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Metabolic disorders and non‑alcoholic fatty liver 
disease

Metabolic syndrome can be diagnosed if three or more 
of the following factors are present: fasting glucose ≥ 
100 mg/dL, blood pressure ≥ 130/85 mm Hg, triglyceride 
level ≥ 150 mg/dL, high-density lipoprotein cholesterol 
level < 40 mg/dL in men or < 50 mg/dL in women, and waist 
circumference (for Westerners, > 100 cm in men or 88 cm in 
women; for Asians, > 88 cm in men or > 80 cm in women) 
(Carr et al. 2016). Metabolic disorders such as diabetes and 
hyperlipidemia are becoming increasingly common in mod-
ern society. Adults in Western countries suffer from obesity 
(90%), diabetes (50%), and hyperlipidemia (90%) (Le et al. 
2017). The major reason for this high prevalence of meta-
bolic disorders is due to increased sedentary lifestyles and 
excess calorie intake, leading to energy imbalances. Humans 
maintain their health by regulating lipid metabolic rate via 
lipogenesis, lipoprotein absorption, and secretion.

The liver is considered the metabolic hub of the body 
because all ingested nutrients pass through the liver after 
intestinal absorption. Hence, the liver quickly senses any 
nutritional changes, which then alters metabolic activities 
to maintain homeostasis. Therefore, any disturbances in 
fuel consumption of the liver (e.g., steatosis and steato-
hepatitis) are often indicators of a metabolic disorder. The 
hypothalamus is also an essential regulator of energy and 
weight homeostasis. Evidently, mutant genes contribute 
to the underlying basis of metabolic disorders (Hochberg 
and Hochberg 2010). Therefore, metabolic disorders result 
from various combined factors, including genetic varia-
tions, nutritional alternation, and hormonal impairment. 
Conditions commonly associated with metabolic syn-
drome include obesity (Cornier et al. 2008), diabetes, and 
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nonalcoholic fatty liver diseases (Eckel et al. 2010), which 
will be discussed in more detail.

Obesity

Obesity is defined as abnormal or excessive fat accumula-
tion that presents a risk to health. According to the World 
Health Organization (WHO), individuals with a body mass 
index (BMI) over 30 kg/m2 are considered obese. This cut-
off value was determined from the point where the typi-
cal metabolic complications of obesity increased twofold. 
However, among the Asian population, who have a high 
prevalence of metabolic complications with lower BMI 
compared with White, Hispanic, or Black populations, the 
BMI cut-off value is 25 kg/m2.

A WHO report (2021) mentioned that nearly 2.2 billion 
adults (40%) worldwide are obese. Another study subdi-
vided obesity by gender, showing that 200 million men and 
300 million women worldwide are obese (Polyzos et al. 
2019). Data on obesity prevalence among Asians in 2014 
showed that about 40% of adults in China, 30% in Japan 
and India, and 27% in Korea were considered obese (Fan 
et al. 2017). Of them, more than 39 million were consid-
ered morbidly obese (BMI > 40 kg/m2). Surveillance data 
from the United States for 2009 and 2010 revealed that 
more than 15% of children and adolescents were obese, 
with a consequent increase in pre-diabetic rates (Roth 
2015). Data from the Global Obesity Observatory (2021) 
revealed that seven out of every ten Indian adults and 
four out of every eleven children are obese (Observatory 
2021a), while in Pakistan, six out of every ten adults and 
five out of every eleven children are obese (Observatory 
2021b). A cohort study conducted on 975 Chinese children 
aged between 6 and 13 years and continued for 6 years 
afterward showed that obesity increased 2.8 times during 
adolescence, while another study included 204 Chinese 
children aged between 6 and 17 years and followed up for 
13 years revealed that obesity prevalence increased 5.8 
times (Pan et al. 2021). Therefore, obesity will continue to 
be a severe global health problem due to its rapid increase 
among children and adolescents.

Studies have shown a linear increase in NAFLD preva-
lence with increased obesity. In a study of 181 morbidly 
obese patients with severe average BMI (= 45.1 ± 8.3 kg/m2), 
126 patients (69.6%) exhibited symptoms of NAFLD (Ooi 
et al. 2021). The study’s results showed that more than 33% 
of obese patients suffered from NAFLD, with more than 
one-third having bariatric surgery (Machado et al. 2006). 
NAFLD diagnoses are increasing exponentially in relation 
to obesity in the United States. For example, 4.17 million 
cases of NAFLD were reported in 2008, rising to 83.1 mil-
lion cases in 2015.

Diabetes

Diabetes mellitus (DM) is a chronic disorder that causes 
abnormal metabolic regulation of glucose as well as vascu-
lar and neuropathic complications (Crandall and Shamoon 
2020). DM diagnosis depends on the detection of elevated 
fasting blood glucose levels ( ≥ 126 mg/dL). There are two 
types of diabetes: type 1 diabetes (T1D, insulin-dependent 
or juvenile-onset diabetes) and type 2 diabetes (T2D, non-
insulin-dependent or adult-onset diabetes). The pathophysi-
ology of DM can be explained by insulin deficiency and 
reduced carbohydrate metabolism. Insulin maintains glucose 
homeostasis by promoting glucose storage in the fed state 
and releasing it in the fasting state (Crandall and Shamoon 
2020). Insulin resistance (IR) is defined as when the sign-
aling pathways of insulin are impaired in principal target 
organs and tissues such as muscle, fat, and the liver. IR can 
result in compensatory hyperinsulinemia to maintain nor-
mal glucose homeostasis. If compensation is not adequate, 
hyperglycemia and T2D can eventually develop.

Metabolic syndrome, which includes diabetes, is consid-
ered one of the significant life-threatening conditions of the 
twenty-first century because it can cause serious complica-
tions such as cardiovascular disease and stroke. In 2040, it 
is estimated that 642 million people worldwide will have 
T2D (Yang et al. 2020), which has shown a linear relation-
ship with elevated BMI, reflecting increasing obesity rates. 
A meta-analysis using observational data from 20 countries 
revealed that more than 50% of T2D patients also suffered 
from NAFLD (Younossi et al. 2019; Targher et al. 2021). 
The literature suggests a bi-directional relationship between 
NAFLD and T2D. Moreover, T2D has been proven to be one 
of the main risk factors for patients developing NAFLD and 
HCC (Anstee et al. 2013; Powell et al. 2021). The underly-
ing mechanism for high co-incidence of T2D and NAFLD 
is explained as follows; under IR conditions, adipose tissue 
becomes dysfunctional, reducing its ability to uptake cir-
culating lipids and enhance lipolysis, even in high-fat diet 
(HFD) conditions (Yaribeygi et al. 2019). Therefore, these 
dysfunctional adipose tissues release large amounts of cir-
culating free fatty acids (FFA), which can accumulate in the 
liver and cause NAFLD (Hammoutene and Rautou 2019).

Non‑alcoholic fatty liver disease (NAFLD)

NAFLD is clinically diagnosed if the liver consists of > 5% 
fat, as monitored by liver imaging or biopsy in the absence of 
secondary causes of fat accumulation such as chronic alco-
hol abuse (defined as more than one drink per day for women 
or two for men) (Carr et al. 2016). NAFLD can encompass a 
wide variety of liver diseases ranging from simple fatty liver 
(i.e., simple steatosis) with no inflammation to non-alco-
holic steatohepatitis (NASH) with accompanying steatosis, 



940 M. S. Khan et al.

1 3

inflammation, and hepatocyte injury. This can manifest as 
hepatocytes ballooning with or without fibrosis, which may 
further proceed to liver fibrosis or liver cancer (Piccinin 
et al. 2019; Makri et al. 2021). Fibrosis can be histologi-
cally categorized into four stages, ranging from stage 0 (no 
fibrosis) to stage 4 (cirrhosis) (Powell et al. 2021).

NAFLD is currently the most common liver disease glob-
ally and has been reported to affect 30% of people over the 
age of 18 (Hou et al. 2021). A cohort study of 139,056 Kore-
ans between 2011 and 2013 showed an association between 
a sedentary lifestyle and NAFLD prevalence in young and 
middle-aged people (Ryu et al. 2015). Another study showed 
that NAFLD is strongly associated with obesity and T2D 
(Lonardo et al. 2019). As a consequence of this strong cor-
relation, NAFLD has also become known as metabolic 
dysfunction-associated fatty liver disease (MAFLD) (Eslam 
et al. 2020; Makri et al. 2021). As metabolic syndrome 
becomes more common, so does the incidence of NAFLD 
(i.e., a worldwide incidence of ~ 25%, ranging from 13% in 
Africa to 42% in Southeast Asia). There are expected to 
be an estimated 100.9 million cases of NAFLD by 2030, a 
21% increase from 2015, with a 33.5% prevalence in people 
above the age of 15 and 28.4% for people of all ages (Estes 
et al. 2018). Data monitored by national healthcare providers 
between 1998 and 2015 were gathered, and a new compre-
hensive analysis was conducted to investigate the prevalence 
of NASH in various countries and regions. The results of 
the above-mentioned study revealed that the annual medi-
cal costs for treating NAFLD exceeded $100 billion in the 
United States alone (Mundi et al. 2020).

Pathogenesis of liver diseases

NAFLD, newly named MAFLD, is certainly associated with 
metabolic dysfunction. Here, the pathogenesis of metabolic 
diseases will be discussed in the context of lipotoxicity, 
autophagy dysregulation, endoplasmic reticulum stress, IR, 
and other targets. In a recent study, the analysis of single-cell 
RNA transcriptome has been used to find a cell type-specific 
role in gene expression for the progression of liver diseases 
including NAFLD (Su et al. 2021).

Lipotoxicity

One of the most well-known disease progression mecha-
nisms in NAFLD is steatosis. When a hepatocyte’s ability 
to synthesize triglycerides overwhelms its ability to dispose 
of them, triglycerides will accumulate inside them as fat. 
Although triglycerides are not toxic per se, their precursors, 
such as fatty acids and other metabolic byproducts, such as 
reactive oxygen species (ROS), are toxic to hepatocytes. The 
accumulation of these byproducts is known as lipotoxicity 

(Yoon et al. 2021). Because of impaired lipid metabolism, 
NAFLD patients experience inter- and intrahepatic lipid 
buildups such as enhanced hepatic FFA intake and very-low-
density lipoprotein synthesis, dysregulation of triglyceride 
export, and reduced levels of high-density lipoproteins and 
cholesterol in the blood (Katsiki et al. 2016). Inflammation 
also promotes cytokine production, gut-derived products 
(e.g., lipopolysaccharide), and hepatotoxic mediators, which 
can aggravate NAFLD if hepatocytes are exposed to them 
(Diehl and Day 2017).

FFAs are hydrophobic, which increases their permeabil-
ity across the cell membranes. However, a few transport 
proteins facilitate their transport (e.g., plasma membrane 
fatty acid-binding protein) and fatty acid translocases such 
as CD36 (Rada et al. 2020). The fatty acid translocase CD36 
has a high-affinity receptor for long-chain FFAs, contrib-
uting to enhanced fat surge, excessive lipid storage, and 
metabolic dysfunction. These proteins are also involved 
in lipid metabolisms such as fat intestinal absorption and 
fatty acids consumption by muscle, adipose tissue, and liver 
(Rey et al. 2020). An exome-wide association study revealed 
that increased levels of VLDL were adversely found in T2D 
patients (Liu et al. 2017).

NADP + -dependent aldo–keto reductase family 1, mem-
ber 10 (AKR1B10), also named as ARL-1 protein, is mainly 
expressed in the small intestine and colon (Gallego et al. 
2007). The levels of AKR1B10 were found to be higher in 
patients with HCC (Heringlake et al. 2010) or adenocar-
cinoma of the lung (Fukumoto et al. 2005), renal cancer, 
and breast cancer (Ma et al. 2012; Kanno et al. 2019). The 
studies have proven that AKR1B10 is involved in regulat-
ing lipotoxicity and de novo-lipogenesis; lipid peroxidation 
produces electrophilic carbonyls, aggravating DNA damage 
by interacting with nucleophiles and causing carcinogenesis 
and apoptosis (Luo et al. 2011; Ye et al. 2019).

Autophagy dysregulation

The liver is the primary organ involved in the detoxifica-
tion of chemicals within the body. Maintaining homeosta-
sis between the generation of new proteins and the destruc-
tion of damaged proteins in eukaryotic cells involves two 
main pathways: the ubiquitin–proteasome system (UPS) for 
short-lived proteins and the autophagy-lysosomal pathway 
for longer-lived proteins (Martinet et al. 2009). Several arti-
cles have reported on the correlation between autophagy 
and lipid metabolism. Autophagy causes the transfer of 
intracellular materials, such as denatured proteins, fat drop-
lets, and dysfunctional mitochondria, to the lysosomes for 
their destruction. As a “housekeeper” of cellular contents, 
autophagy not only inhibits the progression of steatosis and 
fatty hepatitis but also prevents hepatocyte injury (Kwanten 
et al. 2014). However, the fizzy lifestyle and intense caloric 
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food intake have increased the obesity ratio, negatively 
affecting the regulation of autophagy.

Before analyzing the possible pathogenic mechanism of 
NAFLD driven by dysfunctional autophagy, it is necessary 
to review how the intracellular contents are controlled. Lipid 
accumulation in the hepatocytes could result in decreased 
autophagic activity, bile acid fluctuations, increased endo-
plasmic reticulum (ER) stress, inflammatory response, 
and disturbed gut microbiota, all of which can contribute 
to NAFLD progression (Friedman et al. 2018; Yueh et al. 
2020). The relationships between autophagic imbalance and 
hepatic diseases have been studied (Kwanten et al. 2014; 
Kim and Kim 2020). In addition, the consequential excessive 
storage of lipids in hepatocytes due to impaired autophagy 
has been shown to cause apoptosis, exacerbating NAFLD 
(Tanaka et al. 2016).

There are three types of autophagy: macro-autophagy, 
micro-autophagy, and chaperone-mediated autophagy 
(Amir and Czaja 2011). Lipid droplets (LDs) of vari-
ous sizes are metabolized by macroautophagic engulf-
ment (Singh et al. 2009). Macroautophagy occurs when 
autophagosomes and lysosomes fuse together (Amir and 
Czaja 2011). Autophagosomes, submerged cytosolic 
double-membrane structures attached with lysosomal 
enzymes, degrade the cellular constituents, and then 
autophagy-related genes (Atgs) are responsible for reg-
ulating the overall process (Czaja 2011). Atg knockout 
mice exhibited a fourfold increase in liver mass due to the 
failure to degrade appropriate cellular components (Czaja 

2011). While lysosomal lipase degrades lipoproteins via 
endocytosis, macroautophagy activates the cleavage of 
triglycerols and cholesterols stored in hepatocytes and 
releases FFAs through a process known as “lipophagy.” 
In addition, chaperone-mediated autophagy stimulates 
LDs’ metabolism, resulting in lipolysis via either cytosolic 
lipases or macroautophagy (Zhang et al. 2020).

To function properly as the primary initiative for 
autophagy, autophagosomes need to be formed. This step 
is mediated by the unc-51-like kinase 1 (ULK1), serine/
threonine-protein kinase. One of the possible mechanisms 
underlying autophagy dysfunction in NAFLD is due to the 
inhibition of ULK1 by mTOR. Research has shown that 
chronic caloric intake is directly related to mTOR activation, 
which leads to the complex formation of mTOR complex 1 
(mTORC1) and mTOR complex 2 (mTORC2) (Chung and 
Chung 2019). Phosphorylation by mTORC1 of ULK1 at 
Ser758 and Ser757 in human and mouse cells, respectively, 
interferes with AMP-activated protein kinase (AMPK)-bind-
ing ULK1 phosphorylation and inhibits its activation. Since 
autophagy initiation by ULK1 is inhibited via mTORC1 
activation, the action of autophagy is reciprocally regulated 
by mTORC1 (Fig. 1) (Kim and Guan 2015). Studies have 
shown that Atg7 knockdown and reduced LC3-II cause 
decreased levels of autophagic flux with hepatomegaly (Kim 
et al. 2013; Tsai et al. 2017). Regarding protease enzymes, 
calpain 2 expression was found to increase compared to that 
of calpain 1. Research has also shown that calpain 2 activa-
tion leads to the loss of Atg3 and Atg7 activities, decreasing 

Fig. 1  On the left, increased 
caloric intake affects the 
mTORC1, AMPK and ULK1 
network and inhibits autophagy. 
On the right, the activation of 
calpain-2 results in the loss 
of Atg3 and Atg7 required to 
activate autophagy. The loss 
of function would result in 
decreased autophagy activity. 
mTORc1 mammalian target of 
rapamycin complex 1, ULK1 
Unc-51-like kinase 1, Atg3 
autophagy related 3, and Atg7 
autophagy related 3

Chronic calorie intake

Calpain-2

ULK1

AMPK

Loss of 
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autophagy in hepatocytes with the progression of fatty liver 
and IR (Kim et al. 2008) (Fig. 1).

Another mechanism proposed for the inhibition of mac-
roautophagy in hepatocytes results from the dysregulation 
of a protease called autophagy-related protein 4B (ATG4B) 
and RAS-related protein-8b (Rab-8b), which is mediated 
with liver X receptor α (LXRα) (Kim et al. 2020). In this 
event, LXRα transcriptionally induces the MIRLET7A and 
MIR34A genes to inhibit ATG4B and Rab-8B, suppressing 
mitochondria biogenesis and fuel consumption. Persistent 
over-activation of LXRα (due to HFD feeding and/or exces-
sive calorie intake), therefore, worsens NAFLD (Kim et al. 
2021).

Alcoholic liver disease (ALD), including alcoholic hepa-
titis, is the most prevalent liver disease worldwide. ALD is 
defined by the accretion of neutral lipids and lipid metabo-
lism disruption prior to liver damage. Obesity is another 
risk factor for ALD development; the incidence of ALD 
increases by 2–3 times in individuals with steatosis (Parker 
et al. 2019). Alcohol-induced, kynurenine-mediated AhR 
activation in hepatocytes is responsible for autophagy inhibi-
tion, exacerbating liver steatosis. The importance of different 
types of cells involved in the NAFLD progression has also 
been demonstrated at the molecular levels (Jin 2020; Kumar 
et al. 2021). Studies have provided detailed insights into the 
role of metabotropic interactions in hepatic parenchymal 
(hepatocytes) and non-parenchymal cells. These interac-
tions negatively affect autophagy, and therefore mitochon-
drial activity and biogenesis, via various nuclear receptors 
as lipid or sensors/or amino acid metabolites in aggravating 
alcoholic and non-alcoholic liver diseases, either pathologi-
cal or non-pathological pathways (Choi et al. 2019, 2021).

Endoplasmic reticulum (ER) stress

Hepatocytes have numerous ERs, similar to other secre-
tory cells, because of their protein synthesis capability. ER 
is involved in the folding of secreted and transmembrane 
proteins, a process achieved with the assistance of chaper-
one proteins. The ER also houses enzymes that synthesize 
cholesterol and triacyl-glycerides (TAG) for energy stor-
age (Little et al. 2007). However, increased levels of satu-
rated fatty acids trigger the excess storage of misfolded or 
unfolded proteins in the ER lumen, a process known as ER 
stress. In order to restore homeostasis, ER stress accelerates 
the unfolded protein response (UPR), a signal transduction 
pathway located in the ER lumen, which is also known as 
the regulator of ER proteostasis surveillance (Wang and 
Kaufman 2016). UPR adaptively stimulates the increased 
expression of ER proteins, including ER membrane proteins, 
to extend the organelle space and produce more chaperone 
proteins required for protein folding. Additionally, UPR acti-
vation reduces the total protein synthesis, thereby lessening 

the workload of the ER, enhancing the secretion of folded 
proteins, and eliminating misfolded proteins via autophagy 
and ER-associated protein degradation (ERAD) (Hetz et al. 
2020). The ERs’ physiological activity shears the inter-
progressive relationship between ER stress and fatty acid 
synthesis. Chronic ER stress is also associated with NAFLD 
as it contributes to lipid accumulation, inflammation, and 
hepatocyte apoptosis (Liu et al. 2021).

The UPR acts as an ER stress sensor through vari-
ous major pathways: protein kinase RNA-like ER kinase 
(PERK), eukaryotic translation initiation factor 2α(eIF2α), 
inositol-requiring protein 1 α(IRE1α), X-box binding protein 
1 (XBP1), and activating transcription factor 6α(ATF6) (Xu 
et al. 2021). Both PERK and IRE1α are widely known as 
type I transmembrane proteins with the same ER luminal 
and cytosolic Ser/Thr kinase domains. However, ATF6α is 
a type II transmembrane protein and has a cytosolic cyclic 
AMP response element-binding protein (CREB) ATF with a 
basic leucine zipper domain (Oslowski and Urano 2011). In 
the resting state, an ER chaperone known as immunoglobin 
binding protein (BiP) binds to IRE1α or PERK. This bind-
ing deactivates the ER stress sensors pathway. When the 
ERs are stressed, unfolded or misfolded proteins accumulate. 
BiP binds to these unfolded or misfolded protein peptides, 
thereby deactivating the ER stress sensors pathway. Alterna-
tively, the unfolded proteins bind directly to IRE1α or PERK 
activated after unbinding from BiP (Hetz et al. 2020).

PERK activation results in the phosphorylation of 
eukaryotic translation initiation factor 2α (eIF2α), which 
reduces the general protein translation to relieve the ER 
workload. eIF2α selectively enhances the production of the 
stress-inducible transcription factor, ATF4. It activates to 
express the genes associated with amino acid metabolism, 
antioxidative response, autophagy, and ER protein folding. 
The chronic activation of ATF4 stimulates the expression 
of transcription factor C/EBP homologous protein (CHOP) 
(Li et al. 2018). Usually, CHOP remains dormant; however, 
under persistent stresses such as increased toxins, metabolic 
inhibitors, and nutrient deprivation, CHOP is activated and 
arrests the growth and induction of DNA damage-inducible 
gene 153 (GADD153) (Batchvarova et al. 1995). The over-
expression of CHOP sensitizes hepatocytes to apoptosis by 
promoting ER stress, whereas the opposite was shown with 
decreased CHOP expression. Therefore, decreased CHOP 
levels attenuate ER stress-induced apoptosis in the liver 
(McCullough et al. 2001).

IRE1α contains ribonuclease and kinase domains 
within the cytosolic region. Under ER stress conditions, 
the activation of IRE1α leads to the stimulation of the 
ribonucleolytic activity of itself, resulting in a small intron 
being excised from the XBP1 mRNA (Fig. 2). This pro-
cess is known as non-conventional splicing. This excision/
splicing causes a shift in the translational reading frame, 
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leading to the production of an active XBP1 transcrip-
tion factor, XBP1s. It also upregulates genes related to 
protein folding, translocation, and secretion, as well as 
degradation (Calfon et  al. 2002). Additionally, IRE1α 
exerts its ribonucleolytic activity on mRNAs in the ER 
membrane, encoding specific secretory proteins such as 
proinsulin or IRE1α itself. This process, which reduces 
the abundance of mRNA and the protein folding load, is 
known as regulated IRE1-dependent decay (RIDD) (Deng 
et al. 2013). Under chronic and excessive ER stress, IRE1α 
activates Jun amino-terminal kinase (JNK) and apopto-
sis signal kinase 1 (ASK1) by engaging the adaptor pro-
tein and tumor necrosis factor receptor-associated factor 
2 (TRAF2) (Calfon et al. 2002). JNK phosphorylation 
stimulates proapoptotic Bcl-2 only-like protein 11 (Bim), 
which ultimately induces apoptosis. Studies have shown 
that nuclear factor kappa B (NF-κB) inhibits JNK activa-
tion, preventing the induction of apoptosis in normal cells. 
However, prolonged stress conditions mean that apopto-
sis through JNK activation prevails in the antiapoptotic 
function by NF-κB. Stimulating proapoptotic BH3-only 
proteins transcriptionally or post-transcriptionally leads 
to proapoptotic Bax and Bak stimulation by antagonizing 
antiapoptotic members (Fig. 2) (Hetz et al. 2006).

ATF6 is translocated from the ER to the Golgi apparatus 
under ER stress conditions. In the Golgi apparatus, ATF6 
is split, and a fragment known as the basic leucine zipper 
domain (bZip) transcription factor is released. This tran-
scription factor induces gene expression after being translo-
cated inside the nucleus. Both bZip and XBP1s act similarly 
to the one described above (Lee et al. 2002).

Gα12 overexpression is promoted by ER stress via the 
IRE1-Xbp1 pathway, which subsequently feeds forward an 
ER stress-induced vicious cycle in the hepatocytes. Thus, 
ER stress-induced Gα12 induction may cause hepatocyte 
death, leading to drug-induced liver disease symptoms. This 
process is notable because Gα12 overexpression can initiate 
arachidonate 12-lipoxygenase (ALOX12)-dependent lipid 
peroxide generation via Rho-associated kinase 1 (ROCK1), 
facilitating polyunsaturated fatty acids (PUFA) peroxida-
tion, hepatocyte ferroptosis, and eventually fibrosis (Tak 
et al. 2022). The dysregulation of miR-15a aids in the induc-
tion of ALOX-12. ER stress has also been shown to cause 
liver fibrosis in activated hepatic stellate cells (HSCs), as 
indicated by the significant association between ER stress 
and HSC activation in animal models and patients (Gupta 
et al. 2010). At the molecular level, ER stress-induced dys-
regulation of primary-miR-18a processing leads to SMAD2 

Fig. 2  On the left, chronic 
caloric intake causes TG 
accumulation and then activates 
IRE1α, causing cleavage 
of XBP1 to XBP1s, which 
promotes unfolded protein 
response in early phase. On the 
right during late phase, IRE1α 
activate TRAF2 which activate 
ASK, leading to JNK phos-
phorylation. NF-κB inhibits 
the phosphorylation of JNK. 
Persistent activation of JNK, 
however, leads to Bim activa-
tion, which triggers apoptosis. 
TG triglyceride, IRE1α inositol-
requiring transmembrane 
kinase/endoribonuclease 1α, 
TRAF2 tumor necrosis factor 
receptor-associated factor 2, 
ASK1 apoptosis signal kinase 1, 
NF-κB nuclear factor-κB, JNK 
c-Jun N-terminal kinase, and 
Bim bcl-2-interacting mediator 
of cell death

Chronic caloric intake

XBP1s

UPR target genes

IRE1α 

Bim

TG in ER
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overexpression via the direct phosphorylation of hnRNPA1 
at the Thr51 site by PERK (Koo et al. 2016). In cancer biol-
ogy, sorafenib resistance is attained by ER stress via the 
upregulation of PMK2 by miR-188-5p/hnRNPA2B (Zhou 
et al. 2021).

Collectively, under physiological ER stress levels, the 
UPR sensors are activated to maintain homeostasis, resulting 
in a reduction of protein synthesis, increased protein folding, 
promotion of autophagy, and increased degradation of mis-
folded proteins. However, when the ER stress level exceeds 
the threshold, ER stress-mediated cell death and apoptosis 
are initiated (Hughes and Mallucci 2019).

Insulin resistance

IR is primarily responsible for the pathogenesis of T2D, 
NAFLD, and its more severe form, NASH (Holt et al. 2006). 
The hepatic IR augmented by FFA influx and the overstimu-
lation of pro-inflammatory cytokines and lipid intermediates 
in the liver is explained by the impediment to the phospho-
rylation of insulin receptors (Petito-da-Silva et al. 2019). 
However, the exact mechanism of IR is still debatable and 
is hypothesized on the consequences of following events in 
the body. As per the traditional “two-hit” hypothesis, hepatic 
lipid deposition is secondary to an inactive/desk-bound life-
style, having HFD intake that leads to obesity, and a conse-
quent triggering of IR, which serves as a first fundamental 
hit to sensitize the liver, and subsequently activates inflam-
matory cascades (Rada et al. 2020).

Others

Excessive caloric intake unbalances hepatic physiological 
functioning due to the dysfunction of organelles, which can 
cause a variety of metabolic syndromes, including diabe-
tes, fatty liver disease, and obesity. An electron shift occurs 
between substrates to oxygen, whereby protons are elimi-
nated from the mitochondrial complex and maintain a che-
miosmotic gradient that further boosts ATP production due 
to ATP synthase activity (Li et al. 2000). Recent studies have 
revealed that patatin-like phospholipase domain-containing 
protein 3 (PNPLA3) is associated with central fat accumu-
lation (Trepo et al. 2016). Central fat accumulation also 
releases chronic inflammatory mediators, such as cytokines, 
and disrupts the insulin-glucagon balance (Liu et al. 2020). 
Another recent study has confirmed that phosphorylation of 
the iroquois homeobox gene 3 (IRX3, a protein involved in 
tissue/organ patterning or development) by the JNK leads 
to obesity and macrophage infiltration (Yao et al. 2021). To 
date, it is well established that macrophagic infiltration is 
involved in the progression of NAFLD and liver steatosis 
(Lefere et al. 2020).

The literature has shown that the most commonly used 
mouse models for obesity and NAFLD (Koo et al. 2017). 
HFD-induced obesity and hyperglycemia in animals result 
in elevated levels of Gα13 in skeletal muscle. In addition, a 
new scientific explanation for Gα13 has recently provided 
a new molecular mechanism for diabetes when the liver is 
compromised. In response to hyperglycemic stimuli, the 
challenged liver tissues show a decrease in Gα13 levels in 
both mice and humans. Secretome analysis has revealed 
that a decrease of Gα13 promotes the production of inter-
a-trypsin inhibitor heavy chain 1 (ITIH1) in the liver. The 
circulation of ITIH1 is then associated with IR in peripheral 
tissues, including skeletal muscle and adipose tissue. Mecha-
nistically, the reduced Gα13 levels in hepatocytes activate 
O-GlcNAc transferase induction, which is responsible for 
IR, via the stabilization of ITIH1 and its binding with HA 
(Kim et al. 2019).

The ligands that specifically activate G protein-coupled 
receptor (GPCR) coupling to Gα12 members (the ligands of 
which include sphingosine-1-phosphate (S1P), lysophospha-
tidic acid, angiotensin II (Ang II), thrombin, and endothe-
lin-1) enhance liver fibrosis (Alexander et al. 2021). Of the 
Gα12 members, Gα12 has the potential transforming abil-
ity, cell proliferation, migration, and inflammation (Suzuki 
et al. 2009). Since Gα12 acts through GPCRs, resulting in 
enhanced signaling cascades (Suzuki et al. 2009), changes 
in Gα12 levels amplify or dampen the biological and physi-
ological processes (Okashah et al. 2020). Gα12 overexpres-
sion in activated HSCs promotes liver fibrosis because of the 
downregulation of miR-16 and miR-29a (Huang et al. 2015; 
Kim et al. 2018), which is directly related to JNK-dependent 
ATG12-5 (Kim et al. 2018; Wible et al. 2019). Therefore, 
GPCR substrates, G proteins, and related dysregulation 
of microRNA mediators can all potentially contribute to 
NAFLD, ALD, and liver fibrosis.

In another study, E2 and ERα were found to be mutually 
associated with Gα12 in patients with HCC and their overall 
prognoses. However, ERα expressions were reported to have 
an inverse relationship to Gα12 in cell-based experiments and 
human tissue (Yun et al. 2022). Ligand-mediated activation 
of ERα restrains Gα12 gene transactivation, leading to micro-
RNA-141 and -200a downregulation via the Gα12–RhoA 
axis (Yun et al. 2022) and promotes the amoeboid movement 
of cancer cells. In this paper, Gα12 antagonism by ERα can 
be explained by the gender discrepancy in HCC prognosis.

Roles of liver secretome

In association with the above pathologic factors, recent 
attention was paid to the roles of liver secretory proteins 
in liver disease progression since they play diverse roles in 
regulating fuel metabolism and inflammatory processes in 
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different cells and organs. In this section, we will discuss 
the representative liver secretory proteins associated with 
metabolic and inflammatory liver diseases (Table 1).

Proteins associated with acute phase response proteins 
and proinflammation

Fetuins A and B

Fetuins belong to the cystatin family and protease inhibitors 
and are considered acute phase response proteins (Brown and 
Dziegielewska 1997). Fetuin-A (α2-Heremans-Schmid gly-
coprotein, AHSG, Alpha-2-HS-glycoprotein) is efficiently 
expressed in serum, liver, tongue, and placenta (Denecke 
et al. 2003). Fetuin-B is majorly expressed in the liver, with 
serum concentrations of about 0.01 g/l and 0.3 g/l in humans 
and mice, respectively (Denecke et al. 2003). Fetuin lev-
els were positively related in patients with elevated glucose 
contents, obesity (Peter et al. 2018), NAFLD, and T2D. 
Hence, fetuin was proposed as a potential biomarker for IR 
(Meex et al. 2015). Interestingly, enhanced fetuin-A levels 
were directly related to the loss of hepatic Gα13 and were 
related to chronic inflammation (Kim et al. 2019). Fetuin-A 
and B were also elevated in patients with liver steatosis. In 
contrast, fetuin A was found lowest in the patients with the 
final stage of alcoholic liver cirrhosis as compared to the 
initial stages (Prystupa et al. 2016). The circulating levels 
of fetuin-A were thus directly related to hepatic fat content, 
while both fetuin-A and B positively correlated with glucose 
area under the curve and oral glucose tolerance test results 
(Peter et al. 2018). In the same study and another one, fetuin-
A stimulated IR in association with FFA through  TLR4 (Pal 
et al. 2012; Peter et al. 2018). Fetuin-B is primarily released 
from the hepatocytes, and the levels were also elevated in 
T2D patients; consistently, HepG2 cells treated with fetuin-
B showed enhanced lipid accumulation (Meex et al. 2015; 
Zhou et al. 2019). Mechanistically, fetuin-B decreases the 
phosphorylation of 5’-adenosine monophosphate-activated 
protein kinase (AMPK) (Zhou et al. 2019).

Serum amyloid A-2 protein

Serum amyloid A (SAA) belongs to four homologous alpha-
helical amphipathic proteins encoded at chromosomes 7 and 
11 in mice and humans, respectively. C-reactive proteins 
(CRP) and SAA subtypes are increased > 1000 times in the 
case of inflammation. CRP and SAA are primarily regulated 
by IL-1 and TNF-α in the presence of IL-6. SAA4 is mainly 
expressed in the liver.  Apoe–/– mice fed with a high fat, high 
cholesterol diet (HFHCD) for 12 weeks showed elevated 
levels of SAA by inhibiting liver-specific ATP-citrate lyase. 
HFHCD feeding for 12 weeks resulted in chronic systemic 
inflammation and raised 1.3-fold plasma concentrations of 

SAA (Samsoondar et al. 2017). In another study, enhanced 
SAA levels were reported in obese humans and mice, and 
their respective livers showed elevated SAA2 mRNA lev-
els (Chiba et al. 2009). Similar results were obtained using 
 Apoe−/− mice (Chiba et al. 2009). The loss of hepatic Gα 13 
in mice resulted in elevated ITIH1 and SAA2 levels. Both 
ITIH1 and SAA2 seem to be related to obesity, T2D, and 
NAFLD (Kim et al. 2019).

A number of studies showed a the strong association of 
SSA with the severity of COVID-19, emphasizing its prog-
nostic value for COVID-19 (Goncalves and Sesterheim 
2021; Zinellu et al. 2021). Two meta-analysis studies also 
validated its positive correlation in COVID-19 patients 
(Zhang et al. 2021; Zinellu et al. 2021). Mechanistically, 
one paper described the enhancement of amyloid forma-
tion of SAA in vitro in its nine-residue segment located 
at the C-terminus of the envelope protein of SARS-CoV-2 
(Jana et al. 2021). It remains to be established whether the 
virus-induced upregulation of amyloid formation aggravates 
COVID-19.

Ceruloplasmin

Ceruloplasmin (Cp) belongs to glycoproteins (~ 150 kDa) 
and is primarily produced in the liver; Cp acts as the eighth 
binding atom of copper ions to the apo ceruloplasmin (Wolf 
and Griffiths 1982). Thus, Cp serves as a serum ferroxidase 
and transporter for copper (Wolf and Griffiths 1982). The 
amount of transferrin (FeIII) is a primitive sign to assess 
the iron concentrations in serum. The oxidation of FeII to 
FeIII by serum ferroxidase follows a zero-order reaction, 
and therefore a reduced Cp level lowers iron content in the 
blood (Roeser et al. 1970; Vachette et al. 2002). Studies have 
also shown that inherited Cp loss and low hepcidin serum 
levels lead to aceruloplasminemia (Kono 2012); Acerulo-
plasminemia is associated with diabetes and liver cancer 
because of intrusion in glucose metabolism due to hemo-
chromatosis (iron toxicity) (Niederau et al. 1996; Cairo et al. 
2001). The findings of another study showed that acerulo-
plasminemia is associated with increased iron storage in 
the liver and brain with low serum Cp levels (Loréal et al. 
2002; Finkenstedt et al. 2010). A cohort study including 328 
NAFLD patients showed that Cp gene mutation was related 
to hyper-ferritinemia, liver siderosis, and fibrosis (Corra-
dini et al. 2021). Cp variants-associated hyperferritinemia 
and specific mutation of gene rs61733458 were reported in 
NAFLD patients (Pelucchi et al. 2021). The levels of Cp 
were lower in children with higher NAFLD scores, which 
may be due to the inability of the liver to produce Cp in the 
patients (Nobili et al. 2013). In another study, however, Cp 
levels were increased in the states of mild to severe stea-
tosis (Liu et al. 2022). HFD-fed Gα13 LKO mice showed 
elevated Cp levels (i.e., a 2.2-fold change) (Kim et al. 2019). 
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In addition, copper and Cp showed positive correlations in 
COVID-19 patients (Hackler et al. 2021). In particular, sur-
viving patients exhibited much higher mean serum copper 
and CP levels compared to non-survivors (Hackler et al. 
2021), suggestive of their potential use as prognostic mark-
ers for COVID-19 progression.

Alpha-1-acid glycoprotein-1

Alpha-1-acid glycoprotein (AGP), also known as orsomu-
coid (ORM), is a 44 kDa acute phase response protein and 
is the most abundantly occurring protein. AGP is mainly 
secreted by the hepatocytes, and the consequential human 
serum levels vary between 0.5 and 1.2 g/l (Ceciliani and 
Pocacqua 2007). It exists in two forms, AGP1 and AGP2. 
AGP has anti-inflammatory and immunomodulatory, anti-
neutrophil, and anti-complementary effects in cases of 
inflammation, infection, and tissue grievance; however, the 
exact mechanism involved in this activity is still in debate 
(Ceciliani et  al. 2002). Previously, it was believed that 
cytokines release is the major factor for the elevated expres-
sion of the AGP and its release from the hepatocytes. In 
the study, AGP levels were elevated after treatment with 
phenobarbital. Interestingly, endogenous secretion of IL-1 
and IL-6 does not play a major role in the induction of 
AGP (Gauldie et al. 1987). After asialyation, AGP levels 
were increased in patients suffering from severe liver dis-
eases (Serbource‐Goguel et al. 1983). More than a four-fold 
AGP increase was found in mild steatosis, whereas a sev-
enfold increase was observed in patients with severe stea-
tosis (Liu et al. 2022). Of note, primary hepatocytes from 
HFD-fed Gα13 LKO mice showed enhanced expression of 
AGP1 (Kim et al. 2019), suggesting its association with the 
Gα13/12 signaling pathway. In another study, AGP1 posi-
tively correlated with the percent changes of collagen in the 
liver of NAFLD patients, whereas a negative relationship 
was found with apolipoprotein C-II in the fatty liver (You-
nossi et al. 2017).

Hemopexin

Hemopexin (HPX, 60 kDa) is the plasma glycoprotein with 
heme binding capability. HPX is majorly found in the liver 
and belongs to the acute phase responsive proteins. In the 
case of injury with inflammation, their levels are found to 
be significantly higher (Fiorito and Tolosano 2022). Analy-
sis of 163 patients showed raised hemopexin articulation 
with lymph node ratio, venous invasion, and lymphatic 
invasion (Suzuki et al. 2020). Sickle mice (Hx-null) showed 
increased ROS and stimulation of Toll-like receptor 4 signal-
ing mechanisms as well as cytokines, whereas the adminis-
tration of HPX attenuated inflammatory and macrophage-
activating pathways (Vinchi et al. 2016). The consequences 

of experiments using animal and patient samples exhibited 
reduced levels of hemopexin and decreased neutralized 
heme in patients with acute respiratory distress syndrome, 
burns, or premature infants; however, beneficial outcomes 
were observed after treatment with hemopexin (Lin et al. 
2015).

The results of another study show that long-term suba-
rachnoid hemorrhage is the primitive culprit for the cyto-
toxicity of heme and lower levels of HPX (Garland et al. 
2016). HPX was elevated in patients with HCC, compared 
to those with either cirrhosis without HCC or fibrosis, and 
healthy volunteer groups (Debruyne et al. 2010). A mouse 
model with hemorrhagic shock was protected by treatment 
with either haptoglobin or hemopexin. Moreover, these treat-
ments protect the kidney from injury associated with a high 
level of plasma hemoglobin (Graw et al. 2016).

Binding carrier of hormones or lipids

Retinol binding protein 4

Retinol-binding protein 4 (RBP4) is a polypeptide chain hav-
ing a molecular weight of 21 kD and belongs to the lipocalin 
family. RBP4, majorly produced in the liver, acts as a serum 
carrier protein for vitamin A transport. Patients suffering 
from obesity or those with impaired glucose metabolism, IR 
(Graham et al. 2006; Haider et al. 2007), and T2D (Graham 
et al. 2006; Wu et al. 2008) showed elevated serum RBP4 
levels, whereas this change was reversed with diet-associated 
weight loss, bariatric surgery, and exercise (Haider et al. 
2007). However, in the case of NAFLD, some study results 
showed direct relation of RBP4 to NAFLD (Zhong et al. 
2019), but others did an inverse relationship of RBP4 with 
NAFLD (Nobili et al. 2009; Wang et al. 2020). RBP4 leads 
to the activation of pro-inflammatory cytokines in mice and 
humans and interrupts insulin signaling by the stimulation 
of JNK and TLR4 molecular pathways (Norseen et al. 2012). 
Adipose-Glut4−/− mice showed a 2.5-fold increase in serum 
concentration of RBP4 compared to the control. The result-
ant increase of RBP4 activates hepatic expression of a glu-
coneogenic enzyme (i.e., phosphoenolpyruvate carboxykin-
ase), disturbing muscle insulin signaling (Yang et al. 2005).

Precursors of receptor ligands or hormones

Angiopoietin-like proteins

Angiopoietin-like proteins (ANGPTLs), highly hydropho-
bic paracrine factors, are ramified into eight members. Of 
them, ANGPTL 1–7 share structural resemblance and serve 
as ligands for Tie receptors (TieI or Tie1) (Oike et al. 2003). 
ANGPTLs are majorly expressed in various organs, such 
as the liver, kidneys, vascular system, and hematopoietic 
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system, and are involved in the regulation of angiogenesis, 
inflammation, and lipid metabolism (Tabata et al. 2009; 
Chen et al. 2016). Studies have proved that ANGPTL 1 and 2 
were related to hepatocellular carcinomas (Chen et al. 2016; 
Carbone et al. 2018). In addition, ANGPTLs are found to 
have a regulatory impact on lipid metabolism and angiogen-
esis, being considered therapeutic candidates for metabolic 
syndrome (Li and Teng 2014). Serum ANGPTL4 levels 
were raised in obese patients with or without T2D; corre-
spondingly, the levels of ANGPTL3 were decreased respec-
tively (Cinkajzlová et al. 2018). Both ANGPTL 3 and 4 are 
highly expressed in the liver, whereas ANGPTL4 hepatic 
expression is 10% of the adipose tissue (Koishi et al. 2002; 
Romeo et al. 2009). ANGPTL4 is also known as hepatic 
fibrinogen/angiopoietin-related protein. Studies have proven 
that the deletion of ANGTL4 in mice and its mutational 
loss in patients leads to decreased triglycerides and elevated 
high-density lipoproteins levels via inhibition of lipopro-
tein lipase activity, protecting patients against obesity, T2D, 
NAFLD, and steatosis (Romeo et al. 2007, 2009; Singh 
et al. 2021; Spitler et al. 2021). Physiologically ANGPTL4 
expression is raised because of fasting, cold, exercise, and 
fatty acid-activated peroxisome proliferator-activated recep-
tors (Lichtenstein et al. 2010). In another study, ANGPTL4 
significantly diminished foam cell formation, inflammatory 
gene expression, and ER stress (Lichtenstein et al. 2010). 
A study focused on the effect of ANGPTL6 (also known 
as an angiopoietin-related growth factor) against obesity 
and IR reveals that  ANGPTL6−/− mice showed a significant 
increase in the body weight leading to obesity on a normal 
chow diet. Interestingly, loss of ANGPTL6 raised the rectal 
temperature, basal metabolic rate, and food intake, conse-
quently raising serum cholesterol and TAG levels. Further-
more, mice have developed IR with elevated glucose levels 
(Oike et al. 2005). ANGPTL6 serum levels were found to 
be raised in T2D and NAFLD patients (Oike et al. 2005; 
Ebert et al. 2009; Ma et al. 2019). ANGPTL8/betatrophin 
is commonly named as HCC-associated protein, TD26, or 
lipasin, and is found majorly in the liver and visceral adipose 
tissue. Elevated ANGPTL8 levels were reported in human 
liver steatosis and enhanced TAG levels in plasma (von 
Loeffelholz et al. 2017; Wang et al. 2018). TD26 mechanis-
tically binds with the nuclear form of SREBP1, leading to 
elevated lipid production and tumor cell proliferation (Wang 
et al. 2018). ANGPTL8, in combination with ANGPTL3, 
acts as an inhibitor of lipoprotein lipase (Kovrov et al. 2019).

Fibroblast growth factors (FGF families)

Armelin (1973) and Gospodarowicz (1975) were the sci-
entists who introduced the world to fibroblast growth fac-
tors (FGFs). Up till now, four members of the family have 
been discovered, which undergo alternative splicing and 

yield seven functionally distinct receptors (i.e., FGFRs 1b, 
1c, 2b, 2c, 3b, 3c, and 4) with distinct ligand binding prop-
erties. The FGF family has been found to regulate energy 
metabolism (Ornitz and Itoh 2022). FGFR subfamilies are 
responsible for the release of 18 FGFs that are capable of 
interacting with the tyrosine kinase with the help of various 
cofactors (Schumacher and Guo 2016). Canonical FGFs are 
also paracrine FGFs which mainly exert their functions by 
binding with heparin. FGF19 and its subunits, i.e., FGF19, 
FGF21, and FGF23, interact with α-klotho, resulting in its 
endocrine function (Goetz et al. 2007; Ornitz and Itoh 2015; 
Yanucil et al. 2022). These three members are involved in 
endocrine functions and thus regulate bile acid, carbohy-
drate, lipid metabolism, cell proliferation, differentiation, 
and survival (Ornitz and Itoh 2015).

The study conducted using bile duct ligation (BDL) in 
wild-type, and  Mdr−/− mice followed by treatment with 
FGFR1 antagonist (AZD4547) leads to reduced FGF1 
and miR-16, resulting in a protective effect against BDL-
induced hepatic fibrosis, biliary proliferation, and inflam-
mation (O’Brien et al. 2022). FGF2 is of two types; one is 
a low molecular weight FGF2, whereas the other is a high 
molecular weight form. Administration of low molecular 
weight FGF2 in  CCl4-induced fibrotic mice led to the down-
regulation of Delta-like 1 via the p38 mitogen-activated pro-
tein kinase pathway, showing ameliorative effects against 
fibrosis (Pan et al. 2015). In another study, FGF2 treatment 
of mice with BDL triggers cytoglobin activation inhibits 
myofibroblastic human HSCs and ameliorates liver fibro-
sis (Sato-Matsubara et al. 2017). FGF via FGF receptor 4 
(FGFr4) modulates signal transduction between Wnt16 and 
Dlc, activating notch signaling and leading to hepatocellular 
carcinoma by initiating niche formation (Lee et al. 2014). 
FGF19, FGF21, and FGF23, the members of FGF19, are 
highly expressed in the liver. These ligands are found to 
regulate the bile acid (BA), fatty acid, glucose, and phos-
phate metabolism via binding with βKlotho homologous 
single-pass transmembrane proteins and stimulate FGFr4 
(Kurosu et al. 2007). Serum FGF19 and bile acid concen-
trations were found to be raised in NASH subjects, although 
adiponectin levels were significantly lowered (Bechmann 
et al. 2013). It has also been shown that decreased FGF19 
and BA concentrations were associated with impaired FXR 
and FGFr4 signaling (Jiao et al. 2018) (Table 1). Recently, a 
randomized control study was performed in NAFLD patients 
with a score of 4 or higher, stage 1–3 fibrosis, and at least 
8% liver fat content and the patients were treated with the 
analog of FGF19 at the dose of 3 or 6 mg for twelve weeks, 
which led to decreased hepatic fat contents (Harrison et al. 
2018). ER stress caused elevated levels of βKlotho and 
FGF19 in the sera of patients with HCC (Miura et al. 2012). 
FGF21 and its analogs activated liver FA oxidation, signifi-
cantly reducing fat buildup in the liver and improving IR. 
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In addition, the treatments resulted in enhanced levels of 
adiponectin and exhibited insulin-sensitizing, anti-fibrotic, 
anti-inflammatory, and anti-steatosis effects (Zarei et al. 
2020). CYP2E1 level may be important in FGF21 expres-
sion; a deficiency of CYP2E1 is necessary for the activation 
of the PPARα-FGF21 axis and is effective in the reduction 
of obesity (Zhang et al. 2022).

Pigment epithelium-derived factor

Pigment epithelium-derived factor (PEDF) is an endog-
enous glycoprotein belonging to the serine protease inhibi-
tor family, released by the adipocytes, retinal epithelial pig-
ment, hepatocytes, and skeletal myocytes. It also contains 
an extracellular matrix binding protein site (Uehara et al. 
2004; Fitzgerald et al. 2012). PEDF is a regulator of angio-
genesis inhibition, immunomodulation, and neurotrophic 
and has antioxidant activity, antivasopermeability, and 
anti-tumor activity (Kawaguchi et al. 2010). Studies using 
human primary melanocytes, as well as an in vivo model, 
showed higher levels of PEDF and microphthalmia-associ-
ated transcription factor expression (Fernández-Barral et al. 
2014). PEDF increased the proliferation of breast cancer 
cells embedded in the mouse brain (Fitzgerald et al. 2012). 
PEDF was negatively associated with hepatic metastasis in 
patients with stage II (Uehara et al. 2004) (Table 1). Over-
expression of PEDF stimulates NaAsO2-induced apoptosis 
with an increase of p53 (Zhang et al. 2019). PEDF knockout 
mice showed elevated expression of the genes related to the 
Wnt/βcatenin pathway (Protiva et al. 2015). Moreover, the 
levels of PEDF were significantly enhanced in T2D patients 
with chronic kidney diseases (Hui et al. 2014).

Hepassocin

Hepassocin (HPS) is known as a hepatocyte-derived fibrin-
ogen-related protein (HFREP-1) and is a liver-specific gene 
involved in hepatic regeneration (Ou et al. 2017). HPS/liver 
fibrinogen-related gene-1 expressions were reduced in HCC 
patients and mice treated with streptozotocin (Ou et al. 2017). 
The results of another study show that HNF1a interacts with 
IL-6/IL-6R/STAT3 trajectory and upregulates the HPS pro-
moter transcriptional factors, resulting in the upholding of 
homeostases such as growth and repair, like the IGFBP-1, 
G6Pase, and a-fibrinogen promoters (Yu et al. 2009). The 
study design included patients with T2D (Group I), NAFLD 
(Group II), and both (Group III). The serum analysis revealed a 
significantly higher concentration of HPS in group III patients 
compared to groups I and II (Abdelmoemen et al. 2019). 
Another study, including 199 patients with NAFLD, showed 
higher levels of HPS compared to the control, and similar 
results were also observed in mice fed with HFD. However, 
the HPS knock-down mice produced by using short hairpin 

RNAs targeting HPS showed recovery from the steatosis with 
decreased NAFLD activity score. Mechanistically, overexpres-
sion of HPS in HepG2 cells leads to fat accumulation by mod-
ulating the extracellular signal-regulated kinase 1/2 (ERK1/2)-
dependent pathway (Wu et al. 2013). Palmitate-induced ER 
stress in primary hepatocytes showed dose-dependent increase 
of HPS via stimulation of C/EBPβ-mediated transcriptional 
factor (Jung et al. 2018; Watt et al. 2019).

Angiotensinogen

Hypertension is one of the most prevalent contributors to 
worldwide disease and socioeconomic burden with poor 
understanding (Brouwers et al. 2021). Various organs (i.e., 
kidneys, heart, liver, vessels, and immune cells) were found 
to be involved in the development and aggravation of hyper-
tension under several mechanisms, such as oxidative stress 
and inflammation, obesity, and diabetes (Hossain et al. 
2007).

ER stress is the primitive culprit in cardiovascular dis-
eases because of its regulatory characteristics in vascular 
cell phenotype, dedifferentiation, calcification, and apop-
totic mechanisms leading to hypertension and atheroscle-
rosis (Furmanik and Shanahan 2017). ER stress leads to 
cardiovascular dysfunction and tissue damage (Furmanik 
and Shanahan 2017). The result of the study validates that 
reduction/inhibition of ER stress results in the amelioration 
of hypertension by protecting vascular dysfunction (Carlisle 
et al. 2016), cardiac impairment, and pulmonary hyperten-
sion (Spitler et al. 2013). SIRT 3 acts as a regulator of enzy-
matic antioxidant activity in mitochondria. The results of 
studies show that sirtuin 3 (SIRT 3) expression gets reduced 
in older age (i.e., > 65 years) with resultant hypertension and 
that metabolic diseases are also responsible for the declined/
inactivity due to elevated NADH and acetyl-CoA intensities 
(Dikalova et al. 2017). SIRT 3 knockout mice experienced 
hypertension. Diminished SIRT 3 expressions because of 
hyperacetylation consequently result in oxidative stress in 
mitochondria (Dikalova et al. 2017). Recent studies specifi-
cally focused on mitochondrial interference for hypertension 
management (Miller Jr 2020). Administration of MitoQ10, 
a mitochondrial-specific antioxidant, controlled elevated 
blood pressure in rats by improving endothelial function 
and decreasing hypertrophy (Graham et al. 2009). In another 
study, hepatic loss of Gα13 leads to increased expressions of 
angiotensinogen (2.583-folds) (Kim et al. 2019).

Coagulation factors and proinflammatory mediators

Plasma protease C1 inhibitors (C1 INH)

C1 INH is an acute-phase protein known as a protease 
inhibitor primarily expressed in the liver. It belongs to the 
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serine protease inhibitor family with a molecular weight of 
105 kDa. Its physiological functions in plasma include the 
superintendence of various proteolytic functions such as the 
complement, coagulation, and fibrinolytic pathways (Davis 
III 1988). Pathogenesis of various diseases shares a common 
feature of stimulating the complement system in plasma, 
and the resultant proinflammatory effects produce vasoactive 
peptides such as C3a, C5a (anaphylaxis), and bradykinin. 
The deficiency of C1 INH causes a major hereditary disease 
named hereditary angioedema (Ivanov et al. 2019; Karnauk-
hova, 2022). The anticipated ratio of hereditary angioedema 
pervasiveness is 1 out of 50,000 persons without any distin-
guishable ethnic differences, while untreated patients experi-
ence severe attacks (Zuraw 2008).

Mechanistically, when FXII triggers and brings con-
formational changes during its interaction with negatively 
associated surfaces, leading to the production of activated 
form FXII (FXIIa). The resultant product (FXIIa) converts 
plasma prekallikrein to plasma kallikrein, which stimu-
lates FXII, causing a positive feedback loop of FXII acti-
vation and producing bradykinin via breaking down the 
high molecular weight kininogen (Müller and Renné 2008). 
Bradykinin further initiates inflammatory pathways, which 
leads to enhanced vascular permeability, vasodilation, and 
chemotaxis of neutrophils. Moreover, FXIIa also activates 
coagulation pathways by converting FXI into FXIa, which 
activates the  Ca+2-associated proteolytic cleavage and results 
in thrombin production, fibrin, and fibrin clot formation 
(Leeb-Lundberg et al. 2005).

C1 INH is a primitive inhibitor of various complement 
proteases such as C1r, C1s, and mannose-binding lec-
tin–associated serine protease (MASP1 and 2), plasma kal-
likrein, and coagulation factor XIa and XIIa (Zuraw 2008). 
Studies also strengthen the concept that excessive bradykinin 
production is directly related to the genetic deficiency of C1 
INH (Oschatz et al. 2011). C1 INH-deficient patients are 
classified as HAE type I, whereas patients with dysfunc-
tional C1 INH protein with normal C1 INH plasma antigen 
levels are considered HAE type II (Bl 2008). C1 INH gains 
much attention in COVID-19 treatment because systemic 
complement stimulation and local complement-triggering 
effect lead to a severe acute respiratory syndrome, resulting 
in hyperinflammation and thrombosis (Afzali et al. 2022, 
van de Veerdonk et al. 2022). C1 INH and α2 M levels were 
reduced in patients with COVID 19, where as the levels of 
ITIH4 were raised (Medjeral-Thomas et al. 2021).

Recently, a significant reduction in levels of C1 INH 
in COVID-19 patients was reported in several studies 
(Demichev et al. 2021b). Hence, C1 INH gains much atten-
tion in COVID-19 treatment due to its potential inhibitory 
activity against SARS-CoV-2-induced hyperinflammation 
and hypercoagulation (Afzali et al. 2022, van de Veerdonk 
et al. 2022). Based on these, its therapeutic applicability to 

alleviate the severity of COVID-19 pathogenesis, as medi-
ated by the reversal of SARS-CoV-2-induced proinflamma-
tory and prothrombic events, was proposed by researchers 
(Thomson et al. 2020; Adesanya et al. 2021). Recent ongo-
ing clinical trials will ultimately evaluate the use of C1 INH 
treatment for COVID-19 patients (Mansour et al. 2021).

Abnormal activation of the complement system leads to 
increased liver damage, resulting in aggravation of hepatic 
steatosis and ischemic reperfusion hepatic injury with fatty 
liver (Wlazlo et al. 2013). The results of NAFLD patients 
with obesity show that C1 INH levels were found to be 
decreased in patients with steatosis and NASH (Subudhi 
et  al. 2022). Interestingly, the results of a recent study 
reported that the hepatic loss of Gα13 showed 3.2-fold 
increased secretion of C1 INH in HFD-fed primary hepato-
cytes (Kim et al. 2019). Intravitreal injection of C1 INH in 
streptozotocin-induced diabetic rats significantly reduced 
the retinal vascular permeability by inhibiting the plasma 
kallikrein (Clermont et al. 2011). The exact role of C1 INH 
in NAFLD and diabetes is still in debate and is an undis-
covered area.

Xanthine oxidase/dehydrogenase

Xanthine oxidase and dehydrogenase are interchangeable 
forms of the same enzyme, xanthine oxidoreductase (Pacher 
et al. 2006). XO mainly regulates the deprivation of purines 
into uric acid, during which it produces two moles of super-
oxide and one mole of  H2O2 (Furuhashi 2020). SLC2A9 
gene in GLUT-9 knockout mice experienced elevated urea 
levels, blood pressure, dyslipidemia, and whole body fat, 
whereas the administration of xanthine oxidase inhibitor 
results in recovery of all the above-mentioned parameters 
(DeBosch et al. 2014). Another study showed that elevated 
levels of xanthine oxidase were responsible for IR and high 
sensitivity-C-reactive protein levels in adults (Washio et al. 
2017). Increased plasma XO was reported in CDAHFD-
induced mice with NASH and was involved in vascular 
injury in NAFLD/NASH mice (Kawachi et al. 2021). XO 
expression was raised and reported in primary hepatocytes 
of Gα13 LKO mice (Kim et al. 2019).

Mannose-binding protein C

Mannose-binding protein (MBP), also known as mannose-
binding lectin, can interact with high-density sugar existing 
on the surface of bacteria, fungi, and parasites, stimulating 
the antibody-independent complement system (Ikeda et al. 
1987). MBP is produced in the liver and is of two types 
MBP-A and MBP-C (Drickamer et al. 1986). Complement 
fixation activated by the serine protease, such as MBP-asso-
ciated serine protease-2 (MASP-2), cleaves and downregu-
lates the complement system (Thiel et al. 1997). The study 
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results show that the MBL-activated complement system 
aggravates tissue damage, such as the thromboembolic sys-
tem in COVID-19 patients (Asselta et al. 2022), showing 
that the MBL-activated complement system aggravates tis-
sue damage in COVID-19 patients (Asselta et al. 2022).

Structural proteins in association with ECM

Inter-α-trypsin inhibitor heavy chain

Inter-α-inhibitors (IαI), commonly known as inter-α-trypsin 
inhibitors, are protein-glycosaminoglycan-protein com-
plexes, acute phase response proteins, and have relative con-
centrations ranging from 150 to 500 µg/l in human plasma 
(Zhuo et al. 2004). IαI consist of light chains, bikunin, and 
heavy chains (H1-H5) combined with the chondroitin sulfate 
chain (Saguchi et al. 1996; Hamm et al. 2008). Two heavy 
chains (H1 and H2) are the predominant bikunin form, and 
a single bikunin and pre-α-inhibitor (H3) are present in the 
blood. The anti-proteolytical activity of IαI belong to the 
bikunin (Saguchi et al. 1996; Zhuo et al. 2004). HFD fed 
to triple transgenic Alzheimer’s disease showed a 1.54-fold 
increase in the ITIH1 level and also elevated ITIH2 posi-
tively correlated with the disease progression (Wang et al. 
2021). Reduced expression (70%) of ITIH2 was reported 
in breast cancer patients (Hamm et al. 2008). The results 
showed that the genetic loss of Ambp/bikunin, required for 
the activation of ITIH1, ITIH3, and ITIH4, leads to the mood 
alternation in the mice by the loss of ITIH1/ITIH3, whereas 
ITIH4 deficiency had no effect on the moods and behavior 
disorder in mice (Goulding et al. 2019). The cluster analysis 
of uterine LPS-primed mice fed on HFD showed reduced 
expressions of ITIH1 and ITIH2 (Manuel et al. 2019).

The hepatic Gα13 knockout mice showed a 2.7-fold 
increase in ITIH1, and ITIH1 was overexpressed in mice 
with diabetes and NAFLD with hyperglycemia. However, 
ITIH4 levels were reduced (Kim et al. 2019). The results 
of GWAS analysis found that ITIH3/ITIH1 genes were 
directly related to brain health; higher levels would cause 
more damage to the brain tissue (Gadd et al. 2022). Propro-
tein convertase subtilisin/kexin type 9 (PCSK9) has shown 
interaction with high-density lipoproteins in coronary artery 
disease, and interestingly, crosslinking mass spectrometry 
analysis identifies the interaction of PCSK9 with ITIH1 
(hyaluronan binder) and apoA1 in immunoHDL (Burnap 
et al. 2021).

A recent study shows that ITIH4, after cleavage, forms a 
noncovalent inhibitory complex and acts as a protease that 
is dependent on the ITIH4 von Willebrand factor A domain. 
ITIH4 impedes mannan-binding lectin–associated serine 
protease (MASP) 1 and 2 and kallikrein. ITIH4 and MASP 
complex downregulate the breaking of C2 and C4 by inhibit-
ing the contact of scissile bonds to the active binding site, 

leading to acting as protease inhibitors (Pihl et al. 2021). 
Astonishingly, results were observed in proteomics analysis 
of COVID-19 patients in which expressions of acute phase 
proteins ITIH1, ITIH3, and ITIH4 were downregulated 
(Demichev et al. 2021a); however, another study showed 
overexpressed ITIH1 and ITIH2, whereas ITIH4 was down-
regulated in COVID-19 patients (Geyer et al. 2021).

Recently, proteomics analysis of COVID-19 patients’ 
sera confirmed the association of poor prognosis with low 
levels of ITIH2 (Demichev et al. 2021a). Interestingly, the 
same family member proteins, ITIH3 and ITIH4, were found 
to be reduced in older patients with COVID-19 (Demichev 
et al. 2021b). In separate survival analyses, levels of ITIH4 
increased in patients who failed to survive. This data agrees 
with a lower abundance of ITIH3 and ITIH4 in the non-
survivors and a higher abundance of ITIH1 and ITIH2 in the 
survivor group (Völlmy et al. 2021). Since ITIH4 was shown 
to act as a protease inhibitor for mannan-binding lectin-asso-
ciated serine protease-1 (MASP-1), MASP-2, and plasma 
kallikrein, ITIH4 may be utilized as a therapeutic target to 
prevent SARS-CoV-2-induced hyperinflammation, which 
depends on the complement and kinin-kallikrein pathways.

Summary

The consumption of excess fat and the resultant accompa-
nying lipotoxicity, autophagy dysregulation, ER stress, and 
insulin resistance may cause disturbances in the secretion 
and modifications of the proteins and their interactions with 
other proteins and/or structures. This ultimately leads to 
cell death mechanisms. This article attempted to provide an 
updated overview of liver secretome biology with explana-
tory mechanisms with regard to metabolic liver diseases so 
that it may be of help in treating patients and overcoming 
the economic burden.
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