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Abstract 
This study employs a simplified Knowledge Discovery in Database (KDD) to extract occupancy, 
equipment and light use profiles from a database referred to 12 all-electric prefabricated dwellings 
in the Netherlands. The profiles are then integrated into a building performance simulation (BPS) 
model using the software TRNSYS v17. The significance of the extracted profiles is verified by 
comparing the total and end-use yearly electricity consumption of the investigated dwellings as 
predicted by the simulation tool with on-site measurements. For the considered dwellings, using 
standard OB modeling results in an underestimation of the energy use intensity (EUI) by 5.9% to 
42.5%, depending on the case. The integration of the occupant behavior (OB) profiles improves 
the total electricity consumption prediction from an initial 22.9% average deviation from measurements 
to 1.7%. The results corroborate that the 1.6x discrepancy observed in the buildings’ energy use 
intensity could be entirely ascribed to OB. Then, the knowledge extracted from the households’ 
database is used to propose a local electricity market framework to reduce the electricity bill and 
grid dependency of all households. This study confirms the need for appropriate OB modeling in 
BPS, it shows the potential of the KDD method for successful OB profiles extraction, and is a first 
example of data-mined OB profiles integration in BPS, as well as of OB profiles deployment for a 
practical application other than energy use prediction. 
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1 Introduction 

In recent years, the importance of occupant behavior (OB) for 
building energy performance has been widely recognized 
(Zhang et al. 2014; Attia et al. 2013; Hensen 2011; Daniel et al. 
2015). The relative impact of OB on building performance 
is shown to increase as building standards become more 
stringent and building envelopes and systems more efficient 
(Hong and Lin 2012; Clevenger and Haymaker 2006). In 
residential buildings, such influence appears to be even more 
crucial, due to a higher level of freedom and control over 
the indoor environment (Urban and Gomez 2013; Andersen 
2012; Bahaj and James 2007; Saldanha and Beausoleil- 
Morrison 2012; Gram-Hanseen 2010; Maier et al. 2009; 
Juodis et al. 2009). As pointed out by Guerra Santin et al. 

(2009), different household types and occupancy patterns 
can lead to a variation in the electricity consumption with a 
factor of 3 in the Dutch building stock. A similar study by 
Andersen (2012) confirmed the importance of OB in buildings’ 
energy consumption, finding a factor 20 difference in the 
heating consumption of 290 identical townhouses in Denmark. 
Since the buildings considered in the study were standardized, 
OB appears to be the main reason for the discrepancies in 
the results. Also in similar low energy houses (Bahaj and 
James 2007), different OB patterns led to a dramatic difference 
in energy consumption, which is shown to reach up to 80% 
during certain periods of the year.  

An incorrect evaluation of occupants’ influence on 
buildings may query the reliability of simulation results due 
to discrepancies between predicted energy performance 
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and actual one (Yu et al. 2011). A number of studies (Raftery 
et al. 2011; Pan et al. 2007; Monetti et al. 2015; Royapoor 
and Roskilly 2015) show that wrong assumptions related 
to occupants are among the main causes for the incorrect 
building performance estimation by simulation tools. 
Samuelson et al. (2015) performed a calibration study to 
show how on-site measured data can reduce this discrepancy, 
improving the gap between simulation and measured 
consumption from an initial deviation of 36% to a net 7%.  

To address this issue, BPS developers are focusing their 
attention on defining general and robust methods to predict 
and model OB in buildings through different approaches 
(Yan et al. 2015; Gaetani et al. 2016; Yu et al. 2011). Real- 
time measured data, collected in building databases, have 
found a direct application in non-probabilistic models. The 
data mining (DM) process allows determining patterns of 
behavior and general occupants' profiles (Yu et al. 2013; 
D’Oca et al. 2015; Yu et al. 2016), which provide a more 
efficient alternative to real-time data for integration in BPS 
and have a higher generalizability potential. Yu et al. (2013) 
and Fan et al. (2015) developed two general frameworks for 
the application of DM in the building sector. They included 
a step-by-step analysis process from the problem definition 
to the knowledge discovery. In a more specific perspective, 
Basu et al. (2013) developed a decision tree-based model to 
predict the usage of home appliances for the hour ahead. 
D’Oca and Hong (2015) proposed a three-step DM learning 
framework to extrapolate occupancy patterns and user profiles 
from big data streams.  

Currently, DM-techniques have been applied to well- 
established databases characterized by high quality of data in 
terms of reliability, completeness, consistency, and resolution. 
However, data storage systems seem to have found a wide 
implementation mainly in office buildings, where the interest 
to reduce consumption and thus energy expenditure is higher 
than in other sectors. In the residential sector, monitoring 
systems are still not common and data analysis is usually 
carried out with highly summarized data (e.g. monthly, 
annual energy bills), which does not allow to perform a 
detailed analysis nor to extract information about occupancy 
state. The few existing studies which concern residential 
buildings are primarily dedicated to extracting OB profiles. 
Due to the relatively recent nature of this field of investigation, 
little research has been devoted to the verification of the 
extracted profiles, their implementation in BPS software 
or their use for real-life applications. This study seeks to fill 
this knowledge gap. 

The first objective of this study is to improve building 
energy performance predictions in residential buildings by 
identifying occupant behavior (OB) profiles and household 
types using DM-techniques. OB is analyzed in identical 
prefabricated dwellings in the Netherlands through an online 

database which collects real-time data. OB profiles are derived 
from the on-site measured data in a simplified knowledge 
discovery in database (KDD) process and integrated into a 
BPS model with the software TRNSYS. The improvement 
in the building performance prediction is estimated by 
comparing the simulation results, after the integration of 
the extracted profiles, with the actual measured data.  

A more accurate knowledge regarding OB can be useful 
when modeling a realistic energy demand per household in 
the design of neighborhoods with connected buildings (e.g. 
district system, smart grid, etc.). As a further objective of 
this study, the derived household types and OB profiles are 
used to investigate the potential of a local electricity market 
framework for a district. A local electricity market is a 
cooperative system in which the members of a community 
can exchange the on-site generated but not consumed 
electricity within the neighborhood, avoiding to feed it into 
the grid. This system allows reducing the electricity expenditure 
and the related carbon dioxide (CO2) emissions. At the 
same time, relying on locally generated electricity increases 
the self-consumption and energy matching for the whole 
community. In this study, the benefits of the local market 
in terms of bill reduction and grid-independency are estimated 
with the on-site energy matching (OEM) and on-site energy 
fraction (OEF) indicators. 

This paper is structured as follows: the characteristics 
of the buildings under investigation are presented in 
Section 2. The steps followed to perform the study are 
presented in Section 3. The results of the database analysis, 
the building simulation and the local electricity market 
analysis are reported in Section 4. These results are discussed 
and interpreted in Section 5, with a focus on the issues and 
limits encountered. Finally, the conclusions are drawn in 
Section 6. 

2 Dwellings under investigation  

The building database refers to 150 all-electric terraced 
dwellings built in the Netherlands since 2014 (Fig. 1). The 
houses are characterized by low-energy demand with high 
insulation of the building envelope and highly efficient 
equipment installed. The embedded system includes a 
4-kW air-to-water heat pump to cover the space heating and 
domestic hot water demand, and a 3-kW balanced ventilation 
unit with heat recovery for the fresh air supply. The electricity 
demand is partly covered on-site by a 5.5-kW rooftop PV 
system, reducing the import of electricity from the national 
grid. The monitoring system, installed in each dwelling, 
registers and collects online a large amount of data, including 
the CO2 concentration in the indoor environment, the 
imported and exported electricity, the usage of installed 
appliances and the water temperature in the system. The 
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dwellings are all prefabricated and heavily standardized, with 
the same number of floors, layout, installed equipment and 
thermo-physical properties. Table 1 summarizes the main 
characteristics of the dwellings under investigation. 

The dwellings are designed according to the concept 
of Nota Null (Dutch: “Zero Energy Bill”), which should 
guarantee a net zero electricity bill on annual basis. This 
result is achievable through net metering and tax com-
pensation for the installation of renewable technologies 
(Boekhoud and Behrendt 2013). However, the goal is not 
always reached, with several households finding themselves 
to pay a certain amount for the imported electricity at the 
end of the year.  

Table 1 Characteristics of the dwellings under investigation 

Building characteristics 

Dimensions [m3] 9.00 × 5.70 × 9.53 (h)  

Location the Netherlands 

Year of construction 2014-on going 

U-value [W/(m2·K)] Walls: 0.20; windows: 0.93 

Number of floors 3 (ground, first floor and attic) 

Observed floors Ground floor (day activity) and first floor 
(night activity) 

 
Fig. 1 External view of the dwellings under investigation 

3 Methodology 

The steps followed throughout this study belong to three 
main sections, as displayed in Fig. 2. In the first section 
(Section 3.1), the OB profiles were extracted for the selected 
households through a simplified Knowledge Discovery in 
Database (KDD) process. 

In the second section (Section 3.2), the extracted OB 
profiles were integrated into a building simulation model 
developed in TRNSYS v17. They were verified by comparing 
the electricity consumption predicted in the simulation 
model with the actual one measured in the database, both  

 
Fig. 2 Methodology overview 

on a yearly and monthly basis. The comparative analysis was 
performed for the total and end-use consumption. 

In the third section (Section 3.3), a direct application of 
the study’s results was proposed. The knowledge extracted 
from the database regarding OB was used to propose a local 
electricity market framework. The benefits of such system 
were evaluated through OEM/OEF indicators. 

3.1 Database analysis 

In this study, a simplified KDD process is used to analyze 
the database. The KDD is gaining popularity as a partially 
automated process of identifying valid, useful, and ultimately 
understandable patterns in data (D’Oca et al. 2015; D’Oca 
and Hong 2014). It involves the application of six steps 
(Hong et al. 2015): 
 Data selection: the creation of a target data set, namely 

the identification of a subset of variables or data samples, 
on which the analysis should be performed. 

 Data cleaning and pre-processing: removals of outliers 
and missing data fields to reduce the errors in the KDD 
results. 

 Data transformation: finding useful features to represent 
the data depending on the main goal of the discovery 
process.  

 Data mining: matching a particular data mining method 



Muroni et al. / Building Simulation / Vol. 12, No. 6 

 

1050 

(e.g. summarization, classification, regression, clustering, 
etc.) to meet the goal of the KDD process.  

 Data interpretation and evaluation: once a data mining 
method has been applied, obtained patterns should be 
interpreted and evaluated.  

 Knowledge extraction: consolidating discovered knowledge 
that can be used for further analysis. 

The general framework proposed in (Khan et al. 2014; 
D’Oca et al. 2015; Yu et al. 2013) aimed to extract occupancy 
patterns from a building database. In the data mining process, 
a decision tree model and a rule induction algorithm were 
used to extract the occupancy state (label attribute) based on 
several predictor attributes. The methodology required the 
prior knowledge of the label attribute to be performed. In 
this study, the information about occupancy state as label 
attribute was unknown and not included in the database. 
Therefore, the KDD process had to be modified using the 
general framework as baseline method.  

3.1.1 Data selection 

A total number of 220 variables were measured for each 
dwelling. Among them, 12 variables were directly or indirectly 
related to occupant behavior. Therefore, they represented 
the predictor attributes used to extrapolate the occupancy 
state in the analysis process. The variables are listed in 
Table 2, according to the respective database category. An 
increase in the CO2 concentration normally present in air is 
used as an indicator of human presence in the ground floor 
(day activities) and in the first floor (night activities). 
Considering that the houses are all-electric dwellings, 
emissions related to cooking with gas stove are equal to 
zero. Therefore, it is possible to assume that all variations in  

Table 2 Predictor attributes 

Database 
category Variable Indication 

CO2 concentration first floor [ppm] Balanced 
ventilation CO2 concentration ground floor [ppm] 

Occupancy 
presence 

Power from the grid [W] 
Power generation [W] 

Power from the grid [W] 
Power generation [W] 

Power to the grid [W] 

Power use heat pump [W] 

Power use dishwasher [W] 

Power use washing machine [W] 

Power use dryer [W] 

Smart 
meter 

Power use oven [W] 

Electricity 
usage 

Vessel temperature set point [°C] 
Heat pump 

Domestic hot water temperature [°C] 
DHW usage

CO2 concentration in the indoor environment are related 
to human presence. Appendix A describes in further detail 
the use of CO2 as a proxy for occupancy. 

3.1.2 Data cleaning and pre-processing 

Data cleaning and pre-processing were employed to exclude 
buildings with a high number of missing fields and evident 
issues in the monitoring systems. The location of Holten, 
the Netherlands was selected among various as it included 
the highest number of buildings with suitable data. The choice 
of selecting only one site allowed to exclude uncertainties 
related to weather. At the end of the process, 4 weeks of data 
(one per season) of 12 dwellings in Holten were considered 
for the analysis. This decision resulted from the strong seasonal 
behavior of the data discovered during the pre-processing 
stage. 

3.1.3 Data transformation to knowledge extraction 

In this study, a two-step learning framework to extract OB 
profiles without prior knowledge of the occupancy state was 
proposed (Fig. 3). The data mining process is used to define 
the hourly occupancy and average electricity consumption 
schedule. For each day of the week the occupancy schedule 
was paired with the corresponding electricity consumption 
profiles. The electricity profiles only accounted for the con-
sumption by equipment (installed appliances and unknown 
apparatus) and lighting, due to their dependence on OB. 
The consumptions by other end-uses (space heating, domestic 
hot water, etc.) were also considered in the simulation 
model. However, their dependency on external factors, such 
as weather conditions, required to consider them separately 
from the OB inputs. 

In the first step, the predictor attributes in Table 2 were 
analyzed individually within their database category. From 
each category, an indication regarding the occupancy state 
was extrapolated observing the instantaneous value of each 
attribute and the evolutionary trend during the day. An 
assumption-based rule was then generated combing the 
information extracted in each category (occupancy presence, 
electricity consumption, and DHW usage) to determine the 
hourly occupancy state as a binary value (0 = absent, 1 = 
occupied) and to extract the hourly electricity consumption 
(see Appendix A). At the end of the process, each household 
was characterized by daily occupancy schedules and the 
respective daily electricity consumption profiles. 

In the second step, a clustering analysis with the k-means 
algorithm is performed with the open-source software Rapid 
Miner (RapidMiner 2017). The choice of this method over 
other clustering methods was determined by the ease of use, 
as well as by the fact that the methodology was successfully 
implemented in D’Oca and Hong (2014) for a similar scope.  
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In the research presented here, the methodology introduced 
by D’Oca and Hong (2014) is adapted to the case-study of 
Holten and expanded to provide integration within a BPS 
software. The clustering process allowed to generalize the 
results of the first step of the data mining framework, 
combining the different OB profiles and defining a finite 
number of mean daily occupancy schedules and mean daily 
electricity consumption for the analyzed households. The 
clustering process was performed studying separately weekdays 
and weekend due to a previously identified different behavior 
of the occupants during the course of the week. Because 
similar dwellings were studied, no normalization or 
transformation of the obtained data was needed.  

To determine the optimal number of clusters which 
better define the OB in the analyzed households, a square 
Euclidean distance performance operator was considered. 
In this study, the Davies-Bouldin Index (DBI) was used 
for the evaluation (Davies and Bouldin 1979). The DBI is 
the ratio of the sum of average distance inside clusters to 
distance between clusters (Davies and Bouldin 1979) and it 
can be defined as Eq. (1): 

,1

1DBI max
n

i j
i j

i ji

R R
n M¹

=

é ù+
ê ú= ê úë û

å                       (1) 

where n is the number of clusters, Ri is the average distance 
inside cluster i, Rj is the average distance inside cluster j, 
Mi,j is the distance between the cluster centers. 

The number of clusters n was varied until achieving the 
smallest value k of DBI, which indicates a better performance 
of the clustering algorithm. The k = n algorithm that 
produced clusters with low intra-cluster distances (high 
similarity between the cluster elements) and high inter-cluster 
distance (low similarity between the elements of different 
clusters) was considered the k = nopt cluster algorithm.  

3.2 OB profiles integration into BPS and validation 

A model with standard OB inputs (Hoes 2014; Yang and 
Tysoe 2016; Aerts et al. 2013), referred to as base-case 

model, was developed for the analyzed dwellings with the 
software TRNSYS v17 (TRNSYS 2017). Table 3 summarizes 
the variations in the inputs related to OB applied in the 
final simulation model. In TRNSYS, occupant behavior is 
primarily modeled in terms of heat gains from occupants, 
equipment use, light use, space heating and DHW use. 
Occupants were modeled in the base-case model by multiplying 
the average heat gain per person by the number of occupants 
and the occupancy state (absent state = 0, occupied state = 
1) according to the profiles proposed by Aerts et al. (2013) 
and presented in Fig. 4.  

Conversely, the profiles were extracted from the database 
in the OB-integrated models. A similar approach was used 
to model the heat gains resulting from equipment use and 
light use. Standard inputs from Hoes (2014), expressed in 
W/m2, were used in the base-case model (Fig. 5). 

Table 3 Occupants behavior modeling in the base-case model 
and OB-integrated model 

Occupancy  
inputs 

 
Base-case model 

 
OB-integrated model 

Presence  (Aerts et al. 2013) Extracted occupancy 
schedule 

Equipment gains (Hoes 2014) Extracted consumption 
profiles 

Lighting gains (Hoes 2014) Extracted consumption 
profiles 

Occupants gains (Hoes 2014) (Hoes 2014) 

DHW daily usage (Yang and Tysoe 2016) Database analysis  
(mean value) 

T set point Constant at 20 °C Database analysis  
(mean value) 

 
Fig. 4 Occupancy schedule used in the base-case model 

 
Fig. 3 Two-step data mining framework for the extraction of OB profiles 
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Such standard inputs were modified in the OB-integrated 
model according to the values extracted in the dataset. Finally, 
a fixed setpoint of 20 °C was used for heating in the base-case 
model, while it was adjusted according to the mean values 
extrapolated in the database analysis of each dwelling. Similarly, 
the DHW usage profiles based on Yang and Tysoe (2016) 
were refined according to the data for each dwelling in the 
OB-integrated model.  

The final simulation model, defined as OB-integrated 
model, was then simulated. To verify the OB profiles and 
the database analysis process, a comparative analysis of the 
measured data was carried out aiming to investigate the 
accuracy of the simulation results in predicting the annual 
and monthly electricity consumption and the improvement 
from the base-case model prediction. 

3.3 Application to the local electricity market 

As a further step of the study, the consumption levels 
obtained by means of the extracted OB profiles were used 
to propose a local electricity market as a possible solution 
to achieve a net zero electricity bill. A lower electricity bill 
can be achieved reducing the imported electricity from the 
grid and thus increasing the energy independency through 
self-consumption. 

In this study, 12 households located in Holten were 
considered as members of a local community. The households 
were divided into groups in which the exchange of the 
surplus electricity was made possible on hourly basis. The 
grouping process was done considering the net annual 
consumption of each household, namely the total con-
sumption reduced of the on-site generation.  

The members were paired in groups aiming to guarantee 
that each household took the same advantage as the others 
in participating to the local market, regardless of in which 
group it was inserted. Therefore, the cumulative net con-
sumption, namely the sum of the net consumption of each 
group member, was calculated for each possible group 
combination. At the end of the pairing process, groups 
characterized by a similar cumulative net consumption 
between one and another were obtained. 

The improvements in the self-consumption, energy 
matching and reduction in carbon emissions were analyzed 
through OEM and OEF indicators, defined as follows (Cao 
et al. 2014):   

( ) ( )
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The equations are defined according to the two standard 
power curves in Fig. 6. G(t) and L(t) represent the on-site 
generated and the load power curve. The variables t1 and t2 
represent the starting and final point of the time span, 
respectively. In this study, the OEM and OEF were calculated 
on an hourly basis for the whole year. Therefore, the minimum 
between the instantaneous value of the generation power 
curve G(t) and the load power curve L(t) was calculated 
hourly.  

The OEM and OEF indicators were compared between 
an initial case, where each household was considered 
individually according to its consumption profile, and the 
local market case, in which households are paired in groups. 
The results concerning the local energy market are obtained 
only by means of the profiles extracted from the database. 

 
Fig. 6 Representative power curves for the definition of OEM 
and OEF indicators (Cao et al. 2013; reproduced with permission 
© Elsevier) 

Fig. 5 Light use power density (a) and equipment use power density (b) used in the base-case model 
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4 Results 

The analyzed households, despite being pre-fabricated, 
standardized, in the same location and with the same 
orientation, are characterized by fairly different annual 
electricity consumption levels (Fig. 7), with the highest 
consumer consuming about 1.6 times as much as the lowest 
consumer. It is reasonable to ascribe these differences entirely 
to OB. The imported electricity is on average equal to 4000 ± 
850 kWh/y. The self-consumed electricity, or the electricity 
generated on-site by PV panels and directly used by the 
household, is equal to 2600 ± 570 kWh/y. As the average 
generation is 5650 kWh/y, the self-consumed electricity 
represents on average 38% of the total. The remaining part 
of the generated electricity is exported to the grid.  

An analysis of the annual electricity consumption  
by end-use (Fig. 8) reveals that the equipment (installed 
appliances and unknown devices) and lighting represent the  

 
Fig. 7 Holten: annual PV generation and total consumption (self- 
consumption and import from the grid) in kWh/year 

 
Fig. 8 Holten: annual consumption by end-use in kWh/year 

highest share of electricity use in each household, accounting 
for 61.7% of the mean annual consumption with a standard 
deviation of 1109.2 kWh/y between households. 

The heat pump consumption, equal to 2179.9 kWh/y 
on average (35% of the total consumption) is characterized 
by fewer discrepancies, with a standard deviation of   
248.5 kWh/y. The space heating accounts for 58.5% of the 
mean heat pump electricity consumption. The remaining 
part is consumed to cover the DHW demand. 

4.1 Database analysis 

The clustering process allowed to combine the observed 
predictor attributes into average OB profiles. The clustering 
process was used to define daily occupancy schedule and 
average daily electricity consumption during weekdays 
(Mon–Fri) and weekend (Sat–Sun). The same four weeks 
of the year (second week of January, April, July and November), 
one per season, were analyzed for 12 dwellings. This period 
was chosen as characterized by a complete data coverage for 
each predictor attribute and each building under investigation. 
Moreover, a preliminary analysis confirmed low intra-seasonal 
discrepancies in OB. 

During the process, a different behavior in terms of 
time spent at home between the cold (Autumn/Winter) and 
warm (Spring/Summer) season was noticed. A differentiation 
between these two periods rather than each season was 
found to be representative of the occupancy schedule patterns. 
Instead, a similar profile in the electricity consumption by 
equipment was registered during the year. The electricity 
use for lighting showed a reduction during spring and 
summer, presumably due to increased daylight. However, 
for the purpose of integrating the profiles in the simulation 
model, the dependency of light use on solar radiation was 
not considered essential as it is already accounted for in the 
model. 

Therefore, the clustering process was performed 
considering separately two periods of the year (cold and 
warm season) for the occupancy schedule and without any 
distinction for the electricity consumption profiles.  

In order to achieve the optimal number of clusters that 
better defined the OB, the DBI was used as cluster distance 
performance operator. This operation resulted in the 
following number of clusters: 
 4 daily occupancy schedule for the weekdays (autumn/ 

winter and spring/summer) 
 2 daily occupancy schedule for the weekend (autumn/ 

winter and spring/summer) 
 3 daily electricity use for equipment and lighting for the 

weekdays 
 3 daily electricity use for equipment and lighting for the 

weekend 
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The daily occupancy schedule during weekdays and 
weekends are displayed in Fig. 9 and Fig. 10, respectively. 
During the weekdays of autumn and winter, the occupancy 
with the highest (Schedule A) and the lowest (Schedule D) 
number of occupancy hours represent the two most common 
schedules with a weekday mean percentage of 30% each. 
Schedule D, with the lowest number of occupancy hours, is 
instead the most common schedule in summer (35% of the 
cases). During the weekend, similar schedules were found 
in both seasons. In the first case, Schedule E (at home all 
day) occurs in 52.9% of the time. Its frequency decreases 
during summer to 38.5%, due to less hour of occupancy state 
observed. Instead, Schedule F occurs during most days 
(61.5%). 

Figure 11 displays the electricity consumption profiles 
for equipment and light use during the weekdays and 
weekend. The consumption profiles are labeled according to 

their value as low, middle and high consumption respectively. 
Considering the weekdays, the profiles have similar average 
distribution with the high consumption profile occurring 
38.2% of the time. A similar behavior occurs during the 
weekend, with the high consumption profile covering 40.9% 
of the time.  

At the end of the process, each household was defined 
according to daily occupancy schedules and daily consumption 
profiles.  

4.2 OB profiles integration into BPS and validation 

The OB profiles were then integrated in a simulation model 
as OB inputs, differentiated for each household in agreement 
with the results of the clustering process. The occupancy 
schedules are defined separately for the cold and warm season, 
as different behavior in terms of occupancy schedules during 

 
Fig. 9 Daily occupancy schedule during weekdays: autumn/winter (left), and spring/summer (right) 

 
Fig. 10 Daily occupancy schedule during weekends: autumn/winter (left), and spring/summer (right) 
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these seasons was noticed in the database analysis. The 
mean temperature set-point and DHW usage, as they were 
extracted from the database analysis of each household, were 
also integrated OB inputs into the simulation model. 

The OB profiles were verified by comparing the measured 
electricity consumption and the BPS prediction in terms of 
annual energy use intensity (EUI) [kWh/(m2·y)] (Fig. 12). 
The base-case model estimates a EUI of 44.6 kWh/(m2·y). 
Since no database analysis was performed in this initial case, 
OB was modeled with the same inputs for all the analyzed  

 
Fig. 11 Electricity consumption profiles by equipment and lighting 
for the weekdays and the weekend 

 
Fig. 12 Predicted EUI vs. measured 

buildings, and the results do not differentiate between one 
household and the other. This approach reflects the common- 
practice representation of OB. For the considered dwellings, 
using standard OB modeling results in an underestimation 
of the EUI of 5.9% to 42.5%, depending on the case.  

Once the OB profiles were integrated into the BPS 
software, each household is defined with more accurate, 
specific OB inputs based on the database analysis. As a result, 
a better prediction of the EUI is achieved. The variations 
between measured and estimated EUI is equal to 1.7%  
on average. The reliability of the simulation prediction is 
evaluated through a number of aggregate statics as proposed 
in Samuelson et al. (2015). In particular, the monthly 
normalized mean bias error (nMBE), defined as  
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and the coefficient of variation of the root mean square 
error CV(RMSE)  
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are evaluated for each building. Moreover, the weighted 
mean (WM) of all buildings are calculated for both indicators. 
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where pred = predicted monthly EUI, meas = measured 
monthly EUI, meas = mean of measured monthly EUI, p = 
number of predictor variables (1 in this case), Z = either 
nMBE or CV(RMSE) for each building, and A = annual 
measured energy consumption for each building. 

Table 4 summarizes the results for nMBE and CV(RMSE) 
for each building as well as their weighted mean. The 
maximum nMBE (H12) varied from an initial −46.4% in the 
base-case model to a final 2.1%. Similar values are obtained 
for the CV(RMSE), varying from 51.0% to 2.3%. Considering 
the combined statistics for the 12 households under analysis, 
the nMBE improves from −26.8% to 2.0% and the CV(RMSE) 
from 29.5% to 2.2%.  

Figure 13 is an illustrative example of the variation in 
the EUI prediction after each step of the integration of the 
OB inputs (dwelling H7). The household has a measured 
EUI equal to 49.4 kWh/(m2·y), differing from the EUI 
predicted in the base-case model of 9.7%. In the first step of 
the process, the lighting gains were corrected according to 
the extracted consumption profiles. Since in the base-case 
model the considered profile, based on Hoes (2014),  
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Table 4 Normalized mean bias error (nMBE) and coefficient of 
variation of the root mean square error CV(RMSE) in the base-case 
and OB-integrated model 

Base-case model OB-integrated model 

#House nMBE CV(RMSE) nMBE CV(RMSE) 

H1 −19.9% 21.9% −3.6% 3.9% 

H2 −10.0% 11.0% −0.8% 0.8% 

H3 −23.0% 25.3% −0.8% 0.8% 

H4 −23.7% 26.1% −2.7% 2.9% 

H5 −10.5% 11.6% 2.1% 2.3% 

H6 −20.1% 22.1% 2.1% 2.3% 

H7 −10.5% 11.6% −3.6% 4.0% 

H8 −44.2% 48.6% 1.7% 1.9% 

H9 −38.3% 42.1% −1.3% 1.4% 

H10 −6.5% 7.1% −1.4% 1.6% 

H11 −43.2% 47.5% −1.7% 1.9% 

H12 −46.4% 51.0% 2.1% 2.3% 

Weighted 
mean −26.8% 29.5% 2.0% 2.2% 

 
Fig. 13 H7: EUI variations after the integration of OB inputs 

overestimates the actual lighting consumption, the correction 
leads to an initial reduction of the predicted EUI. Integrating 
the equipment consumption, the EUI increases due to an 
underestimation of the consumption in the base-case model, 
equal to 58.6% in the analyzed case. The modification of the 
temperature set-point and DHW usage (step 4), according 
to the mean values observed in the database for the household, 
improved the final estimation of the EUI to 47.7 kWh/(m2·y) 
with a difference of 3.3% from the measured EUI. Figure 14 
shows the monthly comparison in the consumption after 
each step of the integration of the OB inputs. Compared to  

 
Fig. 14 H7: Monthly electricity comparison between base-case 
model, OB-integrated model and measured data 

the base-case model, the final prediction shows a similar 
pattern with the measured monthly consumption.  

Considering the consumption by end-use (Fig. 15), the 
mean variation between the base-case model predictions 
and actual consumption ranges between 1.8% for the 
ventilation consumption and 371.1% for the lighting 
consumption. As for the other end-uses, the average 
discrepancy with the actual consumption is equal to 14.9%, 
31.5% and 71.8% for the space heating, DHW and equipment 
consumption, respectively. In the OB-integrated model, 
the lighting consumption shows the highest discrepancy 
with the measured data, with an underestimation of 3.2%. 
The prediction of the space heating, DHW and equipment 
consumption, after the integration of the extracted OB 
profiles, improved to 6.1%, 4.3% and 2.8%, respectively. 

Figure 16 illustrates the monthly electricity consumption 
divided by end-use for H7. Comparing the base-case with 
the final model, the annual nMBE improves from −10.5% 
to −3.6%. The maximum variation between the monthly 
total electricity consumption predicted in the base-case 
model and the measured consumption occurs in September. 
It is equal to 34.6% in the base-case model, improving  
to 16.5% in the final model. Considering the end-use con-
sumption, the major discrepancy between base-case model 
prediction and measured data appears in the lighting 
consumption of May, with a mean discrepancy of 343.9%. 
The prediction of the monthly electricity consumption for 
lighting in May improves in the OB-integrated model with 
an overestimation of 35.8%.  

4.3 Application to the local electricity market analysis 

Figure 17 shows the annual total electricity consumption 
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and PV generation in the analyzed households which 
represent the 12 members of the local electricity market. In 
order to study different configurations, households were 
divided into groups, each composed of the same number of 
members.  

Table 5 displays the variations in the on-site energy 
matching (OEM) and on-site energy fraction (OEF) indicators 

between the initial case and the local market case. The 
indicators increase in all the analyzed cases except in two 
households for OEM and in three households for OEF. The 
mean increase in the OEM and OEF are equal to 29% and 
28%, respectively. 

Figure 18 shows the variations in the imported electricity 
in H7 between the initial and the local market case in two 

 
Fig. 15 EUI by end-use: comparison between base-case model (initial) measured data (meas) and OB-integrated model (final) 

 
Fig. 16 H7: Monthly electricity consumption by end-use: comparison between measured data, base-case model, and OB-integrated 
model  
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Fig. 17 Electricity total consumption vs PV generation in 12 
households in Holten 

Table 5 Variations in OEM/OEF indicators between the initial 
case and the local market case 

OEM OEF 

  Initial 
Local 

market 
% 

Initial 
Local 

market % 

H2 0.25 0.48 95.8% 0.22 0.41 84.7%
H5 0.37 0.48 29.9% 0.42 0.41 −2.9%
H9 0.40 0.48 20.4% 0.24 0.41 71.3%
H4 0.37 0.48 29.4% 0.37 0.41 9.8%
H8 0.59 0.48 −17.6% 0.47 0.41 −12.3%

Group 1 

H12 0.52 0.48 −6.8% 0.43 0.41 −5.8%

H10 0.32 0.47 45.8% 0.34 0.41 18.4%

H1 0.34 0.47 37.2% 0.31 0.41 29.9%
H6 0.33 0.47 42.8% 0.35 0.41 17.3%
H7 0.38 0.47 21.9% 0.33 0.41 24.3%
H3 0.36 0.47 29.5% 0.26 0.41 57.1%

Group 2 

H11 0.41 0.47 12.7% 0.30 0.41 37.5%

 
typical days, January 15th, and July 15th. In the initial case, 
the PV generation of the household is not enough to cover 
the total demand and it is necessary to rely partly on the 
import from the grid. In the local electricity market case, the 
availability of surplus electricity generated and not consumed 
by the neighbors allows reducing the import from the grid. 
On January 15th, the number of hours of self-consumption 
increases from 0 to 6. The major part of the import does 
not vary between the two cases due to weather conditions 
(winter season, low number of daylight hours, etc.). During 
summer, on July 15th, the more favorable weather conditions 
lead to a high number of self-consumption in the initial case 
without local electricity market, equal to 10 hours. The local 
market framework helps to increase the value to a final  
13 hours, covering almost all the daylight hours through the 
electricity generated by the neighbors.  

 
Fig. 18 H7: Comparison between the electricity imported from 
the grid in the initial case and the local electricity market case in 
two days (January 15th and July 15th) 

5 Discussion 

The results presented in Section 4 confirm the importance 
of appropriately modeling OB for energy performance 
predictions (O’Brien et al. 2017a,b). The KDD is deemed to be 
a suitable technique for extracting OB profiles from a stream 
of raw data for implementation in BPS. The implementation 
of OB profiles increased the accuracy of the model energy 
use predictions for all 12 dwellings, both on a yearly and 
monthly timescale. However, the results are dependent on 
the case study and generalizations concerning the typologies 
of inhabitants cannot be made. Similarly, there is no guarantee 
that applying the same profiles to different households 
would result in an improved accuracy of the model. As 
the dataset becomes richer, the presented technique will be 
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applied to a higher number of dwellings to possibly derive 
standardized Dutch families profiles that can be easily 
implemented in BPS.  

This study makes a number of simplifications that need 
to be highlighted. Firstly, although the complete database 
referred to over 150 all-electric dwellings, only 12 were 
deemed suitable for this analysis. This choice significantly 
reduces the sample size and may not be statistically significant. 
However, the decision was dictated by two constraints:   
i) the usability of the collected data; and ii) the necessity of 
removing any factor that could have an influence on electricity 
use rather than OB. The 12 analyzed dwellings are identical 
in each aspect other than OB and hence represent an ideal 
case study for researching the influence of OB on energy 
use. Secondly, only four weeks of the calendar year were used 
to extract OB profiles. The assumption that the selected 
four weeks were representative of the whole year has been 
verified by means of a preliminary analysis. Were the 
dataset of the 12 dwellings complete for the whole year, it is 
nonetheless recommendable to use the full data.  

6 Conclusions 

A dataset concerning 12 identical, all-electric dwellings in 
Holten, the Netherlands was analyzed with the purpose of 
investigating the effect of OB on residential buildings’ 
energy use. The dwellings show a factor 1.6x discrepancy  
in the electricity use due to OB, with the lowest consumer 
using 4839.9 kWh/y and the highest consumer using 
7920.8 kWh/y. As for the different end-uses, the highest 
differences in energy use are related to the use of equipment 
(standard deviation of 1007 kWh/y between households). 
The KDD DM-technique was employed to derive occupancy 
and electricity use profiles for lighting and equipment. The 
extracted OB profiles were integrated in a base-case model 
developed in TRNSYS v17. The more accurate representation 
of OB by means of the profiles improved the predictive 
ability of the model from an initial 22.9% average deviation 
from measurements to 1.7%. This result confirms the 
validity of the extracted profiles. Moreover, the profiles allowed 
to evaluate the potential for a local energy market in the 
considered neighborhood. Sharing the surplus energy with 
neighbors resulted in a mean improvement in OEM and 
OEF of 29% and 28%, respectively. This study confirms the 
importance of appropriate OB modeling for analyzing the 
energy use of dwellings, as highlighted by IEA EBC Annex 
66 (Yan et al. 2017) and Annex 79. To the best knowledge 
of the authors, the presented research is a first example  
of DM-derived OB profiles integration in BPS, as well as 
implementation to a practical application such as evaluating 
the potential for a local electricity market.  
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Appendix A: Assumption-based rule to determine 
occupancy schedule 

In order to determine the occupancy schedule without any 
prior knowledge of the occupancy state, an assumption- 
based rule was generated analyzing 12 database parameters 
related to OB. CO2 concentration, electricity consumption 
and appliances usage and DHW usage were considered as 
an indication of the occupied state in the analyzed dwellings. 
Each category was studied individually with the related 
parameters and the information extracted combined to obtain 
the final occupancy state as a binary value (0 = unoccupied, 
1 = occupied state). 

CO2 concentration 

In this study, human activities are assumed as the only 
source of CO2 in the buildings. Since the houses are all-electric, 
the installation of gas stoves, fireplaces, furnaces, boiler and 
other similar CO2 sources can be excluded. Other possible 
causes of emissions are lit candles and pets. For safety reasons, 
candles are assumed to be not used when the house is 
unoccupied while pets, if present, emit a smaller amount of 
CO2 compared to the household members and for this 
reason their contribution can be neglected.  

The following assumptions were considered to extract 
the occupancy state: 
(1) Outdoor CO2 is usually between 350 and 450 ppm (The 

Engineering Toolbox 2016). In case the CO2 is lower 
than 450 ppm the dwelling is considered unoccupied. 
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(2) A steady value of CO2 suggests that the occupancy state 
is not changing between two consecutive intervals. 
Therefore, the state in the interval n is assumed the 
same of the previous n-1 interval.  

(3) Since the houses are all-electric, an increase in the CO2 
is assumed to be caused mostly by the presence of 
occupants. Therefore, if a continuous increase in the 
CO2 is reported, the building is considered occupied. 

(4) A decrease of CO2 does not necessarily mean that the 
occupants left the house but it can be caused by a 
different activity, variations of the number of occupants, 
etc. For this reason, an unoccupied state is considered 
only if the reduction in the CO2 is continuous not only 
between n and n+1 intervals with 15 minutes difference 
but for at least one hour. 
Analyzing the last assumption, a decrease in CO2 can be 

also caused by the ventilation of the indoor environment. 
In the analyzed dwellings, a balanced ventilation unit for 
fresh air supply is installed. The ventilation unit turns on 
automatically when the CO2 concentration exceeds 1000 
ppm. Since the occupants are assumed as the main source 
of CO2 emissions and other possible sources were excluded, 
this concentration can be reached only due to human activities 
in the house. The manual opening of windows cannot be 
excluded as a cause of reduction in the CO2 and the database 
does not contain this information. However, considering 
the installation of the ventilation system, the operation with 
windows are assumed to be less frequent in the analyzed 
dwellings.  

Electricity consumption and appliances usage 

In the analyzed database, the electricity consumption of 4 
installed appliances (oven, dryer, washing machine, dishwasher) 
and the heat pump are collected. The consumption by 
lighting and other devices are unknown. However, they are 
extrapolated from the total electricity consumption reduced 
of the exported electricity and the consumption of the 
mentioned appliances and heat pump. Therefore, the electricity 
consumption can be used as an indication of occupied state 
in the analyzed dwellings. The following assumptions were 
developed: 
(1) Oven consumption: for safety reason the house is 

considered occupied during all the period in which the 
oven consumption is higher than zero. 

(2) Dryer consumption: an occupied state is considered at 
the beginning of the power cycle when the consumption is 
higher than zero. 

(3) Base load: a base load of 400 W is considered through 
observation of the collected data during the analyzed 
period. The base load is registered during the day in which 
the level of activity is assumed to be lower. Therefore, 

value higher than 400W suggests the usage of equipment 
and lighting and an occupied state in the house. 
The consumption of the washing machine and dishwasher 

are excluded from the analysis because the appliances might 
have an internal time switch installed. Since they might turn 
on in periods in which occupants are not at home they 
cannot be used to estimate the occupancy state.  

DHW usage 

The water vessel contains DHW at the constant temperature 
of 55 °C. A drop in the water temperature implies the usage 
of DHW in the house. In order to exclude possible fluctuation 
in the water temperature related to external causes, the 
usage of DHW is considered only with a standard deviation 
higher than 4 between two consecutive intervals, which 
corresponds to a mean difference of 10 °C.  
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