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Abstract 
Occupancy is used to represent the movements and locations of users among various zones    

of buildings, and it is the basis of all other daily energy consumption behaviors. This study 
investigated eight families in cold areas of China based on occupancy measurements obtained in 
four main rooms, i.e., living room, bedroom, kitchen, and bathroom. In particular, we analyzed the 

duration of user occupancy and hourly mean occupancy, and characterized their regular and 
random features. According to the results, we developed an event-based occupancy model using 
an inhomogeneous Markov chain, where the rooms were modeled and daily events were divided 

into three categories according to their randomness. We established a new method for conversion 
between event characteristic parameters and a transition probability matrix, as well as an overlap 
avoidance method for active events. The model was then validated using real data. The results 

showed that the model performed well in terms of two evaluation criteria. The model should 
improve the accuracy of simulations of occupancy. 
 
 

Keywords 
event; 

occupancy; 

urban residential building; 

simulation; 

cold areas of China 
 
Article History 
Received: 06 June 2022 

Revised: 01 September 2022 

Accepted: 05 October 2022 
 
© Tsinghua University Press 2022 

 
 

1 Introduction 

At the end of 2021, the total carbon emissions from urban 
construction accounted for about 20% of the total carbon 
emissions in China (Jiang and Hu 2021). Therefore, in order 
to achieve the goal of carbon neutrality (Wang and Gu 2021), 
the construction industry needs to vigorously promote 
energy conservation and reduce emissions. According to IEA 
Annex-53, the factors that affect the energy efficiency of 
buildings include the meteorological conditions, building 
structure, and user behaviors (Yan et al. 2015). Previous 
studies have shown that simply improving the performance 
of a building might not effectively enhance the building 
energy conservation level (Blight and Coley 2013), mainly 
due to the impacts of user behaviors on building energy 
consumption (Wang 2014). User behaviors can vary greatly 
among different buildings, thereby resulting in differences 
in energy consumption (Zhang et al. 2018). The energy 
consumed by residential buildings is the main component 
of building energy consumption (Zhang et al. 2019). And 

studies have shown that occupant behavior is commonly 
considered as a major contributor to result in a “gap” between 
actual and simulated energy consumption of buildings 
(Yan et al. 2015; Hong et al. 2016). Among the various user 
behaviors, occupancy is generally used to describe the 
locations and movements of users in various zones in buildings, 
and it is the basis of all other energy consumption behaviors. 
Occupancy is beginning to draw the attention of researchers 
because of the “gap” between actual and predicted energy 
consumption caused by the incorrect simulation of 
occupancy. 

1.1 Literature review 

In recent years, numerous efforts have been made to develop 
the following different types of occupancy models to predict 
occupants’ energy-related behaviors and presence schedules. 

1) Deterministic model 

This type of model considers that the activities of users in a 
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room are fixed during a day, so the time that the room is  
occupied is also fixed. For example, EnergyPlus includes 
the “Schedules” module to set the hourly user activities and 
lighting usage in a building (Crawley et al. 2001).  

2) Stochastic model 

The three subtypes of stochastic models are described as 
follows. The first subtype comprises time series forecasting 
models, which can be divided into two levels. (1) The first 
level of the model is for a single user. In particular, Wang  
et al. (2005) used a Poisson distribution to describe the 
hourly mean occupancy. Richardson et al. (2008) used the 
UK Time-Use Survey data to predict occupancy by using a 
first-order inhomogeneous Markov chain. Page et al. (2008) 
introduced the “move parameter-μ” to improve the first-order 
Markov chain for predicting the hourly mean occupancy. 
And Wang et al. (2015) proposed an occupancy model 
based on a Markov chain and daily user events to simulate 
the daily movements of users with only a few parameters 
from the daily events. (2) The second level of the time series 
forecasting model subtype is related to multiple users. In 
particular, Aerts et al. (2014) conducted cluster analysis based 
on occupancy patterns and proposed a series of diverse 
occupancy models. In addition, Flett and Kelly (2021) used 
statistical methods to develop a model for simulating the 
diversity of user behaviors. The second stochastic model 
subtype comprises multi-factor estimation models used for 
predicting the mean occupancy based on multiple factors, 

such as time, environmental parameters, and user behavior. 
In particular, Dong et al. (2011) collected real time data 
regarding the changes in the number of users in a specific 
room, and then used a neural network and hidden Markov 
chain to predict the number of users. Fajilla et al. (2021) used 
the law of total probability (LTP), naïve Bayes classifier (NB), 
and classification and regression tree (CART) to predict the 
mean occupancy, and compared the performance of the three 
models. The third statistical model subtype is characterized 
by the statistical modeling of indicators such as the number 
of users and occupancy time in a single day rather than 
predicting the hourly mean occupancy (Sun et al. 2014). 

Most models can also be divided into two categories by 
whether they used discrete-time approaches or discrete-event 
approaches, as summarized in the second column of Table 1 
(Li et al. 2022). A discrete-time approach can directly 
generate the occupants’ movement at each time-step of the 
day (Page et al. 2008; Richardson et al. 2008; Aerts et al. 
2014; Diao et al. 2017), and a discrete-event approach can 
predict an ordered event sequence of the day, which can 
generate the occupants’ movement later. Wang et al. (2011) 
proposed a stochastic model based on daily events and the 
Markov chain, which took the time parameters of typical 
events as the model input, and can easily simulate the 
actual occupancy in the room. Wilke et al. (2013) presented 
a bottom-up modelling approach to predict occupants’ 
time-dependent events in residential buildings. Similarly, 
Yamaguchi and Shimoda (2017) developed a stochastic 

Table 1 Modelling approach, building type and scope of previous studies 

Literature Modelling approach Building type Scope 

Wang et al. 2005 Discrete-time Office building The whole room 

Richardson et al. 2008 Discrete-time Residential building The whole apartment 

Page et al. 2008 Discrete-time Office building Different zones 

Chang and Hong 2013 Discrete-time Office building Different zones 

Wilke et al. 2013 Discrete-event Residential building The whole apartment 

Aerts et al. 2014 Discrete-time Residential building The whole apartment 

Wang et al. 2015 Discrete-event Office/residential buildng Different zones 

Chen et al. 2015 Discrete-time Commercial building Different zones 

McKenna et al. 2015 Discrete-time Residential building The whole apartment 

Diao et al. 2017 Discrete-time Residential building The whole apartment 

Yamaguchi and Shimoda 2017 Discrete-event Residential building The whole apartment 

Salimi et al. 2019 Discrete-time Office building Different zones 

Flett and Kelly 2021 Discrete-time Residential building The whole apartment 

Fajilla et al. 2021 Discrete-time Office building The whole room 

Rueda et al. 2021 Discrete-event Residential building The whole apartment 

Jeong et al. 2021 Discrete-time Residential building The whole apartment 

Malekpour Koupaei et al. 2022 Discrete-time Residential building The whole apartment  



Dong et al. / Building Simulation / Vol. 16, No. 3 

 

485

model to predict occupants’ daily events such as working 
and eating meals for community-/urban-scale energy demand 
modelling. By using discrete-event approach or taking 
occupancy as event, we can simplify the occupants’ movement 
as events or activities, and indirectly determine the occupants’ 
location by simulating the occurrence time of events. 

From the perspective of building type, the review findings 
suggest that previous researches into occupancy in different 
building zones had mainly focused on office buildings, 
whereas almost all studies (10 of 11 reviewed studies) that 
have considered residential buildings investigated whether 
users were occupying anywhere in a whole apartment, as 
shown in the third and fourth columns of Table 1. 

Previous studies had also concluded that the relationship 
between different types of occupants (e.g., full-time 
workers, stay-at-home parents, retired individuals etc.) and 
occupancy was complex (Flett and Kelly 2016). Yao and 
Steemers (2005) proposed that the type of employment and 
the working hours were the most significant occupancy 
effect. Similarly, Alerts et al. (2014) identified seven typical 
occupancy patterns by using hierarchical clustering. The 
results showed that different patterns occurred for different 
occupant types. 

Thus, there is a trend to improve the accuracy of occupancy 
modeling and reduce its complexity. Wang’s event-based 
model can reduce the complexity by setting daily events 
for users and by applying a Markov chain to simulate the 
randomness of occupancy (Wang et al. 2015). However, 
this model is still insufficient of simulating the randomness 
of occupancy in residential buildings. For example, the times 
of occurrence for daily events rarely follow a geometric 
distribution within the effective time period. In addition, 
definitions are not provided in the model for periodic events 
and there is no method for processing overlapping fixed 
events. 

1.2 Aims of this study 

In order to address the problems which are “previous 
researches into occupancy in different building zones had 
mainly focused on office buildings” and “the deficiencies  
of Wang’s model” (Wang et al. 2015), we conducted field 
measurements for eight families in Harbin and Shijiazhuang, 
which are representative cities in cold areas of China. 
According to the studies mentioned above, we selected two 
main types of families: stay-at-home family and full-time 
work family. The collected data were analyzed to determine 
the differences and similarities in terms of the occupancy of 
four main rooms, i.e., living room, bedroom, kitchen, and 
bathroom. An improved event-based occupancy model was 
then developed based on an inhomogeneous Markov chain, 

and the accuracy of the model was validated. A flowchart 
illustrating the research process is shown in Figure 1. 

 

Fig. 1 Schematic illustrating the flow of the research process 

2 Methods 

2.1 Site survey and measurements 

Eight families were selected in Harbin and Shijiazhuang, 
China, which comprised five stay-at-home families and three 
full-time work families. Basic details regarding the apartments 
and families before the field measurements were collected 
are shown in Table 2. 

Families A, B, C, D, and E were all stay-at-home families 
characterized by the adults staying at home for a long time 
without going out to work. Most were working from home 
during the COVID-19 pandemic or retired elderly families. 
Families F, G, and H were full-time work families characterized 
by the adults going out to work during the day and returning 
home at night. 

HOBO UX90-006x occupancy loggers (Figure 2) were 
used to collect occupancy data for each room. This instrument 
has a long self-record function and it collects data every 2 min. 
The measurement cycle was from November 25, 2021 to 
April 10, 2022, and the average measurement period per 
household was 2–3 weeks. 

The occupancy loggers were directed toward the zones 
where people often occurred in the test rooms at a height  
of about 1.5 m. For example, as shown in Figure 3, the 
instrument was placed on the wall in the room in household  
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Fig. 2 HOBO UX90-006x occupancy logger 

 
(a) 

 
(b) 

Fig. 3 Instrument layout in (a) a living room, (b) a bedroom 

E, and Figure 4 shows the measurement points and the 
layout of the apartment for household B. 

2.2 Occupancy modeling 

Based on Wang’s model (Wang et al. 2015), we developed 
an improved occupancy model. Wang’s model contains 
two main parts, as shown in Figure 5. The first part uses an 
inhomogeneous Markov chain to represent the random 
movements of users. A Markov chain {Xt} is a set of discrete 
random variables with the Markov property. The conditional 
probability of random variable Xt satisfies the following 
relationship: p(Xt+1|Xt, …, X1) = p(Xt+1|Xt). If the transition 
probability pij(t) = p{Xt+1 = j|Xt = i} is related to the time t, 
{Xt} is called an inhomogeneous Markov chain (Serfozo 
2009). The second part is the event method. Wang’s model 
defines a series of daily events that cause changes in the 
user’s position (Wang et al. 2015). Each event can modify 
the state transition probability matrix of the Markov chain.  

 
Fig. 4 Measurement points and apartment layout 

Table 2 Basic information for the eight families and their apartments 
 City Family type Family size Family members Apartment type Area (m2) Occupied since Floor 

A Harbin Stay-at-home 2 Middle-aged couple 3 rooms, 1 hall 80 2000 s 3rd 

B Harbin Stay-at-home 3 Young couple + 1 child 2 rooms, 1 hall 70 2010 s 14th 

C Harbin Stay-at-home 3 Middle-aged couple + 1 
young man 3 rooms, 2 halls 92 2010 s 8th 

D Shijiazhuang Stay-at-home 1 1 Young man 2 rooms, 1 hall 66 1990 s 5th 

E Harbin Stay-at-home 6 2 old people + young 
couple + 2 children 3 rooms, 1 hall 90 1990 s 1st 

F Harbin Full-time work 1 1 young man 2 rooms, 1 hall 45 2000 s 3rd 

G Harbin Full-time work 1 1 young man 1 room, 1 hall 31 1990 s 1st 

H Shijiazhuang Full-time work 2 Middle-aged couple 2 rooms, 1 hall 72 1990 s 5th 
Notes: The age ranges for “child”, “young man/couple”, “middle-aged couple”, and “old people” are <18 years old, 18–44 years old, 45–65 years old, and >65 years 
old respectively. 



Dong et al. / Building Simulation / Vol. 16, No. 3 

 

487

 
Fig. 5 Wang’s model (Wang et al. 2015) 

The model can generate the hourly user positions and 
room states according to the user’s initial position and the 
state transition probability matrix at each time step. 

2.3 Occupancy simulation program construction 

Based on the occupancy model described above, an occupancy 
simulation program was constructed. The program simulated 
a one-day state sequence for one room at each time according 
to the following steps (see Figure 6). 

(1) Creating the event set: The occupancy data was collected 
and preprocessed. Three types of events were defined 
and their characteristic parameters in the four rooms 
were determined based on real data, before simulating 
whether each periodic event occurred using the 
characteristic parameters. Then the event set was created. 

(2) Determining the active event at time i: The active event 
was determined by using the occurrence time, priority 
method, and last state review method. Firstly, use the 
occurrence time to filter each event of the event set 
created in step (1). The characteristic parameters “s_time” 
and “e_time” were used during filtering, which was 
defined in Table 5. Secondly, if the number of events in 
the active event set, i.e., “ongoing_events” generated in 
the first filtering was greater than 1, then the priority 
of events was used for the second filtering, which was 
also defined in Table 5. Thirdly, if the active event set 

 
Fig. 6 Occupancy simulation process
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“ongoing_events_1” generated in the second filtering 
still contained more than one event, use the “last state 
review” method to determine the active event at time i. 
The “last state review” method was introduced in detail 
in the fourth part of Section 3.3. 

(3) Simulating the occupancy state at time i: According to 
the active event determined in step (2), the occupancy 
state at time i was simulated by using the state transition 
probability matrix generated using the characteristic 
parameters and the occupancy state at time i − 1. The 
procedure to generate the transition probability matrix, 
i.e., TPM was explained in the third part of Section 3.3. 

(4) Steps (2) and (3) were repeated to obtain the hourly state 
sequence for a room for one day. 

2.4 Occupancy model evaluation 

We evaluate the performance of the proposed model as 
follows. 
(1) We evaluated whether the proposed model could simulate 

the occupancy characteristics represented by the data 
measurements for the main four rooms. The performance 
evaluation was conducted by analyzing the one-day 
state sequence simulated by the program (Figure 6), 
before comparing the similarity between the simulated 
data and actual measurements. 

(2) Accuracy of the proposed model: The data measurements 
showed that the occupancy state sequence varied for 
the same room on different days, but it was not 
useful to compare the measured and simulated values 
in an occupancy state sequence for one day. Thus, 
three variables related to the occupancy properties were 
defined: mean occupancy, cumulative occupied duration, 
and number of occupied/unoccupied transitions. These 
variables were defined in a previous study (Liao et al. 
2012).  
The following two evaluation metrics were used to 

quantify the performance of the proposed model in terms 
of the three variables described above. 
(1) The normalized root mean square deviation (NRMSD) 

was used to measure the error between the mean 
occupancy for a simulated sequence ˆ( )y  and the mean 
occupancy for a measured sequence (y). The following 
formula was used to calculate the NRMSD, where n 
represents the length of the sequence (Chen et al. 2015). 

2

1

max min

ˆ( )

NRMSD

n

i i
i

y y

n
y y

=

-

=
-

å
                     (1) 

(2) The Kullback–Leibler (K–L) divergence is used to measure 
the difference between two probability distributions for 
random variables (Cover and Thomas 2006). Thus, it 
was used to evaluate the difference between the probability 
mass functions (pmfs) for the measured data and 
simulated data for two variables comprising the cumulative 
occupied duration and number of occupied/unoccupied 
transitions. In the following formula, Pk represents  
the pmf for the measured data, Qk represents the pmf 
for the simulated data, and D(P||Q) denotes the K–L 
divergence between Pk and Qk. 

( ) log k
k

kk

PD P Q P
Q

=å                         (2) 

3 Analysis and results 

3.1 Occupancy duration 

In this study, HOBO UX90-006x occupancy loggers were 
used to collect and preprocess the occupancy data. We 
analyzed the data to obtain the daily total occupancy 
duration and daily occupancy duration for each room for 
“stay-at-home families”, “full-time work families on weekdays” 
and “full-time work families on weekend” and the results 
are shown in Table 3 and Figure 7. 

The daily total occupancy durations differed greatly 
among the three family types. The daily total occupancy 
duration for “stay-at-home families” was about 21.5 h per 
day, which accounted for 89% of the day. The daily total 
occupancy duration for “full-time work families on weekdays” 
was 12.3 h per day, which comprised 51% of the day. The 
daily total occupancy duration for “full-time work families 
on weekend” was 21.9 h, i.e., about 91% of the day. Thus, 
the total occupancy duration for “stay-at-home families” 
was approximately the same as that for “full-time work 
families on weekend,” and about 78% more than that for 
“full-timework families on weekdays”. 

The occupancy durations in the four main rooms by the 
three family types are shown in Figure 7(b). The occupancy  

Table 3 Occupancy duration results 

Conditions Total occupancy duration per day (h) Living room (h) Bedroom (h) Kitchen (h) Bathroom (h)

Stay-at-home families 21.5 5.7 15.6 4.2 2.9 

Full-time work families on weekdays 12.3 1.6 11.3 1.0 1.2 

Full-time work families on weekend 21.9 4.4 17.8 3.0 2.4 
 



Dong et al. / Building Simulation / Vol. 16, No. 3 

 

489

 
Fig. 7 Comparison of occupancy duration: (a) total occupancy 
duration per day, (b) occupancy duration for each room per day 

durations in the four rooms decreased in the following 
order: bedroom > living room > kitchen > bathroom. The 
total occupancy duration in the bedroom was 91.9% of the 
total occupancy duration for “full-time work families on 
weekdays” and longer than those for “stay-at-home families” 
and “full-time work families on weekend”. The occupancy 
duration in the bedroom was 12% less for “stay-at-home 
families” than “full-time work families on weekend,” and 
the occupancy durations were longer in the living room, 
bathroom, and kitchen. 

3.2 Mean occupancy 

The occupancy durations in the whole apartment and four 
main rooms differed little between “stay-at-home families” 
and “full-time work families on weekend”. The daily activities 
of “full-time work families” at the weekend were diverse, 
such as traveling and overtime, with high complexity and 
no typical patterns. Therefore, the mean occupancy was 
only analyzed for “stay-at-home families” and “full-time 
work families on weekdays” (as shown in Table 4). 

1) Stay-at-home families 

The hourly mean occupancy in the bedroom followed a 
highly regular pattern. Except for family C, several obvious 

troughs in the mean occupancy curves were found for each 
family type. In general, the troughs in the morning, noon, 
and evening corresponded to lunch, dinner, and breakfast, 
respectively. However, the times of occurrence and durations 
of the troughs varied among the different family types, 
where they occurred in the morning between 7:30 and 9:30 
for about 1 h, at noon between 11:00 and 13:00 for about 
1.5 h, and in the evening between 16:00 and 20:00 for 1–3 h. 
The users typically slept from 23:00 to 5:00 and the 
occupied state was maintained during this period, with a 
mean occupancy of 1.  

The mean occupancy in the living room was characterized 
by a common pattern but also individual differences. The 
mean occupancy curve for each family contained multiple 
peaks and individual differences were found in the duration 
and height of these peaks. The highest peaks were found 
for families B and E because they had children, where they 
mostly resided in the living room during the day and the 
peak height reached about 0.8. The peak height was the 
lowest for family C because the members of this family were 
middle aged with no children. This family spent less time 
in the living room every day and the peak was about 0.35. 
The mean occupancy in the kitchen was similar to that in 
the living room, with three peaks that corresponded to the 
three main meal times. The mean occupancy in the bathroom 
had two peaks, with the high mean occupancy peaks in 
the morning and evening corresponding to waking up 
and washing before going to bed, respectively. The mean 
occupancy was low and stable for the rest of the time because 
the family used the bathroom according to a random pattern. 

2) Full-time work families on weekdays 

The mean occupancy pattern was simpler for “full-time 
work families on weekdays” than “stay-at-home families”. 
For each of the families, the mean occupancy patterns in 
the living room and bedroom were regular but individual 
differences were also found, which were strongly related to 
the working hours of the families. The working hours for 
families F and G ranged from 9 a.m. to 5 p.m., whereas 
family H worked from 6 a.m. to 2 p.m. and 4 p.m. to 9 p.m. 
The commuting times for the three families were 5–10 min. 
Therefore, the mean occupancy patterns in the bedroom 
and living room were very similar for families F and G 
because they had the same working hours, which were 
consistent with the occurrence times for commuting events. 
Compared with families F and G, family H had very different 
working hours. Similarly, the mean occupancy of the 
bedroom was 1.0 at night and during the rest period in the 
afternoon. The mean occupancy of the living room was 0.7 
at other times because the middle-aged couple in family H 
preferred to reside in the living room when at home on 
working days unlike families F and G who had children. 
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Table 4 Mean occupancy in the four main rooms

No. Bedroom Living room Kitchen Bathroom 
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The mean occupancy characteristics of the families 
described above were strongly related to typical daily events, 
such as waking up, having three meals, washing, and going 
to bed. These events determined the duration and height  
of the peaks and troughs in the mean occupancy curves. In 
addition, the families had different behavioral habits, but 
regular patterns and individual differences were found in 
terms of their mean occupancy characteristics. 

3.3 Occupancy modeling 

We developed an improved occupancy model based on 
Wang’s model (Wang et al. 2015). The model can output the 
occupancy state sequence after inputting the initial state  
of the room, event set, and characteristic parameters (as 
shown in Figure 8). 

The model mainly comprises the following parts. 

1) Selecting the rooms for modeling 
The status of the occupancy logging equipment in the 
apartments was only related to whether users were in the 
room rather than who was in the room and the number of 
people. In addition, the area of the apartments was small 
and the frequent random movements of users could lead to 

the equipment registering the occupation of two rooms at 
the same time. Therefore, instead of the Lagrange scheme 
that tracks individual position changes, we selected the Euler 
method that focuses on specific positions and space as more 
suitable for our study. We selected the four main rooms 
for modeling and used (0, 1) to represent (unoccupied, 
occupied), so each room had a corresponding 2 × 2 state 
transition probability matrix at each time step. The Euler 
method reduces the dimension of the matrix from n to 2 
(as shown in Figure 9). 

2) Definitions of three types of daily events 

The function of events is to generate a state transition 
probability matrix for each time step. According to their 
randomness, occupancy events can be divided into fixed events 
(as shown in Figure 10(a)), periodic events (Figure 10(b)), 
and random events (Figure 10(c)). Fixed events occur during 
a fixed time period every day. Periodic events also occur 
during a fixed time period but they are periodic (e.g., three 
times each week). Random events clearly occur at completely 
random times, but their total duration each day and the 
duration of each event are relatively similar (Wang et al. 
2015). As shown in Figure 10(c), the total duration of random 
events in the three days is relatively close, which is 140 min,  

 
Fig. 8 Overview of the occupancy model 

 
Fig. 9 Reducing the dimensionality of the state transition probability matrix 

       
Fig. 10 Daily events: (a) fixed events, (b) periodic events; (c) random events 
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150 min and 110 min respectively. Thus, each type of event 
was defined by its characteristic parameters, as shown in 
Table 5. 

Table 5 Characteristic parameters for events 

Type Characteristic parameters 

Fixed event s_time, e_time, ranking, label 

Periodic event s_time; e_time, ranking, label, periodic_probability 

Random event s_time, e_time, ranking, label, x, y 

Notes: “s_time” is the earliest time of occurrence for an event, whereas “e_time” 
is the latest time of occurrence. “ranking” represents the event priority and 0 is 
the highest priority. The “label” parameter has three types: a denotes “entering 
the room” as a fixed event with a status from 0 to 1, b denotes “leaving the room” 
as a fixed event with a status from 1 to 0, c represents a periodic event, and d 
denotes a random event. “periodic_probability” refers to the probability of the 
daily occurrence of a periodic event. “x” is the proportion of the total 
occupancy duration for a random event per day and “y” represents the average 
duration of each event. 

 
3) Conversion between event characteristic parameters and 

the corresponding transition probability matrix 

The model uses the characteristic parameters for events at 
each time step to generate the corresponding state transition 
probability matrix, and matrix is generated for different 
types of events according to different methods, as follows. 
(a) Fixed events: The two types of fixed event comprise the 

event type with a status from 0 to 1, i.e. “entering the 
room,” and the other event type ranges from 1 to 0, i.e., 
“leaving the room”. 
“Entering the room” occurs at a certain time with c_time 
in [s_time, e_time], and the transition probability matrix 
within this period can be expressed using Eq. (3). In the 
effective time period of [s_time, e_time], the probability 
of occurrence p0–1 for c_time does not change and it is 
uniformly distributed, where p0–1 is equal to 1/(e_time − 
s_time +1). Therefore, in order to ensure that p0–1 
remains unchanged, the transition probability matrix 
is time varying and it can be calculated using Eq. (4) 
and Eq. (5). 

00 01

0 1a

p pé ù
ê ú= ê úë û

P                               (3) 

01
1

_ _ 1
p

e time c time
=

- +
                      (4) 

00 011p p= -                                  (5) 

Similarly, “leaving the room” also occurs at a certain time 
of c_time in [s_time, e_time], and the matrix within this 
period can be expressed using Eq. (6). The transition 
probability matrix is time varying and it can be calculated 
using Eq. (7) and Eq. (8). 

10 11

1 0
b p p

é ù
ê ú= ê úë û

P                               (6) 
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1
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p

e time c time
=
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                      (7) 
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(b) Periodic events: First, it is necessary to obtain the 
characteristic parameter “periodic_probability” to determine 
whether the periodic event occurs. If the periodic event 
occurs, it is converted into a fixed event and the method 
used for calculating the transition probability matrix is 
the same as that for fixed events. 

(c) Random events: The method used for calculating the 
transition probability matrix for random events is as 
described by Wang et al. (2015). 

4) Overlap avoidance method for active events 

At time c_time, the proposed model determines the active 
event set using the effective time period of [s_time, e_time] 
for all events. If the number of elements in the active event 
set is greater than 1, the model applies two methods to 
avoid overlapping events. In the “priority method,” the 
model conducts screening based on priority by using the 
event characteristic parameter “ranking”. In the “last state 
review” method, if two events have the same priority and 
the characteristic parameters for “label” comprising a and b 
are in the active event set at the same time, then their effective 
time periods of [s_time, e_time] and [s_timeʹ, e_timeʹ] overlap 
(as shown in Figure 11). Therefore, the active event cannot 
be determined in the overlapping time period of [s_timeʹ, 
e_time]. In this case, we need to determine the active event 
based only on the status j in the previous time step of 
c_time − 1. If j = 0, the label for the active event is a; otherwise, 
the label is b (as shown in Figure 12). These two methods 
can avoid overlapping to ensure that only 1 event or 0 occurs 
at all time steps during the day. 

 
Fig. 11 Schematic diagram illustrating overlapping events 
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Fig. 12 Last state review method 

3.4 Evaluation 

Real data were used for simulation in order to evaluate the 
performance of the proposed model. The occupancy of 
each room by a family was simulated using the simulation 
program and evaluated as described above.  

3.4.1 Data 

Occupancy data covering weeks for family D were used for 
the evaluation. The data were collected from January to 
February 2022 using the instruments and methods described 

above. Occupancy data for the four main rooms comprising 
the bedroom, living room, kitchen, and bathroom were used. 

3.4.2 Results and discussion 

Each of the four main rooms occupied by family D was 
simulated 100 times and the duration of each simulation was 
one day. 

1) Performance of the proposed model 

Figure 13 shows the simulated occupancy results obtained 
in the bedroom by family D for two days. The simulation 
results for the two days were different because the proposed 
model is random. In particular, the “leaving the room” 
event (label = b) occurred later in simulation 2 than the 
“entering the room” event (label = a) in simulation 1, i.e., 
e_time for b was later than s_timeʹ for a, thereby demonstrating 
that the model could handle situations where the effective 
time periods of fixed events with the same priority overlapped 
and the active event could not be determined (as shown  
in Figure 11). The times of occurrence and durations of 
random events (2), (3), (4), (6), (10), (12), (13), and (15) 
reflected the randomness of random events in the real data. 
Periodic event (8) occurred in simulation 1 but not in 
simulation 2, and thus the model could simulate the periodicity 
of periodic events in the real data. 

2) Accuracy of the proposed model 

Figure 14 compares the measured and simulated mean 
occupancy sequences for the four rooms. The simulated 
sequence was highly consistent with the measured sequence, 
especially in terms of the simulations of fixed events and 
periodic events. Table 6 shows the NRMSD values for the  

 
Fig. 13 Results obtained from simulations 1 and 2 
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Table 6 NRMSDs for mean occupancy values 

 Bedroom Living room Kitchen Bathroom 

NRMSD 0.098 0.135 0.076 0.105 

 
mean occupancy of the four rooms. The proposed model 
performed well at simulating the mean occupancy in the 
four rooms, although its effectiveness was relatively poor for 
the living room. Figure 14(b) shows that the performance of 
the model was affected by the occurrence of random events 
at night. 

It should be noted that as the simulation time increased, 
the mean occupancy curve for the period with random 
events tended to be flat, such as in time steps 80–110 for 
the bedroom, time steps 85–120 for the living room, and 
time steps 60–135 for the bathroom (Figure 14). Thus, the 
times of occurrence and durations of the random events were 
complex, such as in the kitchen for family A, the living 
room for family C, and the bathroom for family D (Table 4). 
The frequent changes in the mean occupancy during the 
periods with random events could not be fitted well by the 
proposed model, but the results reflected the average mean 
occupancy in those periods. 

Figure 15 compares the differences between the pmfs 
for the measured and simulated data for two variables 
comprising the cumulative occupied duration and number 
of occupied/unoccupied transitions. The model fitted well  

to these two variables. Table 7 compares the K–L results for 
the two variables. Figures 15 shows that the model performed 
very well in terms of the two variables in all four rooms. 
The K–L divergence values for the cumulative occupied 
duration were relatively large in the bedroom, as shown in 
Figure 15(ai), where the simulated values were slightly smaller 
than the measured values. It is possible that the duration 
of fixed events was fairly rigid for this family, whereas the 
model lacked this constraint. 

3.5 Preliminary application 

As shown in previous studies, building performance are 
highly dependent on the occupant behavior (Ren and Yan 
2014; McKenna et al. 2015; Jeong et al. 2021; Mitra et al. 
2021). Thus, the proposed occupancy model can influence 
the predictions of other occupant behaviors by accurately 
predicting the occupancy, and then influence the building 
performance simulation indirectly. The simulation results 
of lighting energy consumption are taken as an example to 
illustrate this point. 

Firstly, we constructed a simulation program of lighting 
behavior by using the coupling relationship between 
occupancy and lighting behavior (as shown in Figure 16), 
and used it to simulate switching lights. We focused on 
explaining that the proposed model should influence building 

 
Fig. 14 Measured (red line) and simulated (black line) mean occupancy values in (a) the bedroom, (b) the living room, (c) the kitchen,
(d) the bathroom 
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performance simulation in this study, so the method in a 
previous study was used to construct the simulation program 
of lighting behavior (Ren and Yan 2014). 

We have used three kinds of occupant data. The first 
one was the lighting utilization rate of four main rooms, i.e., 
bedroom, living room, kitchen and bathroom, as specified 
in the existing Chinese standard Design standard for 
energy efficiency of residential buildings in severe cold and 
cold zones. The second one was the occupancy data of four 
main rooms for “stay-at-home families” simulated by the 

proposed occupancy model, and the third one was the 
occupancy data of four main rooms for “full-time work 
families” simulated by the proposed model as well. The 
lighting energy consumption of the first situation can be 
calculated directly by the lighting utilization rate. The second 
and the third situation used the simulation program of 
lighting behavior mentioned above to predict the lighting 
behavior of one day, and then calculated the energy 
consumption. 

We performed 365 simulations for both situations 2 and 

Fig. 15 Measured (red line) and simulated (black line) values for (a) cumulative occupied duration in different rooms, (b) the number of 
occupied/unoccupied transitions 

Table 7 K–L divergence results for cumulative occupied duration and number of occupied/unoccupied transitions 

 Variable Bedroom Living room Kitchen Bathroom 

Cumulative occupied duration 0.256 0.130 0.070 0.060 
K–L divergence 

Number of occupied/unoccupied transitions 0.088 0.106 0.063 0.120 

 
Fig. 16 The coupling relationship between occupancy and lighting behavior 



Dong et al. / Building Simulation / Vol. 16, No. 3 

 

496 

3 to represent the lighting energy consumption throughout 
the year. The results showed that there were significant 
differences in simulations for the three kinds of occupant 
data, as shown in Figure 17. In terms of the energy 
consumption of the bedroom, the “full-time work families” 
was the highest, and the existing standard had the highest 
energy consumption of the living room, which was 216% of 
that for the “full-time work families” and 129% of that for 
the “stay-at-home families”. While the energy consumption 
for the kitchen and bathroom under all three situations was 
less according to the results, with the existing standard 
being higher than the remaining two. Thus, we can see that 
there are differences in building performance by using the 
existing standard and the proposed occupancy model. 

 
Fig. 17 The lighting energy consumption for three kinds of 
occupant data  

4 Conclusion 

In this study, we investigated eight families in cold areas of 
China and determined the occupancy patterns for their four 
main rooms. The results showed that the total occupancy 
durations were approximately the same for the “stay-at-home 
family” and “full-time work family on weekend” types, and 
the mean duration was about 9.6 h more than that for the 
“full-time work family on weekdays” type. The occupancy 
durations in the four rooms followed the order of: bedroom > 
living room > kitchen > bathroom. The “full-time work 
family on weekdays” type spent more time in the bedroom, 
and the “stay-at-home family” type spent less time in the 
bedroom than the “full-time work family on weekend” type. 
Analysis of the hourly mean occupancy showed that the 
occupancy characteristics were strongly related to daily 
events, such as commuting, waking up, and eating three 
meals, where these events could be divided into three 
categories, and the occupancy characteristics of different 
family types had similar patterns and individual differences. 

We also developed an improved event-based occupancy 
model using an inhomogeneous Markov chain. An overlap 
avoidance method for active events with the same priority 

and periodic events was defined, which enhanced the 
ability of the model to simulate reality compared with the 
existing model. A uniform distribution was used to fit the 
probability distribution for the times of occurrence for 
events in the effective time period, thereby obtaining more 
accurate simulations. Finally, the model was evaluated 
using real data and the results showed that the model 
performed well in terms of simulating the mean occupancy, 
cumulative occupied duration, and number of occupied/ 
unoccupied transitions. 

The study mainly focused on two types of families 
comprising “stay-at-home family” and “full-time work 
family” types. In future research, the types of families 
investigated should be further subdivided and also expanded 
in order to more accurately and comprehensively describe 
the occupancy of residential buildings by users. And this 
study is aimed to propose an accurate occupancy model, 
the application of the model in building performance 
simulation and the accuracy improvement of building 
performance simulation should be further verified and 
studied. 
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