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Abstract 

Outdoor fresh air ventilation plays a significant role in reducing airborne transmission of diseases 
in indoor spaces. School classrooms are considerably challenged during the COVID-19 pandemic 
because of the increasing need for in-person education, untimely and incompleted vaccinations, 

high occupancy density, and uncertain ventilation conditions. Many schools started to use CO2 
meters to indicate air quality, but how to interpret the data remains unclear. Many uncertainties 
are also involved, including manual readings, student numbers and schedules, uncertain CO2 

generation rates, and variable indoor and ambient conditions. This study proposed a Bayesian 
inference approach with sensitivity analysis to understand CO2 readings in four primary schools by 
identifying uncertainties and calibrating key parameters. The outdoor ventilation rate, CO2 

generation rate, and occupancy level were identified as the top sensitive parameters for indoor CO2 
levels. The occupancy schedule becomes critical when the CO2 data are limited, whereas a 15-min 
measurement interval could capture dynamic CO2 profiles well even without the occupancy 

information. Hourly CO2 recording should be avoided because it failed to capture peak values and 
overestimated the ventilation rates. For the four primary school rooms, the calibrated ventilation 
rate with a 95% confidence level for fall condition is 1.96±0.31 ACH for Room #1 (165 m3 and 20 

occupancies) with mechanical ventilation, and for the rest of the naturally ventilated rooms, it is 
0.40±0.08 ACH for Room #2 (236 m3 and 21 occupancies), 0.30±0.04 or 0.79±0.06 ACH depending 
on occupancy schedules for Room #3 (236 m3 and 19 occupancies), 0.40±0.32,0.48±0.37,0.72±0.39 

ACH for Room #4 (231 m3 and 8–9 occupancies) for three consecutive days.  
 
 

Keywords 
COVID-19; 

Bayesian calibration; 

Markov Chain Monte Carlo; 

ventilation rate; 

school; 

CO2  
 
Article History 
Received: 22 March 2022 

Revised: 11 July 2022 

Accepted: 31 July 2022 
 
© Tsinghua University Press 2022 

 
 

1 Introduction 

Airborne transmission of relatively small aerosol droplets 
plays a dominant role in spreading SARS-CoV-2 (hereafter 
as COVID-19), especially in indoor spaces (Asadi et al. 2020; 
Prather et al. 2020). School classrooms pose a considerable 
challenge because of the increasing needs of in-person 
learning, relatively lower and delayed vaccinations compared 
to other spaces, large occupant density, and uncertain 
ventilation conditions of concern (Zhang 2020). For example, 
in Quebec province, Canada, a partial lockdown was in 

effect for non-essential business, with many offices closed, 
whereas primary and secondary schools open. The weekly 
school-related COVID-19 cases in Quebec Canada at the 
end of August 2020 showed that schools accounted for 20% 
of the province’s COVID-19 cases, while students and staffs 
account for about 18% of Quebec’s population (Remiorz 
2020). Statistical data shows that 1,781 schools had been 
observed with at least one positive case in Quebec since the 
beginning of the pandemic (Covid Écoles Québec 2020). 
Therefore, the rate of COVID-19 transmission in schools 
was higher than the community transmission, and mitigation 
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measures must be implemented in classrooms to reduce 
the infection risk.  

Several studies revealed the significant impact of ventilation 
rate in reducing or preventing airborne transmission of 
diseases in indoor environments (Du et al. 2020). There 
are different recommendations for the minimum required 
ventilation rate in indoor spaces to achieve an acceptable 
indoor air quality or prevent indoor airborne transmission. 
To name a few among many, the US Centers for Disease 
Control and Prevention (CDC) and World Health 
Organization (WHO) recommended a minimum ventilation 
rate of 12 air changes per hour (ACH) to prevent airborne 
transmission in healthcare facilities (Sehulster and Chinn 
2003; Atkinson et al. 2016). The Harvard-CU Boulder 
Portable Air Cleaner Calculator (Allen et al. 2020) suggests 
a total of five ACH as a good ventilation condition for 
reducing airborne transmission risk in classrooms. While 
these recommendations are based on the ventilation rate, it 
has been challenging to quantify the outdoor air ventilation 
rate in a room. Therefore, indoor air CO2 concentration is 
often considered a surrogate/indicator for air quality and 
ventilation conditions. For example, the Montreal school 
board (Centre de services scolaire de Montreal) stated in an 
open letter: “Establishments without a mechanical ventilation 
system should apply the window opening guidelines to ensure 
frequent air changes in our premises”; “Always to ensure 
good indoor air quality, we have also started measuring 
carbon dioxide (CO2) in our establishments since November. 
In addition to this initiative, there are the CO2 tests that 
must be carried out by all school service centers in Quebec. 
The level of CO2 is a good indicator of the supply of fresh 
air in a room. Thus, following these tests, corrective measures 
will be put forward, if necessary.” (Québec 2020).  

As a result, many schools and teachers started to measure 
CO2 levels concerning ventilation conditions and safety in 
their classrooms. In an unofficial study by the teachers in 
Montreal’s 25 classrooms, one-day CO2 levels were recorded 
randomly throughout the day (Wilton 2020) by CO2 meters. 
More recently, the ministry of education of Quebec, Canada, 
purchased 90,000 CO2 meters to be installed in the schools 
across the province when more than 600 schools had reported 
COVID-19 cases, which was more than twice the 2020 fall 
semester (Lofaro 2021). However, it remains a question of 
how to interpret the CO2 readings regarding classroom 
ventilation conditions. Meanwhile, these data are not 
continuously recorded but randomly measured during a day 
under variable student numbers, schedules, and indoor and 
outdoor conditions (temperature, pressure, and background 
CO2 levels). The investigation of these combined parameters 
will need a scientific approach to consider the stochastic/ 
random nature of the problem. Persily (2015) reviewed 
the relationship of indoor CO2 concentration to ventilation 

rates, applications of indoor CO2 levels to controlling 
outdoor air ventilation, and the role of indoor CO2 levels in 
IAQ standards. It is stated that indoor CO2 concentrations 
are related to ventilation rate, but the relationship is com-
plicated. In the literature, several studies used a transient 
CO2 mass balance method and measured CO2 levels to 
calculate the ventilation rate in different indoor environments 
such as classrooms and university libraries (Penman 1980; 
Mumovic et al. 2009; Batterman 2017). Batterman (2017) 
estimated the CO2 generation rate based on age and assumed 
activity level for CO2 calculation in mechanically ventilated 
classrooms. They then used the whole-day data to estimate 
the ventilation rate. Many of the previous analyses were 
deterministic without sensitivities and uncertainties identified. 
In summary, due to various factors affecting CO2 levels, such 
as variable occupant numbers, different CO2 generation 
rates based on age and sex, and dynamic surrounding 
environment, especially when opening windows, is it possible 
to relate CO2 concentrations to ventilation rates? If the 
answer is yes, how could we quantify the uncertainties? The 
answers to these questions center around the uncertainties 
and associated sensitivity analysis of parameters. Sensitivity 
analysis (SA) and calibration methods such as Bayesian 
Markov Chain Monte Carlo (MCMC) method (Strawderman 
2000) can be used along with measured indoor CO2 
concentrations to find the dominant parameters for the 
CO2 levels, such as ventilation rate, which may then be 
calibrated to understand the ventilation condition in a 
room.  

Bayesian MCMC is a calibration technique proposed in 
the twentieth century. Its application to the computer models’ 
calibration was systematically illustrated by Kennedy and 
O’Hagan (2001). Bayesian inference calibration has been 
widely utilized, such as environment (Steel 2001; Van Oijen 
et al. 2005; Arhonditsis et al. 2008; Lehuger et al. 2009), 
hydrology (Kuczera et al. 2010; Hall et al. 2011; Xu and 
Valocchi 2015), transportation (Van Hinsbergen et al. 2009), 
and medicine research (Whyte et al. 2011). One of the early 
building applications was conducted by Heo et al. (2012) 
for building energy model calibrations. In a recent review 
on Bayesian inference calibration, Hou et al. (2021) indicated 
that Bayesian inference incorporates uncertainties into real 
systems’ approximations by propagating parameters using 
probabilistic analysis. Combining multiple sources of 
information at different scales and with different reliabilities, 
the inadequacy of a model, revealed by the discrepancy 
between the predictions and observed data, can be calibrated. 
It was also found that (1) Bayesian calibration results are 
more stable and reasonable than conventional deterministic 
methods, especially when the measurements are qualitatively/ 
quantitatively insufficient. This is because in the Bayesian 
process, the uncertainties of calibration parameters and 
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measurements were considered in prior distributions and 
the likelihood function. (2) Bayesian inference calibration 
interprets results with a degree of belief by conducting 
quantitative stochastic analysis. And with more data 
availability, Bayesian inference is capable of aligning the 
posterior distributions of calibration parameters to actual 
conditions. These features are required for the calibration of 
CO2 readings and the understanding of ventilation conditions 
in classrooms. 

Therefore, we proposed a Bayesian calibration approach 
and demonstrated it to estimate CO2 levels and ventilation 
rates in four primary schools located in Montreal, Canada. 
All the CO2 meters have been carefully calibrated in the lab. 
The field measurement CO2 readings were used as calibration 
and validation data for the transient CO2 estimation model. 
A sensitivity analysis was conducted to find the most 
dominant parameters for indoor CO2 levels. The Bayesian 
MCMC method was then developed to calibrate the 
dominant parameters and quantify the uncertainties. Then we 
discussed the key parameters of the calibration performance, 
including the student occupancy schedule and numbers and 
the CO2 reading frequencies, which could inform schools how 
to use a CO2 meter in daily operations and interpret the 
readings during the pandemic. Other researchers can apply 
the proposed Bayesian inference approach to understand 
better the relation of real-world CO2 levels and room 
ventilation conditions.  

2 Methodology 

This section presents the procedure of Bayesian inference 
calibration for building indoor air quality models (Figure 1). 
Details about steps such as indoor CO2 concentration model, 
sensitivity analysis, CO2 sensor calibration, the Bayesian 
inference calibration method are demonstrated. Also, 

performance metrics used to estimate the model predictions 
are shown.  

2.1 Indoor CO2 concentration model  

A transient mass balance model is solved to calculate CO2 
concentration in the room.  
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where V is the room volume (m3); 
2COC  is the indoor air 

CO2 concentration (mg/m3); t is the time duration (s); Gs is 
the CO2 generation rate by all occupants (mg/s), which 
depends on the age, activity level, and occupancy level; λ1 is 
the total outdoor air ventilation rate (m3/s); and Coa is the 
outdoor air CO2 concentration (mg/m3). The transient mass 
balance of Eq. (1) applies to solving arbitrary occupancy 
patterns and generation rates in classrooms. The solution 
of Eq. (1) is:  
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where 
2CO ,0C  is the observed initial CO2 concentration at each 

occupancy phase, e.g., during a class or break session.  

2.2 Sensitivity analysis model 

Estimating CO2 levels in rooms include many uncertainties, 
such as ventilation and emission rates. These parameters 
may impact the results and should be calibrated by 
measurement data. Ideally, with sufficient measurements 
and computing resources, all the uncertain parameters 
should be included in the numerical calibration parameters.  
In reality, limited by data quality/quantity or computer 

 
Fig. 1 Procedure of Bayesian calibration for building IAQ models 
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resources, we may consider only a few parameters. Many 
parameters and inputs could also manifest different 
uncertainty and significance levels on simulation outputs. 
For several parameters, their impacts are slight or even can 
be ignored. While for certain key parameters, an imperceptible 
change can cause a considerable transformation of model 
outputs. So, it is impracticable and unnecessary to calibrate 
all parameters but for dominant parameters. Calibrating 
only for critical model parameters makes it more practical in 
reality with limited data and computing costs. Identifying 
these dominant parameters cannot merely rely on arbitrary 
parameter selections from modelers’ knowledge but 
should be based on a scientific process, i.e., a sensitivity 
analysis.  

To conduct a sensitivity analysis process, prior 
distributions and ranges of selected unknown parameters 
should be assumed according to design code/standard, 
physical conditions, or modeler’s knowledge. Then Monte 
Carlo (MC) simulation is employed to conduct parametric 
simulations by using Latin hypercube sampling (LHS) 
method (Li et al. 2016), which achieves the convergence  
of parameter space with relatively fewer samples. The 
obtained input–output dataset is then employed to identify 
the dominant model parameters that strongly affect the 
outputs. The importance ranking results may vary with 
different combinations of sensitivity methods and outputs 
depending on the variety of fundamental algorithms and 
conditions of each sensitivity analysis method (Menberg  
et al. 2016). To avoid the potential inconsistency caused by 
the variety of algorithms and conditions of each sensitivity 
analysis method, the sensitivity analysis method, sensitivity 
value index (SVI), was applied (Lim and Zhai 2017). 
Equation (3) defines the SVI by the normalization and 
aggregations for different sensitivity analysis methods.  
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where Vi,j is the value of a sensitivity analysis method, i is a 
parameter, n is the total number of the parameters, j is a 
sensitivity method, k is the total number of sensitivity 
methods, l is the target output, and m is the total number of 
target outputs.  

2.3 Experimental calibrations of CO2 meters 

In this study, two CO2 meters, Temtop M2000C Monitor 
(handheld unit) and HOBO MX1102A CO2 logger (wall 
mount unit), were employed and experiemtanlly calibrated 
by two approaches in the calibration chamber, one with a 
reference meter Vaisala GMP252, and the other with the ISO 
certified calibration gas. Details are summaried in Table 1. 
The Temtop monitor is an off-the-shelf multi-functional 
air quality monitor with a Non-Dispersive Infrared (NDIR) 
CO2 meter and RH, PM, and temperature sensors at a price 
range of a few hundred dollars. The HOBO logger has an 
NDIR CO2 meter and RH and temperature sensors at a 
higher price range. The Temptop monitor allows the manual 
calibration to the zero level with a resolution of 1 ppm and 
a maximum level of 5000 ppm. The HOBO logger has the 
same maximum measurement range and the claimed accuracy 
of ±50 ppm. It has manual zero calibration and automatic 
calibration functions. The auto-calibration means the logger 
is set to the background CO2 level of 400 ppm automatically 
based on the three lowest measurements during the 24-hour 
or 8-day time period when applicable. That is to say, once  

Table 1 Basic information and calibration conditions about the CO2 meters 
Model Temtop M2000C HOBO MX1102A 

Type Handheld Wall mount 

Used for Rooms #1–#3 Room #4 

Features 

 CO2 meter with RH, PM, and temperature 
 Lower price 
 Range: 0–5000 ppm 
 Manual calibration 

 CO2 meter with RH and temperature 
 Higher price 
 Range: 0–5000 ppm 
 Manual and automatic calibration 

Calibration condition 

Chamber temperature 22.1–25.3 °C 22.1–25.3 °C 

Chamber indoor pressure 1013.3–1014.1 hPa 1013.3–1014.1 hPa 

Flow rate 3 LPM 2 LPM 

Average CO2 Measurements in last 10 min Measurements in last 30 min 

Calibration method Reference meter (Vaisala GMP252) & ISO certified calibration gas 

Accuracy 6% 3% 
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the logger starts, it will be calibrated after 24 hours and 
then again after 8 days automatically unless it is manually 
calibrated.  

The experimental calibrations were conducted in the 
Indoor Air Quality group at National Research Council 
Canada (NRC). The calibration chamber conditions were 
recorded to be between 22.1–25.3 °C and 1013.3–1014.1 
hPa. For the reference meter, the time-averaged levels were 
recorded every 10 seconds for the last 10 minutes of the test. 
For the HOBO CO2 calibrations, the flow rate was set to be 
2 LPM, and then the chamber pressure was increased to 
1013 hPa to ensure a slight positive pressure compared to 
the ambient environment. Each test ran for an hour in total, 
allowing the CO2 concentration to be stabilized in the 1st 
thirty minutes and the last thirty minutes for calculating 
the averages of the CO2 concentration. For the Temtop 
calibrations, the flow rate was 3 LPM, and the last 10 minutes 
were averaged for the CO2 concentrations with all other 
conditions the same as the HOBO meters. Figure 2 shows 
the calibration results for both CO2 meters compared to the 
reference meter and ISO calibration gas cylinders. All meters 
show good linearities, whereas the Temtop has an average 
accuracy of 6% and the HOBO has 3%. In comparison, 
the reference meter has an accuracy of 1%. All three meters 
show the underestimations of the calibration gas. 

2.4 Bayesian calibration and Markov Chain Monte Carlo 
(MCMC) models  

As the footstone of all Bayesian statistics, Bayes’ theorem was 
first proposed by Reverend Thomas Bayes in his doctoral 
dissertation (Bayes 1763) and can be described as:  

Probability of the data Prior
Posterior

Average probability of the data
´

=           (4) 

The probability of an event is inferred based on the prior 
knowledge of conditions related to the event. Bayesian 

inference is one application of Bayes’ theorem and can be 
written as:  

( )
( ) ( )

( )
( ) ( )

|
| |

p y θ p θ
p θ y p y θ p θ

p y
⋅

= µ ⋅              (5) 

where ( )|p θ y  is the posterior distribution of the unknown 
parameter θ based on known observation y. ( )|p y θ  is  
the likelihood function of observation conditional on the 
unknown parameter. ( )p θ  is the prior distribution of the 
unknown parameter which is the marginal probability 
that means it is irrespective of the outcome of another 
variable, and ( )p y  is the probability of the observation 
that is marginal as well to normalize ( )|p y θ . Therefore, the 
posterior probability is proportional to the product of the 
prior probability and the likelihood.  

Implementing the Bayesian inference for all possible 
scenarios in a solution domain is impractical because the 
likelihood’s integrals can be computationally expensive or 
sometimes impossible to calculate. MCMC is a versatile 
approach to solve the parameter estimation problem with 
two components. One is the well-known Monte Carlo 
method. It is a computational algorithm to solve statistically 
challenging problems relying on repeated random samplings 
and approximate the target value (e.g., mean value) using 
the independent samples’ results. The other is the Markov 
Chain method for solving a sequence of possible events. The 
probability of each event depends only on the state attained 
in the previous event. By combining MCMC and Bayesian 
inference, it is guaranteed that a series of samples can be 
generated from the posterior distribution efficiently to 
represent the features of the posterior distributions. Different 
MCMC algorithms can be classified into either a “random 
walking” group or a gradient-based group according to  
the acceptance-rejection criterion. This study applied the 
Hamiltonian Monte Carlo (HMC) sampling method 
(Betancourt 2017) for the MCMC. HMC is a typical 
representation of gradient-based approaches that use the 

 
Fig. 2 Calibrations of CO2 meters: (a) Temtop M2000C and (b) HOBO MX1102A 
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first-order gradient information to determine how to move 
in the right direction quickly. A Gaussian distribution 
was assigned to the likelihood function. The output of the 
indoor CO2 concentration model was used to estimate the 
mean value of the Gaussian distribution. The posterior 
distribution of the calibration model parameters can be 
generated during the HMC process by absorbing the 
information from measurements. Five thousand steps of 
the HMC algorithms on each of four separate chains were 
explored in this study to make a total of 20,000 samplers. 
We used one thousand samples during the “warming-up” 
stage to move chains toward the highest density area and 
tune sampler hyperparameters. For each room, the first 2/3 
of measurements are used for the calibration, which means 
that the measurements are employed in the Bayesian 
calibration process to calculate the calibration parameters. 
While the remaining are used for model validation, which 
means the values of the calibration parameters determined 
during the calibration process are set in the indoor CO2 
concentration model to simulate the CO2 levels. Then the 
output CO2 concentrations are compared to the last 1/3 
CO2 measurements to calculate the performance metrics 
for the accuracy assessment. At each time step, t, the 
measurement of (t − 1) time step is used as the initial value 
of the CO2 concentration model. The information such as 
occupancy level, outdoor weather condition, and indoor  
air temperature of the current time step was used. The 
“rolling-window” approach was found to perform better 
than that using the first measurement as the initial value for 
all time steps. 

2.5 Performance metrics 

To assess the performance of the models, we consider two 
criteria: (1) the Accuracy of prediction compared to the 
measurements (Alavi et al. 2020), and (2) the mean absolute 
percentage error (MAPE) (Taheri and Razban 2021). The 
Accuracy of a prediction is computed as the percentage of 
the predicted values that fall within the confidence interval 
around the measurements, and the confidence interval was 
set to be ±(30 ppm + 5% × reading) (Yasuda et al. 2012; 

Alavi et al. 2020). MAPE is a performance metric based on 
the percentages of errors: 

1

ˆ1MAPE 100
N

i i

ii

y y
N y=

-
= ´å                       (6) 

where ˆiy  is a predicted variable value for period i, yi is an 
observed value for the time i, and N is the sample size. 
Different MAPE values indicate the performance of a 
prediction: <10% for an accurate forecast, 11% to 20% for 
a decent forecast, 21% to 50% for a fair forecast, and >50% 
for a poor model (Ahmadi et al. 2021). 

3 Case study 

In this study, four typical classrooms, each from different 
primary schools in Montreal, Canada, were measured for 
the CO2 levels. Three classrooms were monitored during 
a typical pandemic day (November 6–10, 2020) by the 
Temtop M2000C Monitor (Group 1), while one school was 
monitored for three consecutive pandemic days (September 
21–23, 2020) by the HOBO MX1102A CO2 logger (Group 2). 
The Group 1 measurements were provided from a source 
with the name withheld and with recorded student ages 
and numbers, ventilation system status (if any), and window 
status (open/close). The Group 2 data were obtained from 
our previous research project (Wang and Shu 2021), where 
the student information and window status were not 
recorded, and indoor conditions were available from the 
meters. Please note that the measurement data from Group 
1 represent the realistic scenario that random, discrete, and 
limited CO2 readings were collected by school teachers, 
whereas more continuous data from Group 2 were obtained 
from our project for research purposes with more readings 
available. Both scenarios are considered to cover what may 
happen in reality at different levels of uncertainty. We have 
continuously monitored CO2 levels in six schools with 
more than 18 classrooms for 2020–2022. This study selected 
only Group 2 data to demonstrate the proposed Bayesian 
inference method. The summary of the measured information 
is shown in Table 2 and Figure 3.  

Table 2 Basic information about the measured classrooms 

Groups Room No. Date Volume (m3) MV NV
Occupancy 
recording 

Student 
age 

CO2 data 
points 

Measured 
resolution Case study 

#1 Nov. 10, 2020 165 Y Y Y 7 14 Random Section 4 

#2 Nov. 6, 2020 236 N Y Y 11 14 Random Section 4 1 

#3 Nov. 9, 2020 236 N Y Y 7 12 Random Sections 4 & 5.1

2 #4 Sept. 21–23, 2020 231 N Y N 7 73×3 5 min Sections 4 & 5.2

Notes: MV = mechanical ventilation; NV = natural ventilation; Y=yes; N=no. 
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The ASHRAE Standard 62-2001 (ANSI/ASHRAE 2001) 
recommended a CO2 level of 1000 ppm for acceptable 
indoor air quality. Similarly, the ASME Standard D6245-18 
(ASTM 2018) recommended the same 1000 ppm level based 
on the perception of body odor to be acceptable for at least 
80% of unadapted persons (visitors) in a room when the 
outdoor CO2 level is 350 ppm. The National Institute for 
Occupational Safety and Health (NIOSH) recommended a 
CO2 level of 600–1500 ppm for schools and workplaces but 
only considered comfort and working efficiency (NIOSH 
2020). In this study, Room #1 was equipped with a mechanical 
ventilation system, and the windows were opened too for 
more outdoor air. So the measured indoor CO2 level was 
between 500 and 1000 ppm (Figure 3(a)), which was below 
the level of the previously stated requirements. The rest of 

the rooms were only with natural ventilation from windows, 
so the CO2 concentrations were higher. Especially for 
Room #4, the CO2 reached up to 2200 ppm. The outdoor 
air pressure and temperature data were extracted from the 
datasets from Environment and Climate Change Canada 
(ECCC 2020) for Rooms #1–#3. For Room #4, the outdoor 
air temperature was measured by a local weather station 
(Wang and Shu 2021). Other parameters required for the 
CO2 calculation, such as CO2 generation rate, outdoor air 
ventilation rate, and CO2 levels, are not available and need 
to be calibrated. Indoor air temperatures were calibrated for 
Rooms #1, #2, and #3 since they were not measured. 

The occupancy patterns of Room #1 and Room #2 were 
recorded, but for Room #3, only one people number was 
recorded in the morning. Therefore, in the next section, the 

 
Fig. 3 (a) CO2 concentration measurements, (b) occupancy level profiles, (c) outdoor air temperatures, (d) outdoor air pressures, and
(e) indoor temperatures 
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reported occupancy levels were used in the calibration 
process for Room #1 and #2. For Room #3, the occupancy 
level was unknown, so two different patterns were investigated 
and compared: one constant occupancy of 19 persons (occ1) 
and the other with variations (occ2), which was based on 
the recorded information in the morning and the trend  
of CO2 measurements during the day. Specifically, for the 
first two measured CO2 readings, the trend is increasing. 
Therefore, the occupancy level was assumed as 19 at the 
first two time step accordingly. For the third and fourth 
measured points, the occupancy level was assumed as zero 
since the indoor CO2 levels decreased. From the fourth 
point to the last point, the occupancy level was assumed as 
19 except for the sixth time step since from the fifth point 
to the sixth point, the CO2 concentrations increased slightly. 
For the sixth time step, the occupancy level were assumed 
as 0. For the generation of occupancy schedule occ2, we 
referred to the relationship between indoor CO2 concentration 
and occupancy level in Room #1 and Room #2, where the 
occupancy schedule was recorded by teachers. The comparison 
of the impacts of these two occupancy schedules was discussed. 
For Room #4, the daily averaged constant occupancy level 
was calibrated. 

4 Results 

In this section, the sensitivity analysis was conducted   
to find the dominant parameters for calculating CO2 
concentrations. Then we use the Bayesian MCMC calibration 
to estimate the time-averaged ventilation rate using 2/3 
of the CO2 measurement data and occupancy patterns. 
We validated the calibrated CO2 model by 1/3 of the 
measurement data. The impacts of the assumptions on 
occupancies and the measurement frequencies on the 
estimations were discussed in Section 5.  

4.1 CO2 model sensitivity analysis  

Outdoor/indoor pressure, outdoor/indoor air temperature, 
occupancy level, room volume, outdoor air ventilation rate, 
and CO2 generation rate are input parameters to predict 
CO2 concentration. The ranges of selected model inputs/ 
parameters were defined according to the references, codes, 
and standards available for the sensitivity analysis. Then  
LHS, one of Monte Carlo sampling methods, was applied  
to sampling from the ranges. According to Matala’s 
suggestion (Matala 2008), a total of 440 sampling sets was 
determined and used as the inputs to calculate the indoor 
CO2 concentration. The input–output datasets were employed 
to calculate the SVI value and the importance rank. Table 3 
shows the parameters with their sensitivity importance 
rankings: a smaller number indicates a more important/ 
sensitive parameter.  

The result showed that the most dominant parameters 
affecting classroom CO2 levels are outdoor air ventilation 
rate, CO2 generation rate per person, number of occupants, 
and outdoor CO2 concentration. Specifically, the outdoor 
air ventilation rate’s SVI is more than twice the CO2 
generation rate. For Group 1 classrooms, because occupant 
number, outdoor temperature, and pressure were measured, 
they do not need to be calibrated. We selected outdoor  
air ventilation rate, CO2 generation rate, outdoor CO2 

concentration, and indoor air temperature for the next step 
model calibration. For Room #4, the occupant number was 
unknown, so all relevant parameters were calibrated.  

4.2 Calibration and validation 

For the calibration of the CO2 model by the Bayesian 
inference method, during an occupancy phase (e.g., between 
every two measurements), we applied the “rolling window” 

Table 3 Sensitivity analysis with importance ranking for indoor CO2 concentration 

Sensitivity analysis method 

Parameters Symbol Range Reference SRC 
Random 

forest T-value 
Sensitivity 
value index Rank

Outdoor air ventilation rate (ACH) λ1 
0.01–2 (natural);
1–5 (mechanical) ANSI/ASHRAE 2019 0.32 27.8 7.3 42.1 1 

CO2 generation rate per person 
(L/(s·person)) G1 0.002–0.01 Batterman 2017; Persily and 

de Jonge 2017 0.18 10.1 4.1 20.2 2 

Number of occupants (#) Ntot 10–30 Measured 0.06 4.6 1.4 7.5 3 

Outdoor CO2 (ppm) Coa 396–416 Batterman 2017; McGee 2016 0.08 2.3 1.7 7.4 4 

Outdoor pressure (kPa) Poa 100.5–102.5 ECCC 2020 0.05 0.7 1.2 4.6 5 

Indoor pressure (kPa) Pin 100.5–102.5 ECCC 2020 0.02 4.3 0.4 4.2 6 

Indoor air temperature (°C) Tin 18–25 ECCC 2020 0.04 1.9 0.8 4.0 7 

Outdoor air temperature (°C) Toa 10–20 ECCC 2020 0.01 1.82 0.2 1.6 8 
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concept so that the first measurement of every measurement 
interval was used as the initial CO2 level for that interval  
in Eq. (2). Figure 4 and Table 4 showed the posterior 
distributions of the Bayesian inference. In each subplot, the 
red dash lines represent the parameters’ prior distributions 
in Table 4, and the posterior distributions are indicated by 
the shaded areas. A high peak value of the probability density 
function (PDF) from the Y-axis shows a high chance of the 
calibrated parameter value. Figure 4 clearly shows that the 
outdoor air ventilation rates, CO2 generation rates for all 
rooms, and occupancy level for Room #4 illustrate higher 
peak values after the calibrations, meaning a higher chance 
of these calibrated parameter values to occur in reality than 
before the Bayesian analysis.  

In Table 4, the calibrated mean value of the outdoor 
ventilation rate with the confidence level of 95% is 1.96 ± 0.31 
ACH for Room #1, 0.40 ± 0.08 ACH for Room #2, and 
0.79 ± 0.06 ACH for Room #3 (occ1 by default), 0.40 ± 0.32, 

0.48 ± 0.37, 0.72 ± 0.39 ACH for Room #4 in the three con-
secutive days, respectively. Room #1 was both mechanically 
and naturally ventilated (i.e., open windows), so its ventilation 
rate is significantly higher than other rooms with open 
windows only. For the first three rooms of Group 1, which 
has a similar number of measurement points, the span of 
the posterior distribution of Room #1 is more significant 
because of its wider prior distribution range than the other 
two rooms. For the parameters of CO2 generation rate, 
outdoor CO2 level, and indoor air temperature, Room #2 
is closer to Room #3 than to Room #1 because Rooms #2 
and #3 were both naturally ventilated only. In comparison, 
the uncertainties of calibration parameters (i.e., the standard 
deviations), such as outdoor air ventilation rate and CO2 
generation rate for Room #4, are greater than the Group 1 
rooms. It is also noted that the calibrated outdoor CO2 
concentrations were stable for all Rooms on different days 
between 401.80 and 414.40 ppm.  

Fig. 4 Distribution of calibrated parameters of the indoor CO2 model 
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Using the mean values of the calibration parameters, 
we compared the simulation results and measurements of  
CO2 in Figures 5 and 6. The accuracy performance of all 
scenarios for both calibration and validation process were 
summarized in Table 5. The calibrated models were able to 
capture the concentration trends in all cases with various 
performances at specific time points for different cases. 
Room #2 and Room #4 are more accurate than other  
cases, especially Room #4. The time interval of every two 

measurements was 33–41 min for Room #1, 17–43 min for 
Room #2, 24–55 min for Room #3, and 5 min for Room #4. 
Room #4 had the most data for calibration, so the average 
Accuracy of the three days was 83% for the calibration step 
and 89% for the validation step (Figure 6). The highest 
MAPE of Room #4 is 6%, which is considered an “accurate” 
forecast (<10%). The accuracy of Room #3 is the lowest due 
to the constant occupancy assumed (i.e., 19 students) and 
the longer data intervals (e.g., 55 min maximum) for the  

Table 4 Calibrated parameters of the CO2 model 
 

Prior distribution Posterior distribution 

Quantiles (%) 

Room 
Uniform 

distribution range  Mean value
Standard 
deviation 2.5 25 50 75 97.5 

Outdoor air ventilation rate (ACH) 

Room #1 (1, 5) 1.96 0.16 1.67 1.85 1.96 2.07 2.29 

Room #2 0.40 0.04 0.33 0.38 0.40 0.43 0.48 

Room #3 (occ1) 0.79 0.03 0.73 0.77 0.79 0.81 0.86 

Room #3 (occ2) 0.30 0.02 0.26 0.29 0.30 0.32 0.35 

Room #4 (day 1) 0.40 0.16 0.11 0.27 0.38 0.49 0.73 

Room #4 (day 2) 0.48 0.19 0.13 0.34 0.46 0.61 0.89 

Room #4 (day 3) 

(0.01, 2) 

0.72 0.26 0.28 0.54 0.72 0.93 1.35 

CO2 generation rate (×10−3 L/(s·person)) 

Room #1 2.42 0.16 2.12 2.30 2.41 2.52 2.75 

Room #2 2.14 0.08 2.01 2.07 2.13 2.19 2.32 

Room #3 (occ1) 2.02 0.02 2.00 2.01 2.01 2.03 2.07 

Room #3 (occ2) 2.01 0.01 2.00 2.00 2.01 2.01 2.04 

Room #4 (day 1) 3.00 1.00 2.02 2.30 2.76 3.48 6.00 

Room #4 (day 2) 4.00 1.00 2.00 2.47 3.16 4.33 7.80 

Room #4 (day 3) 

(2.0, 10.0) 

3.00 1.00 2.03 2.36 2.90 3.74 6.63 

Outdoor CO2 concentration (ppm) 

Room #1 414.40 1.62 410.10 413.80 414.90 415.60 416.00 

Room #2 406.50 5.72 396.60 401.70 406.90 411.60 415.50 

Room #3 (occ1) 401.80 4.89 396.20 397.90 400.40 404.70 414.10 

Room #3 (occ2) 408.50 5.43 397.20 404.50 409.60 413.20 415.80 

Room #4 (day 1) 405.91 5.80 396.40 401.01 406.17 411.37 415.66 

Room #4 (day 2) 406.16 5.89 396.42 401.06 406.26 411.37 415.60 

Room #4 (day 3) 

(396, 416) 

405.98 5.93 396.50 401.11 406.74 411.35 415.62 

Indoor air temperature (K) 

Room #1 297.00 1.13 293.80 296.60 297.40 297.90 298.10 

Room #2 294.70 2.03 291.40 293.00 294.80 296.60 298.00 

Room #3 (occ1) 293.90 1.92 291.20 292.20 293.60 295.40 297.70 

Room #3 (occ2) 

(291, 298) 

295.10 2.00 291.40 293.40 295.30 296.90 298.00 

Occupant level 

Room #4 (day 1) 8.00 3.00 5.00 6.00 7.00 9.00 17.00 

Room #4 (day 2) 9.00 4.00 5.00 6.00 8.00 11.00 19.00 

Room #4 (day 3) 

(5, 25) 

8.00 3.00 5.00 6.00 7.00 10.00 18.00 
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calibration, especially around the noontime. In comparison, 
Room #2 performs better as a result of a relatively shorter 
measurement interval.  

5 Discussion 

5.1 Occupancy schedule 

The sensitivity analysis revealed that occupancy is the third 
important parameter so we chose Room #3 to investigate 

the impacts of two occupancy schedules: the default one 
with the constant people number (occ1, 19 students) 
throughout the day and the other dynamic schedule 
estimated by the morning counts of the student number 
and the CO2 measurement trend (occ2) as shown in  
Figure 3(b). Table 4 shows the calibration results for both 
occupancy schedules. By using occ2, the mean outdoor air 
ventilation rate decreased from 0.79 to 0.30 ACH with a 
reduced standard deviation. For the second important 
parameter, CO2 generation rate, occ2 also results in a  

 
Fig. 5 Comparisons of the simulated and measured CO2 levels in (a) Room #1, (b) Room #2, (c) Room #3, (d) Room #4 – Day 1, 
(e) Room #4 – Day 2, and (f) Room #4 – Day 3 

 
Fig. 6 The performance of the model predictions by (a) Accuracy; (b) MAPE 
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Table 5 Summary of performance metrics of the studied rooms 

Performance metrics 
 

Accuracy (%) MAPE (%) 

Case study Calibration Validation Calibration Validation

Room #1  40.0 50.0 9.6 13.2 

Room #2  70.0 100.0 9.5 2.5 

Occ1  12.5 0.0 19.8 12.8 
Room #3 

Occ2  62.5 75.0 10.6 2.4 

5 min 77.1 80.0 5.0 6.4 

10 min 37.5 46.2 10.5 10.0 

15 min 31.3 22.2 16.6 15.6 

20 min 25.0 14.3 20.8 19.3 

30 min 22.2 25.0 28.4 20.1 

Day 1 

60 min 20.0 0.0 47.2 54.4 

5 min 79.2 96.0 5.0 4.5 

10 min 40.0 66.7 9.4 6.6 

15 min 29.4 62.5 13.0 8.7 

20 min 23.1 66.7 17.5 12.2 

30 min 22.2 50.0 20.3 13.1 

Day 2 

60 min 20.0 0.0 28.9 34.6 

5 min 93.8 92.0 3.7 5.6 

10 min 58.3 41.7 6.7 11.8 

15 min 25.0 25.0 8.9 17.0 

20 min 50.0 33.3 11.9 28.3 

30 min 50.0 25.0 13.8 41.4 

Room #4 

Day 3 

60 min 25.0 0.0 24.6 78.3 

 
reduced standard deviation but no major difference for 
the mean value. Figure 6 compares the Accuracy and the 
MAPE for both schedules. The occ2 scenario outperforms 
the occ1 with an increased Accuracy from 13% to 63% for 
the calibration step and from 0% to 75% for the validation 
step. The corresponding MAPE also decreased from 20% 
to 11% for the calibration and from 13% to 2% for the 
validation. Therefore, the availability of occupancy count 
and schedule could become critical, especially when there 
are not enough measurement data for the calibration. In 
comparison, when more CO2 measured data are available, 
e.g., in Room #4, it is still possible to achieve an accurate 
prediction without the information of the occupancy 
schedule: the MAPE values were less than 10% for all three 
days (Figure 6). In this case, the proposed Bayesian inference 
method estimated an average number of 8 occupants for 
Days 1 and 3 and 9 students for Day 2, which were verified 
by the counted number of 8 students from our research 
project. 

Therefore, the discussion here revealed that the per-
formance of a Bayesian inference strongly depends on the 

amount of measurement information available, and it is 
always preferable to have as much information as possible 
to be collected from the field. When there is a lack of 
occupancy count and schedule information, one of the 
solutions is to increase the number of CO2 measurement 
points, which are relatively easier to collect than occupancy 
counting. In fact, previous researchers have tried to estimate 
building/room occupancies based on CO2 concentrations 
(Calì et al. 2015; Pantazaras et al. 2018; Han and Zhang 
2020). Meanwhile, another question may arise regarding the 
impact of the CO2 data points on the prediction accuracy 
when there is no occupancy information. This is related to 
the measurement interval of a CO2 meter to be discussed in 
the next section. 

5.2 Measurement interval 

To study the impact of measurement intervals/frequencies 
on the model calibration accuracy, we investigated Room #4 
with variable measurement intervals. Figure 7 compares 
the time-dependent CO2 levels for different measurement 
intervals. A longer interval inclines to create a smoother 
profile and fails to capture the peak values. Considering 
that the airborne infection could occur in the order of 
minutes for close contacts (CDC 2020), especially for the 
new COVID-19 variants, a longer interval would not capture 
the short-term impacts. When the measurement interval 
was set to be 5 min, the time-dependent profiles were well 
captured at both high and low peak values. Therefore, if the 
hardware allows, such as the storage memory, it is always 
preferable to keep the measurement intervals in the order 
of minutes. The details of calibrated parameters for three 
days are summarized in Table 6. The observation shows 
that one of the direct outcomes of a longer interval is   
the overestimation of the outdoor air ventilation rates.  
The estimation could be doubled for an interval of 30 or  
60 min compared to the case with the 5-min interval.   
The estimated occupancy level is also significantly higher 
than what was confirmed by the original researcher of the 
measurements. Here, a basic knowledge of occupancy, such 
as daily-averaged number, could be helpful during the 
evaluation when the detailed occupancy schedule may not 
be available.  

The model prediction performance was also evaluated 
in Figure 8. The model performance decreased when the 
interval increased from 5 min to 10, 15, 20, 30, or 60 min. 
When the indoor CO2 concentration was measured hourly, 
the simulation results considerably deviated from the 
observations with more than 50% MAPE for Day 1 and 
Day 3 and close to 40% for Day 2. If a MAPE cutoff of 20% 
for a decent forecast is applied, the time interval of 15 min  
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Fig. 7 Comparisons of the model predictions with different measurement frequencies for (a) Day 1, (b) Day 2 and (c) Day 3 of Room #4 

Table 6 Calibrated model parameters for Room #4 with different measurement intervals 
 

Outdoor air ventilation rate 
(ACH) 

CO2 generation rate 
(×10–3 L/(s·person)) 

Outdoor CO2 concentration 
(ppm) Occupancy level Measurement 

interval (min) Mean Std Mean Std Mean Std Mean Std 

Day 1 

5 0.40 0.16 3.00 1.00 405.91 5.80 8.00 3.00 

10 0.83 0.41 4.00 2.00 406.00 5.90 11.00 5.00 

15 1.08 0.48 5.00 2.00 405.97 5.80 12.00 5.00 

20 1.16 0.51 5.00 2.00 405.77 5.75 13.00 6.00 

30 1.22 0.52 5.00 2.00 406.11 5.83 13.00 6.00 

60 1.18 0.54 6.00 2.00 405.91 5.74 14.00 6.00 

Day 2 

5 0.48 0.19 4.00 2.00 406.16 5.89 9.00 4.00 

10 0.96 0.44 5.00 2.00 406.13 5.84 12.00 5.00 

15 1.15 0.50 5.00 2.00 406.21 5.95 13.00 5.00 

20 1.18 0.53 5.00 2.00 405.90 6.02 13.00 5.00 

30 1.16 0.54 5.00 2.00 406.00 5.91 14.00 6.00 

60 1.13 0.57 6.00 2.00 406.06 5.81 14.00 6.00 

Day 3 

5 0.72 0.26 3.00 1.00 405.98 5.93 8.00 3.00 

10 1.25 0.44 4.00 2.00 406.19 5.78 11.00 5.00 

15 1.33 0.46 4.00 2.00 405.78 5.78 11.00 5.00 

20 1.30 0.50 5.00 2.00 405.92 5.78 12.00 5.00 

30 1.27 0.53 5.00 2.00 405.89 5.61 12.00 5.00 

60 1.16 0.55 5.00 2.00 405.80 5.80 13.00 6.00 
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seems to be reasonable for all three days, which corresponds 
to four readings per hour. Figure 7 also confirms that an 
interval of 15 min would generally capture the trends and 
peaks of the concentration profiles in all cases. In comparison, 
hourly measurements should be avoided if possible,    
and the 5-min interval already provides one of the best 
performances (MAPE <10%), so it would be unnecessary  
to go with shorter intervals for the current cases. On the 
other hand, because CO2 meters would have become 
more accepted as a proxy of ventilation and indoor air 
quality conditions in buildings, these conclusions should 
be further evaluated and confirmed by more data from the 
field. This study proposed the Bayesian inference approach 
and demonstrated the analysis procedure necessary for 
conducting more research on this topic.  

On the other hand, it is noted that, according to its 
definition mentioned in Section 2.5, the performance 
metric of Accuracy is based on the counting number of the 
prediction values that fall within the confidence interval 
around the measurements. The difference between 

predictions and measurements, however, is not directly 
considered. This can result in some acceptable predictions 
may be mis-counted in the calculation of the Accuracy 
when the points are quite close to the confidence interval 
bounds. For example, in Figures 7(c) and 8(c), the points 6, 
9, and 12 of the interval of 15 min were not counted, but 
they were only with a small difference of 2.90, 5.92, and 
2.40 ppm from the 95% confidence interval. This results 
in a lower “Accuracy” for the 15 min than the 20 min 
result (Figure 8(c)). The Accuracy (the orange bar for the 
calibration step of the 15-min in Figure 8(c)) would increase 
from 29.4% to 47.05% if these three points are counted. 
This also shows when measurement data are limited, the 
impact of each point becomes significant on the final 
result, so more data points are always preferred to avoid 
the randomness and uncertainty from a specific point. 

6 Conclusion 

This study focused on a few important aspects of using CO2 

 
Fig. 8 The comparison of prediction performances of different measurement intervals for (a) Day 1, (b) Day 2, and (c) Day 3 of Room #4
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meters in primary schools in terms of the key parameters 
contributing to their readings and the exploration of the 
possibility of estimating outdoor air ventilation rate based 
on these readings. The study conducted a sensitivity analysis 
and proposed a Bayesian inference calibration approach 
using measured indoor CO2 profiles in four primary 
schools to identify the relations between CO2 levels and 
ventilation rates. The impacts of the occupancy schedule and 
measurement intervals on the proposed Bayesian inference 
performance were also discussed. The main findings are as 
follows: 
a. The sensitivity analysis revealed that the outdoor ventilation 

rate, CO2 generation rate, and occupancy level are the 
top three most significant parameters for indoor CO2 
concentrations. 

b. For the top parameters determining the indoor CO2 
level, the outdoor ventilation rate is more than double 
as important as the CO2 generation rate, which is then 
more than double as important as the occupant number 
in a school context.  

c. The proposed Bayesian inference approach was shown 
to be able to capture the trends and time-dependent 
CO2 profiles accurately when enough measurement data 
points are available. For example, the MAPE of the case 
with the 5-min measurement interval is less than 10%, 
indicating an accurate prediction of the CO2 level on 
different days.  

d. We demonstrated the possibility and explained the 
procedure of using Bayesian inference to estimate outdoor 
ventilation rates and occupancy levels. For example, the 
corresponding outdoor air ventilation rate with a 95% 
confidence level is 1.96 ACH for Room #1 with mechanical 
ventilation and fully open windows and 0.3–0.79 ACH 
for other rooms with only windows open. The estimated 
occupant number in one of the school rooms was 8–9 
(Room #4), which was confirmed after the calibration 
was completed.  

e. This study evaluated the importance of the occupancy 
schedule when there is a lack of CO2 measurement data. 
As one of the major uncertainties, the dynamic occupancy 
schedule is critical for the CO2 level estimations, especially 
when limited CO2 data are available during a calibration.  

f. This study also evaluated the importance of CO2 reading 
intervals when there is a lack of occupancy information. 
For an accurate estimation, hourly CO2 recording 
should be avoided because it smoothes the measurement 
profiles, fails to reflect the peak CO2 values, and could 
overestimate the outdoor ventilation rates in the room. 
A 15-min measurement interval can capture both the 
trends and peak CO2 values in the rooms of interest with 
a MAPE of less than 20%. It is preferable to go with 
shorter durations if possible, whereas a 5-min reading 

seems adequate to reach an acceptable level of the 
estimation with a MAPE of less than 10%.  
A few limitations of this study are noted and can be 

explored further in the future: 
The transient CO2 model in Eq. (1) assumes a well-mixed 

environment and no neighbor zones or neighbor zones 
with the same concentration as the outdoor. So it could 
be improved to consider the non-well-mixing conditions 
in which the locations of the CO2 meters could become 
important, as illustrated by the previous studies (Emmerich 
and Persily 2001; Rackes et al. 2018; Pantelic et al. 2020). 
The neighbor zone impacts could also be incorporated 
by installing extra CO2 meters in these zones, the effect 
of which may be in doubt since the surrounding CO2 
level is at a lower rank than other key parameters, such as 
occupancy schedule. A future dynamic model to consider 
both the non-uniformity and neighboring impacts can 
be explored further. 

This study relied on the measured CO2 data for the 
model’s validity, whereas the actual ventilation rate in 
the room was not measured directly. As mentioned 
previously, it is quite challenging to quantify the ventilation 
rate in a real-world situation due to the many uncertainties, 
especially for naturally-ventilated spaces, even with well- 
developed techniques such as tracer gas tests. However, 
if two tracer gases were used, one with CO2 and the 
other with another tracer gas, e.g., SF6, the proposed 
model could be further tested by comparing the predicted 
ventilation rates.  
On the other hand, although the actual ventilation rates 

in this study were not measured, we demonstrated that 
the CO2 levels in four primary school classrooms can be 
reasonably predicted when many uncertainties were involved. 
Therefore, others could apply the proposed Bayesian 
inference model and procedure to (1) estimate/forecast 
indoor CO2 levels for advanced demand control ventilation 
and (2) to explore the potential of using CO2 meters as 
indicators of indoor air quality and proxies of ventilation 
conditions in other buildings. When more CO2 and other 
air quality meters are expected to be employed in the near 
future, it is possible to develop relatively simple correlations 
of ventilation rates as a function of indoor CO2 levels so the 
public can use them directly without the need for knowledge 
of Bayesian calibrations, once a Bayesian inference model is 
calibrated and validated.  
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