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Abstract 
There is a growing interest in increasing the presence of renewable energy in the electric network. 

Photovoltaic production from grid-connected systems is leading this growth in terms of households. 

Alongside this development, concern about network security has emerged, because excesses   

of intermittent renewable energy on the grid could exceed voltage limits. Self-consumption, 

understood as the capacity of the producer to consume his or her own production, can partially 

solve these problems. Thermostatic controllable loads, such as heating and cooling, represent 

50% of the total amount of energy consumed by buildings; the proper allocation of these loads 

could be a driving force for self-consumption. In this study, a demand side management strategy 

is proposed based on a building energy model equipped with an inverter heat pump coupled 

with a photovoltaic plant. The goal is to maximize the use of local energy from the photovoltaic 

plant (self-consumption), reducing the export and import of energy to and from the grid. This 

goal is achieved by optimizing the set-points in each room. An array of optimal set-points over 

six years is presented. The results show the capacity of the methodology to match similar values of 

self-consumption (70% in winter and 50% in summer) obtained by strategies based on chemical 

batteries. The findings are shown in an energy matching chart at different levels of detail (yearly 

and monthly). Color bubbles are added to the matching chart to help visualize the unmatched 

energy of the system graphically. In comparison with actual model predictive control technologies, 

this study’s strategy offers great simplicity and a large saving in computational time.  
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1 Introduction 

The European Union (EU) is moving away from fossil  
fuels, with a strong commitment to reduce greenhouse gas 
emissions. In May 2019, the EU Council and EU Parliament 
signed the Clean Energy for all Europeans package (European 
Commission and Directorate-General for Energy 2019). 
This document is a step forward in implementing the EU 
energy strategy. The package includes eight new laws aiming 
to support the EU’s long-term energy strategy and the EU’s 
leadership in achieving carbon neutrality by 2050. Among the 
main elements of the document, we highlight the energy 
performance of buildings and renewable energy. This paper 
focuses on these two concepts to craft a specific proposal 
for both together.  

1.1 Background and motivation 

Buildings play a double role in the electric energy market: 
they can be energy consumers and, simultaneously, energy 
producers by hosting renewable energy facilities. Furthermore, 
the grid faces the major challenge of integrating renewable 
energy because of its intermittent character. Matching local 
renewable energy production with building energy demand 
is an urgent task to reach the EU target of 32% for renewable 
energy sources in the EU energy mix by 2030.  

The EU’s on the Energy Performance of Buildings 
Directive (EPBD) states that, in 2020, all new buildings 
should be nearly zero energy buildings (nZEB) (European 
Parliament, Council of the European Union 2010). The net 
zero energy building (NZEB) concept can be defined as a  
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List of symbols 

BEM building energy model  
BIM building information model  
COP  coefficient of performance  
DR  demand response  
DSM  demand side management  
EPBD  Energy Performance of Building Directive  
Erl  EnergyPlus runtime language  
EU  European Union  
HMS  home management system  
HP  heat pump  
HVAC  heating ventilation and air conditioning  
 system 

L  building energy demand  
MPC  model predictive control  
nZEB  nearly zero energy buildings  
NZEB  net zero energy buildings  
P  photovoltaic production  
PV  photovoltaic  
PVPC  precio voluntario del pequeño consumidor  
RB  rule-based control  
SC  self-consumption  
SS  self-sufficiency  
TCL  thermostatic control loads  
VRF  variable refrigerant flow inverter  

  
 

specific case of nZEB where there is a net zero energy 
matching (onsite), which can provide a solution for the 
problem of the intermittence of renewable energy (Pless and 
Torcellini 2010). This scenario increases the market interest 
in electric heating and cooling technologies such as heat 
pumps (HPs). Under the assumption that increasing building 
electrification will make the grid greener, heat pump 
technologies can be considered a strategic option (Battaglia 
et al. 2017). Heat pumps have a great potential for shifting 
electrical loads, and they can offer different control strategies 
for load matching. The electricity consumed by an HP can be 
considered through the “thermostatic control loads” (TCL), 
which can offer opportunities to stabilize the intermittent 
nature of renewable energy in grid applications, such as 
demand response (DR) (Gasca et al. 2022). Simultaneously, 
photovoltaic (PV) technology is growing, and prices are 
lowering, as has been recently published (Kost et al. 2021). 
Therefore, a combination of an HP and PV can be 
considered a viable solution in NZEB applications (Fischer 
and Madani 2017).  

Many countries have decided to link their energy future 
to the sun. That means that the consumption of energy 
from the sun has to be properly allocated at the lowest 
possible cost in buildings. One way of achieving this is by 
increasing self-consumption of local energy production 
(Luthander et al. 2015). The NZEB concept uses the grid as 
storage, but the grid has limitations, and many countries 
such as Germany, Italy, and Spain have started to promote 
self-consumption as the primary solution to avoid an excess 
of energy overloading the grid, therefore, new strategies and 
solutions should be provided in the near future (Widén  
et al. 2009; Widén 2014).  

1.2 Self-consumption in Spain 

In Spain, new legislation, based on a Royal Decree (RD, 2019) 
(Ministerio para la transición ecológica 2019), introduced a 
simplified net-metering mechanism for consumer billing. 
This procedure is consistent with the guidelines of the 
European Commission in reference to PV self-consumption. 
The self-consumption options considered in the Spanish 
legislation can be summarized as follows:  
 Self-consumption with energy surplus (this option is  

for a PV generation plant up to 100 kW). Production can 
cover energy for self-consumption and deliver the excess 
to the grid. This excess energy will be compensated for at 
the end of the billing period (one month), but the energy 
section of the invoice can not be negative; this excess will 
be sold at the average hourly price, which is lower than 
the buying cost. For small consumers (precio voluntario 
del pequeño consumidor, PVPC), the excess is valued at 
the average hourly price.  

 Self-consumption without energy surplus. This option is 
when production is only consumed in the dwelling, and 
the excess is not sent to the grid. In this case, an anti-spill 
system has to be installed.  

Under this schema there are two options for 
self-consumption. One achieves similar savings for 
self-consumption to those achieved by selling the energy to 
the grid. This strategy normally is a winter strategy, where 
PV production is quite low, and the energy demand from 
the grid is quite high. With the actual prices, selling and 
buying have a similar price and, therefore, increasing 
revenues from self-consumption beyond normal operation 
is not an easy task. The second strategy is for summer, where 
PV production is higher than energy demand; therefore, as 
the net metering cannot be negative, selling excess on the 
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basis of a certain quantity does not produce any revenue. 
Both strategies are going to be tested in this paper.  

1.3 The concept: demand side management 

There are two main strategies for increasing self-consumption 
in residential buildings, namely, demand side management 
(DSM) and energy storage based on batteries. The latter is 
attracting growing academic interest because of the impact 
of charging electric vehicles on the residential electric 
networks (Raghavan and Khaligh 2012); however, for 
specific battery applications in households, the prices are 
high, and the market is still waiting for a new generation of 
affordable batteries (Saviuc et al. 2019). The first approach 
is more feasible, and it has been subjected to specific 
algorithms and techniques (Strbac 2008).  

DSM aims to modify the consumption profile; it refers 
to actions directed to optimize a site’s energy consumption 
and to reduce expenses. It is an instrument to limit the 
impacts of a high surge of renewable sources onto the grid. 
The measures can, consequently, balance energy consumption 
and the amount of energy fed into the grid. In return for 
payment, DSM can offer “grid services” and, therefore, 
reduce the operational cost of the electrical system (Jensen 
et al. 2017). DSM can be classified into two main groups: 
rule-based control (RB) and model predictive control 
(MPC). RB works by using algorithms that operate depending 
on certain system parameters (Coffey 2012). MPC requires 
more advanced algorithms based on forecast models for 
weather (Ramos Ruiz et al. 2019). The latter can be 
computationally costly, and the parameters have to be 
carefully selected in order to avoid intractable problems 
(May-Ostendorp et al. 2011).  

The use of demand side management strategies in order 
to increase self-consumption has been the subject of previous 
studies: Munkhammar and Widén (2012) concluded that  
a scenario involving end-user flexibility only increase the 
solar fraction by a few percent. Also, Widén (2014) analyzed 
the impact that scheduling some programmable appliances 
has in the PV self-consumption, but the strategy had an 
overall low potential. Zong et al. (2012) improved the PV 
self-consumption through a MPC strategy based on the 
power price and the weather forecast. In Vanhoudt et al. 
(2014), the authors analyzed the potential of an active heat 
pump for demand response purposes, in order to reduce the 
peak power demands and to increase the self-consumption 
of the PV panel or the residential wind turbine. Similarly, in 
Thygesen and Karlsson (2016) a weather forecast controller 
was used in a ground source heat pump, but the increase in 
SC was limited.  

The combination of DSM and battery storage has been 
also studied. In Castillo-Cagigal (2010, 2011) a test was 

performed on a prototype of a self-sufficient solar house 
with PV panels, battery storage, controllable appliances and 
smart metering. The results shown that the relation between 
the electricity flows and storage capacity is not linear. In 
Widén and Munkhammar (2013), the behaviour of this 
combination in Swedish detached single-family houses was 
analyzed; and Vrettos et al. (2013) the increase of PV 
self-consumption through the use of small-scale batteries 
and flexible thermal loads. In Masa-Bote et al. (2014) the 
authors concluded that DSM strategies and local storage 
can drastically reduce the uncertainty associated to the 
forecast of photovoltaic generation.  

The demand side management methodology exploits 
alternative storage to batteries; the main options can be 
grouped into building thermal mass activation and hot water 
tanks. Many studies have considered hot water tank storage 
as a viable solution (Dar et al. 2014; Bee et al. 2018), but it 
requires an extra investment and space for the tank; in 
addition, it is not applicable to all the heating and cooling 
heat pump options. In the Mediterranean area, an inverter 
heat pump or a variable refrigerant flow inverter (VRF) is 
frequently used as a cost-effective solution (Nizetic et al. 
2014; Aguilar et al. 2017; Nižetić et al. 2017), but these are 
not compatible with a storage tank. In addition, thermal mass 
activation is a cost-effective solution but relies on effective 
algorithms for MPC. The impact of this technique has 
been broadly studied (Reynders et al. 2013; Le Dréau and 
Heiselberg 2016); however, MPC can be computationally 
unfeasible.  

This study is based on a building energy model (BEM), 
under the assumption of perfect knowledge of energy 
consumption, PV production, and the weather forecast. In 
a real test case, the energy consumption should be corrected 
by the use of calibrated energy models. Previous works by 
some of the authors have been developed to establish the 
error of the BEM, through uncertainty studies (Ramos Ruiz 
et al. 2017a, 2017b; Gutiérrez González et al. 2019). Specific 
calibration techniques for building envelope calibration 
can be consulted in references (Ramos Ruiz et al. 2016; 
Fernández Bandera and Ramos Ruiz 2017; Gutiérrez González 
et al. 2020) and for heating ventilation and air conditioning 
systems (HVAC systems) in references (Pachano and 
Fernández Bandera 2021; Pachano et al. 2022). The error 
for the weather has been evaluated in the following studies 
(Lucas Segarra et al. 2020b; Gutiérrez González et al. 2021) 
and for the weather forecast in references (Lucas Segarra  
et al. 2019, 2020a).  

The use of models to find the optimal thermal curve for 
each zone is a similar approach to MPC, but in this case the 
model is more detailed; therefore, more parameters can be 
controlled. In the case of MPC, simplified models (Neural 
Network) are normally used. These models find solutions 
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quickly, but sometimes they lack accuracy, because they fail 
to represent the building’s thermal behavior.  

1.4 Contribution and originality of the research 

In this paper, we describe an RB technique based on a 
building energy model developed in EnergyPlus, which was 
used to produce a set of optimal set-points curves for each 
thermal zone at each ten-minute time-step. The solutions 
were tested in different years and different seasons in order 
to evaluate the quality of the results.  

The main problem of the EnergyPlus model is related 
to slowness in execution and the difficulties to embed the 
software into a smart controller, which deterred these results 
to be implemented in a home management system (HMS) 
to override fixed set-points. The use of a surrogate model  
is an alternative to solve these difficulties. These models 
can be trained by using the information provided in this 
study to generate faster control strategies. As an example 
May-Ostendorp (2012) proposed supervised learning 
techniques and Schunbel et al. (2020) recurrent neural 
network (RNN) and linear state-space model. The training 
process of the surrogate model was not carried out in this 
study.  

Previous research has shown that PV systems with battery 
storage had a higher improvement in self-consumption 
and self-sufficiency than DSM. With a DSM strategy, the 
increase in the rate of self-consumption is between 2% and 
15%. However, with a battery storage capacity of 0.5–1 
kWh per installed kW of PV power, it is possible to increase 
the relative self-consumption by 13%–24% (Luthander 
et al. 2015, 2019). This work is innovative, since the 
findings of the proposed technique increase the capacity 
for self-consumption 20% over the base case scenario. 
In other words, the results are in a similar range to 
previous works based on chemical batteries, which can be 

considered remarkable (Femia et al. 2013; Luthander et al. 
2015, 2019; Psimopoulos et al. 2016). In addition, the grid 
consumption is reduced by 8% for winter and 30% for 
summer.  

The result offers two approaches, one for the winter 
case, where the model optimizes the solution without 
over-consumption, because PV production is scarce, and a 
summer case where over-consumption is viable because  
of the excess of PV production, which under Spanish law 
can be dispatched but not sold to the grid. In both cases, 
the proposed solution is profitable despite the high prices 
of actual electric energy. The results are presented in an 
original manner based on an energy matching chart 
developed by Luthander et al. (2019), where matching bubbles 
have been added to increase the information related to 
unmatched energy.  

2 Methodology 

In this paper, the surplus of PV production is used for the 
activation of thermal mass. The set-points vary between  
20 °C and 23 °C, and the reference case is 21 °C according 
to the Spanish thermal code. This study considers the 
application of an RB strategy based on a BEM with the goal 
of maximizing the self-consumption of PV energy in a flat 
located in Pamplona. The EnergyPlus model is composed 
of a rooftop PV system of 4 kWp coupled with a variable 
refrigerant flow (VRF) inverter with 2.7 kW of nominal 
power, which provide heating and cooling to the flat (see 
Figure 1). The goal is to match the instantaneous PV 
production (P) with the flat’s energy demand (L). The 
thermal mass of the building is used to store the PV power 
surplus by modulating the set-point of each thermal zone 
of the flat. The study was carried out separately in winter 
and summer, because in mild seasons with low energy 
demand, the base case scenario worked properly. The 

Egrid

Eexcess

P

L

GRID

TZ_Main Room

TZ_Kitchen

TZ_Guest Room

TZ_Living Room

VRF Outdoor Unit

PV

VRF 
system

TZ_Corridor

 
Fig. 1 Components of the building energy model 
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set-points varied from 20 °C to 23 °C in both seasons. The 
specific details of the flat floor plan and envelope components 
of the BEM are detailed in Appendix A, which is available 
in the Electronic Supplementary Material (ESM) of the 
online version of this paper 

2.1 Weather data 

According to the Köppen classification, Pamplona is Cfb 
and can be considered an oceanic climate. Precipitation does 
not vary significantly over the year. The sunshine hours 
are similar to oceanic coastal climates such as the nearby 
Basque locations, rather than the typical Mediterranean 
areas. On the other hand, the rainfall is significantly lower 
than the coastal Basque locations. Because of its altitude of 
450 meters and its inland location, the climate is harsher 
than in coastal areas with colder winters and warmer 
summers. Table 1 summarizes the main weather data 
obtained from a TMY file of Pamplona, based on the last 
five years.  

Table 1 Weather conditions in winter and summer. The table 
shows the average of: outdoor air dry bulb temperature (TOD,DB), 
outdoor air wet bulb temperature (TOD,WB), outdoor air relative 
humidity (RH), diffuse solar radiation (DIFSR), direct solar 
radiation (DIRSR) and horizontal infrared radiation (HIR) 

 Weather data 

 
TOD,DB 
(°C) 

TOD,WB 
(°C) 

RH 
(%) 

DIFSR 
(W/m2) 

DIRSR 
(W/m2) 

HIR
(W/m2)

Jan 4.55 2.71 76.45 35.39 67.80 266.00

Feb 6.51 3.77 67.83 49.29 107.17 273.82

Mar 8.00 4.99 66.49 63.00 149.53 280.87

Apr 9.90 6.83 68.43 85.64 140.81 290.67

May 13.26 9.83 68.66 108.11 159.95 308.21

Jun 17.30 12.50 61.39 90.98 249.78 328.29

Jul 20.45 14.48 56.83 94.80 272.79 344.59

Aug 20.31 14.46 56.93 70.26 263.83 343.93

Sep 18.18 13.06 59.98 62.26 224.08 332.61

Oct 13.71 10.29 69.07 49.69 153.53 310.61

Nov 8.35 6.39 78.65 30.81 110.01 285.00

Dec 5.71 4.00 79.23 31.52 69.68 272.27

2.2 Variable refrigerant flow and photovoltaic model 
description 

The photovoltaic model is the object of the EnergyPlus 
PhotovoltaicPerformance:Simple; it is described in the 
software documentation. It is the more simplified model. 
In this model, the user has direct access to the efficiency 
with which surfaces convert incident solar radiation to 

electricity and need not specify arrays of specific modules; 
in this study, cell efficiency was fixed to 0.15. The surface 
area of the PV panels installed was 12 m2 with the orientation 
of 154° facing south. The panels were roof integrated with 
an inclination of 34° and were also connected to a 
generator object that estimated the rated electric power 
output, which means that the actual power output for each 
time-step was determined by the generator component. 
The generator had a rated electric power output of 3900 W 
and the inverter efficiency was 0.9. The VRF HP computer 
model provided by EnergyPlus was used; the object is called 
AirConditioner:VariableRefrigerantFlow. The first VRF HP 
model was implemented in EnergyPlus V7.0 in December 
2011 and was fully explained in Raustad (2013). Next, it was 
verified by using the manufacturer’s performance data in 
Nigusse and Raustad (2013).  

This model type cannot be used simultaneously for 
cooling and heating and is controlled by each zone’s 
thermostats. The model allows multiple indoor fancoil units 
(FCU) to be connected to a single outdoor unit through 
refrigerant lines. The refrigerant flow is controlled using a 
variable speed compressor and an electronic expansion 
valve installed for each indoor unit. The whole connection 
of the system is represented in Figure 1.  

The model relies on empirical equations to define 
performance. It uses biquadratic performance curves to 
illustrate the capacity and the energy input ratio (EIR) as a 
function of the indoor and outdoor air temperatures and 
the part-load ratio (PLR) for part-load performance. The 
following equations are used to represent the performance 
curves:  

2
1 2 3ID ID

2
4 5 6OD OD ID OD

EIRFT CAPFT a a aT T
a a aT T T T

= = + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅ ⋅            (1) 
2 3

1 2 3 3PFPLR PLR PLR PLRa a a a= + ⋅ + ⋅ + ⋅          (2) 
2 3

1 2 3 4ID ID DBoundaryTFT Ia a a aT T T= + ⋅ + ⋅ + ⋅        (3) 

where:  
CAPFT = the biquadratic or cubic capacity modifying curve 

as a function of temperature (—);  
EIRFT = the biquadratic EIR modifying curves as a function 

of temperature (—);  
PFPLR = the electric power modifying curve as a function of 

PLR (—);  
PLR = the heating or cooling part-load ratio (—);  

IDT  = the average of indoor coils entering air dry bulb 
(heating) or wet bulb (cooling) temperature (°C);  

ODT  = the average of outdoor coils entering air dry bulb 
(cooling) or wet bulb (heating) temperature (°C);  

a1, ..., a6 = the numerical coefficients;  
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BoundaryTFT = the boundary equation to divide high and 
low temperature regions.  
The variation in performance with outdoor entering air 

temperature would be difficult to calculate using a single 
curve, because there are two distinct temperature regions 
(high and low). Therefore, the VRF computer model has two 
curves and automatically determines which curve should be 
used based on the boundary curve equation.  

The EnergyPlus Output is the capacity and electric power 
variable of the EnergyPlus model at full load, normalized 
by using the equations for the combinations of indoor and 
outdoor air temperatures.  

full RatedQ Q Q= /                                   (4) 

full RatedP P P= /                                   (5) 

In Tables C.5, C.6 and D.7, which can be found in 
Appendix C and Appendix D, the coefficients for Eqs. (1), 
(2), and (3) are provided for the outdoor unit and the FCU. 
These data have been taken from the VRF model of 
EnergyPlus V9.0.1, when compared with previous versions, 
slightly different values of coefficients were observed. These 
coefficients were exported for use in a spreadsheet to depict 
the performance curves of each equation in Figures 2 and 3  

TWB-21 TWB-22 TWB-23 TWB-24
TWB-25 TWB-27 Boundary  

TWB-15 TWB-17 TWB-19 TWB-21
TWB-23 TWB-24 Boundary  

(a) Heating energy input modifiers (b) Cooling energy input modifiers 

Fig. 2 Heating and cooling energy input modifiers as functions of low temperature (above) and high temperature (center), respectively; 
the boundary between indoor and outdoor temperatures for heating and cooling (below)
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at low and high temperature, at full heating and cooling 
load, the PLR (Figure 4), and the heating and cooling capacity 
modifiers of FCU models (Figure 5). 

A summary of the system performance data of the VRF 
HP model is shown in Table 2.  

2.3 Control strategy 

The process for obtaining the optimal set-points curves is 
described in Figure 6. In order to distribute the excess of 
energy in the different zones, an annual simulation is 
performed with the base case at fixed thermostat of 21 °C. 
This simulation provides the demand distribution of energy 
room by room. This configuration is adjusted to winter and  

 
Fig. 4 The electric power modifying curve as a function of the 
part-load ratio at high and low temperatures for heating and 
cooling, which presents approximately the same values 

TWB-21 TWB-22 TWB-23 TWB-24
TWB-25 TWB-26 Boundary  

TWB-15 TWB-17 TWB-19 TWB-21
TWB-23 TWB-24 Boundary  

(a) Heating capacity modifiers (b) Cooling capacity modifiers 

Fig. 3 Heating and cooling capacity modifiers as functions of low temperature (above) and high temperature (center), respectively; the 
boundary between indoor and outdoor temperatures for heating and cooling (below) 
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Table 2 System performance data of the VRF HP model 

 System parameter values  

Cooling electric power (kW) 2.65 

Rated cooling (COP) 3.73 

Heating electric power (kW) 2.15 

Rated heating (COP) 2.92 

 
summer seasons. The information is used for the distribution 
of energy in the algorithm. In addition, the COP for each 
time-step was collected from the BEM operation.  

In the second step, the files with the previous data were 
used to compute the set-points. The subroutine for the 
optimal temperature was executed in EnergyPlus Runtime 
Language (Erl) when the energy available was higher than 
the energy required by the model in the base case scenario; 
when the energy available was lower, the standard set-points 
were applied. The algorithm introduced the excess of energy 

into the different thermal zones according to the criteria of  
distribution calculated in the previous step. It was distributed 
into each thermal zone using an object of EnergyPlus called 
OtherEquipment, which allows distribution of sensible 
heating or cooling in a thermal zone without the need for 
an HVAC system. In this stage, the VRF system was OFF. 
Finally, if the energy introduced produced overheating or 
overcooling, the algorithm overrode those values with the 
minimum (20 °C)/maximum (23 °C) set-points.  

In the third step, the VRF was ON. The objective was to 
verify that the set-point curves produced in the previous 
step had the intended effect. To verify if the methodology is 
working the five following criteria should be fulfilled:  
 The energy consumed from the PV should be higher in 

the optimized case. The DSM strategy aims to use the 
excess of energy produced by the PV through set-point 
modulation (between 20 °C and 23 °C), and, therefore, 
reduce the energy dispatched to the grid. 

TWB-21 TWB-22 TWB-23
TWB-24 TWB-25 TWB-26   

TWB-15 TWB-17 TWB-19
TWB-21 TWB-23 TWB-24  

(a) Heating capacity modifiers (b) Cooling capacity modifiers 

Fig. 5 Heating and cooling capacity modifiers of FCU models 

 
Fig. 6 Operational schema 
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 The energy from the grid should be lower, due to the 
increase in energy consumed from the PV production. 

 Self-sufficiency should be higher, as the strategy aims to 
maximize the ratio between the instantaneous energy use 
and the total energy consumed by the building.  

 Self-consumption should be higher, because the 
methodology maximize the instantaneous PV energy use 
from the instantaneous PV production.  

The results were checked for five different years with 
similar findings. The main goal was to obtain more points 
in the middle of the band (20–23 °C), trying to avoid the 
maximum and minimum. That would be a clear sign that 
the methodology was working.  

2.4 Grid indicators 

Grid indicators are defined in the literature; they quantify 
the impact of production and consumption on the grid 
(Salom et al. 2011). Similarly, load matching indicators 
(Lund et al. 2011) and cover factors are defined in Verbruggen 
and Driesen (2014). These indicators measure the mismatch 
between local electricity demand and supply. In this paper, 
two main indicators are used: first, self-consumption, which 
can be defined as the ratio between the PV used locally and 
the total PV production, and second, self-sufficiency, which 
is the ratio between the PV used locally and the total energy 
consumed by the building. These factors are represented by 
the following equations.  
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where:  
P(t) = instantaneous on site PV generation;  
L(t) = instantaneous building power consumption;  
M(t) = instantaneous overlapping of generation and load 

profile;  
M(t) = min{L(t), P(t)};  
gsc = self-consumption; and  
gss = self-sufficiency.  

2.5 Self-consumption evaluation: the matching chart 

The matching chart was developed by Luthander et al. 
(2019) as a graphical visualization of self-consumption and 
self-sufficiency in buildings. Figure 7 shows the concept of 

this chart. In this paper, extra information was added to the 
chart in the form of color bubbles, which can improve 
understanding of the meaning of each position within the 
chart. The parameters shown in the chart are related to 
each other according to the following equation:  

ss

sc

P
L=

g
g

                                       (8) 

The main elements of the diagram are as follows:  
 Red dotted lines. According to Eq. (8), they represent  

the relation P/L. The intercept with the extremes shows 
the maximum self-consumption when P/L > 1 (33% in 
Eq. (8)), or the maximum self-sufficiency when P/L < 1 
(33% in Eq. (8)). Another important feature introduced by 
Luthander et al. (2019) is that a system does not move from 
the line without substantially changing the size of P or L.  

 Green dotted line. This line divides the space between net 
consumers (below) and net producers (above). It represents 
the space for the NZEB buildings, where P/L = 1. The 
points of the extremes are important, because in the 
upper corner there is a perfect match, while in the lower 
corner there is not a match between consumption and 
production.  

 Color bubbles. In the first place, the size of the bubble is 
related to L; in Figure 7, different sizes are shown as 
examples. In reference to the concentric circles of the 
bubbles, the ratio between the radius is 2 , which means 
that the two areas inside the circle (the inside circle and 
the ring) are equal. The blue refers to the PV production; 
it is located in the inside circle when P/L > 1 (net producers) 
and in the ring when P/L < 1 (net consumers). The yellow 
refers to the building energy load and its behavior is 
opposite to the blue. Green represents matching and is 
always in the inside circle.  

2.5.1 Why color bubbles? 

In Luthander et al.’s (2019) study the bubbles were presented 
with different sizes depending on L; however, in order to 
explain the main numbers of the matching chart, extra 
information was originally provided with triangles. However, 
triangles could not be introduced on the chart; therefore, color 
bubbles are the evolution of triangles to be represented  
on the matching chart. The main limitation is the size, 
which means that it is not possible for many bubbles be 
represented in the same area of the chart, and an auxiliary 
table has to be provided.  

2.5.2 What is the extra information from the color bubbles? 

Let us review the different bubbles in Figure 7. A net 
producer bubble is represented on the upper side of the chart, 
over the red dotted NZEB line. In this bubble, the blue  
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Fig. 7 Color bubbles in the matching chart (blue means PV 
production, yellow energy load and green represents the matching 
between both) 

(representing P) is in the inside circle. The green area is a 
percentage of the circle and is on the self-consumption axis 
(in our case 25%). The intercept with the 100% self-sufficiency 
line gives us the P/L relation. This information can be 
provided by a regular matching chart. For further information, 
calculus must be performed with Eq. (8). The color bubble 
offers us the amount of energy load that does not match 
with P, which is represented by yellow on the ring. In this 
case, it is the difference (8%) between 33%, which is the 
maximum self-consumption at the end of the red dotted 

line, and 25%, which is the actual self-consumption of this 
net producer bubble.  

The net consumer bubble is represented on the lower 
side of the chart. In this bubble, the yellow (representing L) 
is in the inside circle. The green area is a percentage of the 
circle, and it is on the self-sufficiency axis (in our case 25%). 
The intercept with the 100% self-consumption line gives us 
the P/L relation (33%). The bubble offers the amount of P 
that cannot be matched with L (8%).  

3 Analysis of the results 

The BEM was simulated for six different years from 2013 to 
2018 with actual weather data collected from a nearby 
meteorological station for four months of winter (January, 
February, November, and December) and four months of 
summer (June, July, August, and September). The reason 
for this is that the methodology needs a reasonable energy 
demand of heating and cooling; this way the algorithm can 
activate the thermal mass. If the energy demand of the 
building was low, the thermal mass activation could be 
counterproductive, and the results would not offer a 
significant improvement over the base case scenario.  

Table 3 shows a general view of all the results. The PV 
use increased in a range from 35% to 49% in winter and 
from 72% to 110% in summer. In relation to the cover factor, 
self-consumption increased in a range from 21% to 24% in 
summer and from 19% to 22% in winter; in addition, the 
self-sufficiency increase was approximately 16% in summer 
and 8% in winter. The first conclusion of this general view 
is that the results were quite consistent for the different 
years.  

Table 3 Simulation results from 2013 to 2018 for the base case scenario and for the optimization case. Each year is divided into winter 
and summer  

Year/season 
PV Produc. 

(kWh) 
Demand 
(kWh) 

Demand 
Opt. 

(kWh) 

PV 
used 

(kWh) 

PV used 
Opt. 

(kWh) 

Increase 
PV used 

(%) 

Energy 
Gr.  

(kWh) 

Energy 
Gr._Opt. 
(kWh) 

Decrease 
En._Gr. 

(%) 

SC  
base  
(%) 

SC  
Opt.  
(%) 

SS  
base 
(%) 

SS 
Opt. 
(%) 

2013/Summer 1035.35 467.32 649.56 304.64 526.56 72.85 162.69 122.99 24.40 29.42 50.86 65.19 81.06
2013/Winter 492.28 1275. 1282.34 263.57 357.64 35.69 1012.01 924.70 8.63 53.54 72.65 20.66 27.89

2014/Summer 944.69 298.66 503.38 204.04 430.03 110.76 94.62 73.35 22.48 21.60 45.52 68.32 85.43
2014/Winter 408.29 1124.82 1124.07 232.99 318.99 36.91 891.83 805.08 9.73 57.06 78.13 20.71 28.38

2015/Summer 998.16 391.22 585.04 254.58 483.54 89.94 136.64 101.50 25.72 25.50 48.44 65.07 82.65

2015/Winter 460.46 1208.10 1213.72 258.75 362.50 40.09 949.34 851.22 10.34 56.19 78.73 21.42 29.87
2016/Summer 1017.75 394.04 589.08 260.60 494.55 89.77 133.44 94.53 29.16 25.61 48.59 66.13 83.95
2016/Winter 457.47 1120.27 1126.21 242.69 335.01 38.04 877.58 791.21 9.84 53.05 73.23 21.66 29.75

2017/Summer 1002.45 357.85 540.66 239.03 451.45 88.87 118.83 89.21 24.92 23.84 45.03 66.79 83.50
2017/Winter 510.99 1217.23 1245.96 222.61 333.34 49.74 994.62 912.61 8.24 43.56 65.23 18.29 26.75

2018/Summer 1073.16 512.95 724.92 348.04 603.42 73.38 164.91 121.50 26.32 32.43 56.23 67.85 83.24

2018/Winter 497.45 1107.52 1126.06 253.22 361.32 42.69 854.30 764.74 10.48 50.90 72.63 22.86 32.09

Note: Produc.: production; Opt.: optimized; Gr.: grid; En.: energy., SC: self-consumption; SS: self-sufficiency 
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In addition, when comparing these results with the studies 
present in Luthander et al. (2019), the values obtained for 
self-consumption and self-sufficiency were similar to cases 
where batteries were used and clearly beyond the results of 
DSM. The comparison between different studies is difficult 
to achieve since there are several influencing factors, such 
as the climate considered, the building characteristics, the 
annual demand and the PV production, or the occupation, 
that should not be ignored. However, it seems that the 
results of this study with DSM can be considered similar to 
other studies with a 4 kWh battery, where the increase of 
the self-consumption reached values of 22%, 27%, and 29% 
(Bruch and Müller 2014; Weniger et al. 2014; Bertsch et al. 
2017, respectively). These can be considered remarkable 
results considering the cost and the maintenance of 
batteries.  

In Figure 8, the same results are shown in the form of 
the energy matching chart; as mentioned previously, it was 
not possible to use the bubbles due to the lack of space in 
the chart. Another important remark that can be drawn 
from the matching chart is the different behavior in winter 
and summer. In winter, when the points of the base case 
scenario and the optimized models were connected, they 
crossed through the origin of the chart. As previously 
mentioned, this means that the P/L relation was the same 
before and after the optimization. In winter, the P was 
lower, and selling to the grid could be a profitable option; 
hence, over-consumption was not always a viable solution. 
Thus, the winter strategy varied between charging and 
discharging the thermal mass. This was achieved by reducing 

 
Fig. 8 Energy matching chart from 2013 to 2018 (summer is in red, 
and winter is in blue; the numbers in the graph are the years) 

the base set-point from 21 °C to 20 °C when there was no 
excess of PV.  

In contrast, in summer, the connected line did not 
cross the origin, which means that a modification of the 
relation P/L was made. In summer, the strategy was 
over-consumption, because the excess of P could not be sold 
to the grid; therefore, L was increased, and, consequently, 
the P/L was modified.  

3.1 Detailed analysis of the results of 2018 

All the years analyzed showed similar behaviour; we chose 
2018, the most recent year, for a more detailed analysis at 
the level of monthly and daily hourly averages of energy 
and temperature. The first observation from the monthly 
matching chart of 2018, in Figure 9, is that the performance 
was very similar to that in Figure 8, which means that there 
was a similar pattern at the yearly and monthly level.  

In Figure 10, the matching bubbles were added to 
increase understanding. The size of the bubbles in winter 
were larger than the summer ones, which is expected 
from the weather characteristics of Pamplona as a Pyrenees 
region, with a strong winter season and mild summers. As 
mentioned before, for winter, the bubbles of the base case 
scenario were of equal size to the optimized, which means 
that the relation P/L was constant; therefore, in Figure 9, 
when connecting these two points, the line crossed the origin. 
On the contrary, in summer, the size of the bubbles were 

 
Fig. 9 Monthly energy matching chart of 2018 (the summer months 
are in red, and the winter months are in blue) 
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Fig. 10 Color bubbles for each analyzed month of 2018 

different, and the connection of the lines did not cross the 
origin; here, the over-consumption strategy based on the  
extra energy available from the PV production was reflected. 
Additionally, the bubbles allow us to check graphically the 
matching capacity of each month (green area of each bubble) 
and the unmatched energy for the base scenario and the 
optimized case. Notice that, in the winter months, the 

self-sufficiency values corresponded to the green area; in 
summer, that correspondence of the green area was with 
self-consumption. However, the unmatched energy (blue 
and yellow of the ring) cannot be detected graphically 
without the bubble information.  

3.1.1 Winter period 

The purpose of the DSM strategy is the use of otherwise 
wasted energy (when available) or the reduction in the 
amount of energy dispatched to the grid. Due to the 
weather characteristics, in winter, buildings in Pamplona 
are net consumers as can be seen in the matching chart in 
Figure 9. The winter strategy was to increase self-consumption 
without increasing demand. This was achieved for all the 
winters in the years from 2013 to 2018 and for all the winter 
months in 2018.  

In Figure 11, a summary of the daily ten-minute 
time-step average temperature can be seen. The main goal 
was to achieve an array of optimal set-points to increase the 
consumption of local energy production and, hence, reduce 
the amount dispatched to the grid. As this available energy 
varied due to changing weather conditions, a rule of fixed 
set-points would be counterproductive and would raise 
grid energy consumption. On the other hand, a high excess 
of PV production would fix the set-point at the maximum 
allowable set-point of 23 °C. As can be seen in Figure 11, 
this was not the case, because in all the months there was a 
modulation of the temperature. Notice that despite showing 
only the average temperature, the ten-minute optimal 
temperatures were achieved for each room (thermal zone) 
of the flat; this high number of points is quite remarkable.  

In relation to the energy analysis, the daily hourly energy 
was shown for the different months of: January, February, 
November, and December. For a deeper understanding, 
February is presented in Figure 12, while the rest of the  

 
Fig. 11 Temperature comparison between base and optimized models in winter at ten-minute time-step for 2018 
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Figures are provided in Appendix B in the ESM. The results 
were very similar, during the optimization time (from 
10:00 to 17:00), self-consumption was clearly enhanced. 
Overall, the grid consumption was reduced, but in some 
hours it was increased. However, the general balance of the 
winter season was around 10% lower. In all cases, it can be 
observed that the morning storage has a slight effect on the 
evening consumption. As an example, the color bubbles of 
February presented in Figure 10 are shown in a matching 
chart in Figure 13. The size of the bubbles is equal and the 
connection line crosses the origin, which means that there 
is no variation in P/L relation.  
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Fig. 13 Color bubbles for February 2018 in the energy matching 
chart 

3.1.2 Summer period 

The summer strategy was different due to the excess PV 
production. According to Spanish legislation, explained in 
the introduction, the excess can be dispatched to the grid 
but for free. Under this circumstance, the aim is to obtain 
maximum profitability from this energy, since dispatching 
it for free should be the last resort. On the basis of the 
above, over-consumption is a viable solution.  

When we analyze Figure 14, we can take note of how 
the set-points were modulated in June and September but 
not in July or August; the reason for this was the large 
amount of PV production available in the latter months. It 
is clear that when PV production is high, the methodology 
does not offer an original solution, and it is during scarce 
PV production that it obtains the maximum profit. To test 
this, we chose a day in August where the modulating optimal 
set-point can be regarded (see Figure 15).  

In relation to the energy consumption, the difference 
with winter is quite clear. In this case, the optimization period 
was from 10:00 to 19:00. In this case, over-consumption 
(Figure 16) was a justifiable option, because this energy had 
to be dispatched to the grid for free, and any other profitable 
solution would be valuable. The savings from the grid 
were around 25% as stated in Table 3, and they came from 
the evening performance where, clearly, less energy was 
consumed as can be seen in Figure 16.  

In Figure 17, the color bubbles and the matching charts 
are shown. It shows explicitly a net producer strategy. The 
size of the bubbles show the increase in L; therefore, 
there is a double line of connection with the origin 
instead of a single line. The green area shows the increase in 
self-consumption, and the yellow area shows the unmatched 
energy.  

 
Fig. 12 Energy comparison between base and optimized models at the hourly time-step for February 2018 
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Fig. 14 Temperature comparison between base and optimized models at the hourly time-step in the summer of 2018 

 
Fig. 15 Temperature comparison between base and optimized models on 7 August 2018 at ten-minute time-step 

 

Fig. 16 Energy comparison between base and optimized models at the hourly time-step in August 2018 
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Fig. 17 Color bubbles for August 2018 in the energy matching chart 

3.2 Comfort analysis 

An analysis was performed in order to verify whether the 
set-points modification affected the comfort level inside the 
dwelling. The index used was the predicted mean vote (PMV) 
developed by Fanger, which shows the thermal sensation 
produced when combined environmental variables (air 
temperature, radiant temperature, relative humidity and air 
velocity) with individual variables (activity and clothing). 
Fanger defends that other factors are not relevant on the 
state of thermal comfort. The PMV index is useful only for 
predicting steady-state comfort responses (ASHRAE 2017) 
and provides a score that identifies a thermal sensation, 
varying from +3 (intolerably warm) to −3 (intolerably cold), 
where the neutral value, 0, is the perfect condition (Fanger  

1970). The ISO 7730 standard includes the PMV index  
and recommends that an environment should have values 
between +0.5 and −0.5 to be classified as thermally 
acceptable (Chowdhury et al. 2008).  

The analysis was carried out for the hours when the 
set-points were modified, that is: from 10 a.m. to 5 p.m. 
during winter, and from 10 a.m. to 7 p.m. during summer. 
Figures 18 and 19 demonstrate that the comfort level was 
not compromised in the optimized model compared to the 
base model. Also, the variation of the comfort level during 
winter was almost imperceptible. In contrast, in the summer 
situation, where there are more days with excess energy 
production, the PMV is almost equal to −0.5 in most of the 
hours studied, due to the overcooling generated. However, 
most values do not exceed the −0.5 range and remain within 
the comfort zone.  

These figures are a general overview, but in terms of 
comfort, it is important to make a more detailed analysis. 
Therefore, the most critical days of the optimized models 
were chosen. The criteria for selecting the days was excess 
energy production, which could lead to overcooling or 
overheating, in order to analyse the thermal comfort in 
these situations. Figure 20 shows that the Fanger score for 
the winter day 24 January is between the recommended: 
from −0.5 to +0.5. Although from 12 p.m. to 15 p.m. the 
temperatures of the optimized model is above 23 °C, the 
strategy of overheating does not exceed the limits of an 
environment thermally acceptable.  

The most critical optimized model in summer is also 
between the acceptable values of thermal comfort, even if the 
temperature is lowered to around 20 °C. We chose     
the most critical day in August because it is the one that 
best demonstrates the set-point modulation strategy. In  
Figures 21(a) and (b), there is a synchrony between the 
temperature and PMV values. Furthermore, July is also a   

 
Fig. 18 Predicted mean vote for winter 2018 
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Fig. 19 Predicted mean vote for summer 2018 

   

(a) PMV values (b) Temperature comparison 

Fig. 20 PMV results and temperature comparison between base and optimized models at the hourly time-step on 24 January 2018 

    

(a) PMV values (b) Temperature comparison 

Fig. 21 PMV results and temperature comparison between base and optimized models at the hourly time-step on 7 August 2018 
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relevant month for detail optimisation, as its PMV values 
are slightly below −0.5 (the comfort limit set by ISO 7730). 
However, its most critical day does not represent the strategy 
well. Figure E.29 in Appendix E reveals that on this day  
the energy production was sufficient to set the thermostat 
to 20 °C, making the strategy unnecessary, since our study 
is based on the modulation of the set-points. Therefore, 
those days when the PV production is so high than when 
the set-point is always 20 °C, are out of our scope. On days 
like these, indoor temperatures can be easily adjusted by 
changing the thermostat set-point.  

4 Conclusion 

This research explored a DSM methodology based on a 
BEM aiming to maximize the self-consumption of local PV 
production and minimize the interaction with the grid. This 
methodology provided an array of near-optimal set-points 
for six years at a ten-minute time-step for five different 
thermal zones. The simulation was performed for two seasons 
and four months per season in winter (January, February, 
November, and December) and in summer (June, July, 
August, and September). Two different strategies were carried 
out, one for winter and another for summer. In winter, the 
excess energy was dissipated inside the building, and the 
final energy demand of the optimized strategy was similar 
to the base case. A reduction from the grid of 8% was 
consistently achieved, with a boost of 22% in relation to  
self-consumption. In summer, with a higher PV production, 
excess demand was produced, but the final energy reduction 
from the grid was about 25% due to the demand reduction in 
the evening after optimization occurred; the self-consumption 
was enhanced by 24%.  

The results were presented by using the energy matching 
chart, which clearly shows the improvement obtained in 
the outcomes compared with other similar DSM strategies. 
The different strategies used in summer and winter were 
demonstrated graphically in the chart. The values of the 
findings at the level of self-consumption matched similar 
works using batteries with around 4 kWh of capacity, which 
is noteworthy. As a novelty, in the energy matching chart, 
color bubbles were added, which helped us to graphically 
explain the unmatched energy of the process.  

This study can be easily extended to any building 
energy model based on whole-building simulation software 
such as EnergyPlus. The BEM should represent the thermal 
behavior of a real building by a calibration process. If the 
BEM is equipped with a VRF HP system, the methodology 
proposed in this paper can be directly replicated by following 
the steps proposed in Section 2. Moreover, this methodology 
could be implemented in a real building management 
system or could be part of a training system in an offline  

optimization process to develop faster system controllers. 
In future work, a surrogate model could be implemented to 
test whether similar levels of increased self-sufficiency or 
decreased grid interaction could be achieved.  
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