 13.7% and 9.6%, respectively. In addition, 
during the period of 8:40–9:30, the MAPEs of our 
multi-feature LSSVM approach for 6-MHO and 4-OPA 
are 6% and 4.3%, respectively, which are also much lower 
than those obtained with the LSTM approach. Calculations 
based on all the experimental data during the fifth testing 
day also produced similar results. Besides, on a desktop 
computer with the similar configuration, the LSTM takes 
about 60 seconds per prediction, while the multi-feature 
LSSVM only needs 0.05 seconds. This analysis implies that 
using a simple machine learning approach with appropriate 
feature combinations can also generate excellent or even 
better predictions with less computing time than deep 
learning approach. 

 
Fig. 6 Comparison between LSSVM and LSTM approaches for 
6-MHO and 4-OPA predictions  

3.6 Interval prediction based on KDE 

Unlike deterministic point forecast, interval prediction can 
provide information about the predictive range, confidence 
level, and remaining uncertainties of future values. This is 
helpful for decision-makers to monitor and analyze indoor 
air quality, and thus merits investigation. According to the 
introduction in Section 2.2, here we examine the approach 
of LSSVM combined with KDE to establish an interval 
prediction model for 6-MHO and 4-OPA, and then obtain 
the interval prediction results for two confidence levels 
(90%, 80%). IFCP and IFAW are adopted to evaluate the 
predicted results, which are affected by the confidence  
level. The calculated results of the two metrics are given  
in Table 2. The constructed IFCP is considered to be 
theoretically valid if its coverage probability is greater than 
or equal to the corresponding nominal confidence level 
(Khosravi et al. 2013). According to the results in Table 2, 
the IFCP in all the experiments is greater than the 
corresponding nominal confidence level, demonstrating 
the validity of analysis with interval prediction. 

Figure 7 shows the predicted intervals of 6-MHO and 
4-OPA concentrations for the fifth testing day, based on 
the LSSVM and KDE combined approach, with 80% and 
90% confidence levels, respectively. The prediction bandwidth 
widens as the confidence level increases, which is consistent 
with the theoretical principle. At both confidence levels, most  

Table 2 The interval prediction results for different confidence 
levels 

CI (%) VOCs IFCP (%) IFAW 

6-MHO 94.34 0.113 
90 

4-OPA 94.34 0.071 

6-MHO 83.01 0.080 
80 

4-OPA 84.91 0.041 
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Fig. 7 Prediction intervals for (a) 6-MHO and (b) 4-OPA for 80% 
and 90% confidence levels 

of the measured 6-MHO and 4-OPA data fall within the 
given prediction interval with moderate bandwidth. 
Unlike the normal distribution method, the KDE method 
can provide different upper and lower bounds to obtain a 
narrower bandwidth. This is a significant advantage of 
this method, which should be very helpful for future VOC 
prediction studies in realistic indoor settings. 

3.7 Advantages and limitations 

The advantages of this study can be summarized as follows: 
(1) The prediction performance of traditional mechanistic- 

based models is heavily influenced by dozens of key 
parameters, and it is sometimes very challenging to 
measure these key parameters. When using a machine 
learning approach for prediction, there is no need to 
consider the actual physical mass transfer processes  
or chemical reaction processes, and also no need to 
carry out complicated and time-consuming parameter 
determination experiments, instead finding the governing 
laws through data driven, so the difficulty and cost of 
prediction are greatly reduced.  

(2) Compared to previous studies, the multi-feature LSSVM 
approach presented here can capture the pattern of 
human-related VOCs more precisely.  

(3) This is the first attempt to conduct interval prediction 
of indoor human-related VOCs, providing more useful 
information for decision-makers to monitor and analyze 
indoor air quality. 

The limitations of this study include: (1) Although the 
prediction performance is improved compared with previous 
studies, a prediction discrepancy still exists when the number 
of occupants in realistic indoor settings vary drastically, 
and further investigation is needed. (2) The present prediction 
model is limited to a single machine learning approach, 
and subsequent research may attempt to average the results 
of multiple approaches using the voting method for robust 
predictions, or the stacking method for integration to 
improve model generalization. 

4 Conclusions 

We used a machine learning approach to rapidly and 
accurately estimate indoor human-related VOC concentration. 
We compared the prediction performance of five different 
approaches on 6-MHO concentration, and found that an 
LSSVM approach incorporating five features worked the 
best. We then used a multi-feature LSSVM approach to 
predict 4-OPA concentration in the university classroom, 
and obtained satisfactory results. Besides, the interval 
prediction model based on the kernel density estimation 
method has good performance, which makes up for the 
shortcoming that the deterministic point prediction model 
cannot provide uncertain information. This study contributes 
to the field by providing a method to accurately estimate 
indoor VOC exposure over a long period in realistic 
indoor settings. In addition to applying machine learning 
for time-series VOC concentration prediction, a promising 
direction of using machine learning could be to extract some 
key parameters needed for the physical or chemical models, 
or to discover some previously unknown controlling 
variables, which merits further and deep investigation. 
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