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Introduction

The primary Transient Receptor Potential (TRP) protein 
was initially discovered in the experiment of aberrant visual 
transduction of Drosophila melanogaster (Cosens and Man-
ning 1969). TRP channels (TRPs) feasibly form tetramers, a 
six-transmembrane domain structure with a cation-perme-
able pore loop between the fifth and sixth transmembrane 
domains (Hofmann et al. 2017). It is worth noting that there 
are differential expressions of TRPs in many tissues and 
cells and that TRPs show functional diversity and different 
pathological characters (Zhu et al. 2011). So far, the TRPs 
superfamily in mammalian is composed of 28 nonselective 
cation channels, and consists of several subfamilies: TRPC 
(canonical), TRPM (melastatin), TRPA (ankyrin), TRPV 
(vanilloid), TRPML (mucolipin), and TRPP (polycystin) 
(Zhu et al. 2011; Zheng 2013; Minard et al. 2018). The 
TRPC channels (TRPCs) family is the closest homolog to 
Drosophila TRP channels (Zheng 2013; Li 2017).

TRPCs are nonselective  (Ca2+,  K+,  Na+) and high cal-
cium permeability cationic channels. They are extensively 
expressed in many cells and tissues, including the lung, 
heart, brain, placenta, adrenal gland, retinal endothelial, 
testis, and kidney; they play crucial roles in many human 
physiological and pathological processes and are involved 
in various pathogenesis (Tai et al. 2017; Li et al. 2019b). 
TRPCs are activated by various chemical and physical stim-
uli through the phospholipase C (PLC) signaling pathway. 
For instance, TRPC1/4/5 homotetramers and heterotetram-
ers channels are activated by Gq protein-coupled PLC and 
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phosphatidylinositol 4,5-bi-sphosphate (PIP2) hydroly-
sis. This process generates inositol triphosphate (IP3) that 
binds to the endoplasmic reticulum IP3 receptor increasing 
extracellular  Ca2+ entry called store-operated calcium entry 
(SOCE). Also, TRPC3/6/7 channels are unique in being 
directly activated by diacylglycerol (DAG), a degradation 
product of PIP2, which is known as receptor-operated cal-
cium entry (ROCE) (Minke and Cook 2002; Jeon et al. 2012; 
Zheng 2013; Li et al. 2019b).

The present review focuses on the classification, struc-
tures, and function of TRPCs, as well as TRPCs modulators 
and their desired therapeutic effects, highlighting examples 
and opportunities for the application of TRPCs modulators 
in the pathology of various diseases.

Classification of TRPCs

TRPs were discovered in 1969 when the founding mem-
ber of this superfamily was studying the D. melanogaster 
visual nerve transduction system (Cosens and Manning 
1969). However, it was not until 1975 that the channels were 
named (Minke et al. 1975). Since the detection of TRPs, 
TRPC1 was the first human homolog of TRPs reported in 
1995, but no further study for its functionality had been con-
ducted yet (Wes et al. 1995). Over the following 3 years, five 
more novel related mammalian homologs (TRPC2-6) were 
detected, in addition to the functional expression of TRPC1 
and TRPC3 and the cloning and function of TRPC5 on the 
store- or receptor-operated  Ca2+ entry (Zhu et al. 1996; Bou-
lay et al. 1997; Okada et al. 1998). Additionally, another 
novel  Ca2+ channel protein, TRPC7, was reported (Nag-
amine et al. 1998). At present, and considering the sequence 
homology, the seven mammalian TRPC subfamily members 
are subdivided into three subgroups: TRPC1/4/5, TRPC2, 
and TRPC3/6/7 (Zhu et al. 1995). Since human TRPC2 is 
most likely a pseudogene (Wissenbach et al. 1998), this 
review focuses on investigating TRPC1/4/5 and TRPC3/6/7 
channels.

Structure of TRPCs

Ions channels modulate the flow of ions through the plasma 
membrane through temperature, chemical signals, electrical 
signals, or mechanical signals. Determining the channels’ 
structure is crucial to understanding their molecular mecha-
nisms (Moiseenkova-Bell and Wensel 2011). Along with the 
tremendous advancement of the electron cryo-microscopy 
(cryo-EM) technology, high-resolution structures have 
become an increasingly dominant method for determining 
the structure of many receptor complexes (Egelman 2016). 
This technological advancement has resulted in a revolution 

in the mammalian respiratory complex I structure (Agip 
et al. 2019). In the last few decades, the atomic models of 
macromolecular complexes were determined by X-ray crys-
tallography (Egelman 2016). It was not until 2018 that the 
high-resolution structure of TRPCs was revealed (Li et al. 
2019a). Compared with classical X-ray crystallography, 
cryo-EM technology does not need to crystallize or diffract 
the protein/protein complex, and only uses a small number 
of samples. Owing to this advancing technology, membrane 
proteins’ structure determination has become convenient, 
particularly for various ion channels (Li et al. 2019a; Wang 
et al. 2020a).

The current TRPCs structures reported had TRPC3, 
TRPC4, TRPC5, and TRPC6 channels (Fan et al. 2018; 
Duan et al. 2018, 2019; Azumaya et al. 2018; Vinayagam 
et al. 2018; Tang et al. 2018). The overall resolution of 
TRPCs in these reports is exceptionally similar, and they 
all showed that TRPCs are tetramer structures composed 
of homologous or heterologous monomers that contain six 
transmembrane spanning domains (Duan et al. 2018, 2019).

Many experiments showed that TRPC5 was closely 
related to TRPC4, with a 65% sequence identity (Duan et al. 
2018). Mice TRPC4 and TRPC5 carry out protein purifica-
tion (pH 7.5); then, they are used for the single-particle cryo-
EM analysis of the overall resolution of 3.3 Å and 2.8 Å in 
its unliganded (apo) state, respectively. TRPC4 poor densi-
ties are due to disordered regions; it consists of 4 residues in 
the S1-S2 loop, 2 residues in the S3-S4 loop, 27 residues in 
the distal N terminus, and 28 residues in the truncated distal 
C terminus, whereas TRPC5 is composed of 7 residues in 
the S1-S2 loop, 28 residues in the distal N terminus, and 
3 residues in the truncated distal C terminus (Duan et al. 
2018, 2019). The TRPC4 and TRPC5 structures are formed 
by a four-fold symmetric homotetramer with dimensions of 
100 Å by 100 Å by 120 Å. Each of the four monomers con-
sists of a unique compact cytosolic domain and a transmem-
brane domain (TMD), distinguishing it from other TRPs. 
The cytosolic domain is divided into two subdomains: the 
N terminus region with four ankyrin repeats domain of AR1 
to AR4 and seven α-helices domains of H1 to H7 and the 
C terminus region with a connecting helix and a coiled-coil 
domain. The TMD is composed of six helices (S1 to S6), a 
TRP domain, and several small helices (Duan et al. 2018, 
2019). In the TRPC4 and TRPC5 channels, the extracellular 
third transmembrane helix S3 region is made up of four heli-
cal turns, limiting potential extracellular interactions (Duan 
et al. 2019).

Compared with TRPC4 and TRPC5 channels, the extra-
cellular S3 region in the TRPC3 and TRPC6 channels is 
a unique transmembrane domain that is remarkably long, 
constituting an extracellular region that can be used as a 
sensor of external stimuli (Fan et al. 2018; Duan et al. 2019). 
In the stable closed state, single-particle cryo-EM analyses 



356 Y.-Y. Gao et al.

1 3

revealed human TRPC6 (hTRPC6) channel with a newly 
identified high-affinity inhibitor [2-(benzo[d] [1, 3] dioxol-5-
ylamino) thiazol-4-yl] [(3S, 5R)-3, 5-dimethylpiperidin-1-y-
l] methanone (BTDM), which has an overall resolution of 
3.8 Å; it also revealed human TRPC3 (hTRPC3) channel 
with a lipid-activator OAG of 4.4 Å resolution. The hTRPC3 
and hTRPC6 channels tetramer possesses dimensions of 75 
by 75 by 150 Å3. The TRPC3 channel has four elbow-like 
membranes prior to the first transmembrane helix, while the 
TRPC6 channel has only three. The TRP helix is perpen-
dicular to the pore-lining S6, and the hTRPC6 intracellular 
cytoplasmic domain presents an inverted bell shape whose 
top is below the ion channel pore of TMD (Fan et al. 2018; 
Tang et al. 2018). The truncation of the N terminus 71 amino 
acids is dispensable for the hTRPC6 assembly and gating, 
and the amino acids of TRPC6 cytoplasmic C terminus fold 
into two long helices (Tang et al. 2018). Novel electron cryo-
EM technology provides a structural basis for the function 
and gating mechanisms of TRPCs.

TRPCs and diseases

TRPCs are expressed in many cells and tissues and have 
been reported to be involved in the development and pro-
gression of various diseases, including cancers, kidney dis-
eases, cardiovascular and nervous system diseases (Hwang 
et al. 2013; Sukumaran et al. 2017; Dryer et al. 2019; Falcon 
et al. 2020).

Cardiovascular diseases

Ca2+ plays a crucial role in maintaining physiological 
functions in the cardiovascular system, including dias-
tolic cardiac function, cardiac contractility, and hemody-
namic change (Tai et al. 2017; Wu et al. 2019). Several 
studies showed that TRPCs participate in cardiovascular 
system disease progression (Kitajima et al. 2016; Zhang 
et al. 2018b; Falcon et al. 2020). Wu et al. found that  Ca2+ 
influx is increased in the hypertrophic myocytes of adult 
wild-type mice, while this phenomenon is not observed in 
the myocytes of dominant-negative (dn) TRPC3/4/6 adult 
mice (Wu et al. 2010). Additionally, the activity of the 
calcineurin-nuclear factor of activated T cells (NFAT) sig-
nificantly decreases in dnTRPC3/4/6 mice (Wu et al. 2010). 
Over-expression of TRPCs could stimulate the activation 
of NFAT, which accelerates TRPCs expression through 
a positive feedback mechanism. The activation of this 
mechanism could contribute to the development of cardiac 
hypertrophy and hypertension (Watanabe et al. 2008; Wu 
et al. 2010). A previous study found that TRPC3 can form 
a complex with A2R and PDE1C, and PDE1C is activated 

by TRPC3-invoked  Ca2+, thereby facilitating cardiomyocyte 
apoptosis (Zhang et al. 2018b). Remarkably, a background 
 Ca2+ entry pathway mediated by TRPC1/C4 can regulate 
 Ca2+ cycling in cardiomyocytes. However, the pathological 
cardiac remodeling development is attenuated in transverse 
aortic constriction-induced TRPC1/4 double knockout mice 
(Camacho Londoño et al. 2015).

Cancers

TRPCs play a relevant role in the progression of different 
types of cancers, such as colorectal cancer, lung cancer, 
breast carcinoma, gastric cancer, renal cell carcinoma, hepa-
tocellular carcinoma, and more (Wang et al. 2015b, 2018a; 
Jardin et al. 2018). Multiple studies provided evidence that 
the homeostasis of intracellular  Ca2+ is disrupted in cancer 
cells and that the turbulence of  Ca2+ signaling is concerned 
with tumor proliferation, migration, and invasion contrib-
uting to the overall tumor progression (Yang et al. 2009; 
Wang et al. 2015b; Jardin et al. 2018). One study reported 
that Trpc5-siRNA inhibits the Wnt/β-catenin signal pathway, 
reduces ABCA1 induction, and causes a prominent reversal 
resistance of 5-fluorouracil in human colorectal cancer cells 
(Wang et al. 2015b). However, the role of TRPCs is still 
controversial in breast cancer. On the one hand, hyperforin 
depresses the breast cancer’s cell growth and viability in 
MDA-MB-231 cells, which may be due to over-activation of 
TRPC6, which disrupts  Ca2+ signaling, thereby affecting cell 
proliferation (Aydar et al. 2009). On the other hand, TRPC6 
knockdown by shTrpc6 significantly attenuates MCF7 and 
MDA-MB-231 cell proliferation (Jardin et al. 2018). Liang 
Wen et al. demonstrated that calcium dependence is an 
essential mechanism for regulating multi-drug resistance via 
the TRPC6/calcium/STAT3 signal pathway, and silencing 
TRPC6 elevates the efficacy of doxorubicin in hepatocel-
lular carcinoma cells (Wen et al. 2016). Hong-Ni Jiang et al. 
found that overexpressing TRPC1 and TRPC6 increases the 
proliferation of the A549 lung cancer cell (Jiang et al. 2013). 
Notably, the TRPC6-NFAT pathway is activated by WNK1 
promoting clear-cell renal-cell carcinoma cell proliferation 
and migration (Kim et al. 2019).

Kidney diseases

TRPC6 can accelerate the progression of many acquired 
glomerular diseases, such as glomerulosclerosis associated 
with autoimmune glomerulonephritis, primary and second-
ary focal and segmental glomerulosclerosis (FSGS), and 
type-1 diabetes (Dryer et al. 2019; Polat et al. 2019). Over-
activation of the TRPC6 channel and Trpc6 gene mutations 
result in glomeruli injury (Dryer et al. 2019; Staruschenko 
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et al. 2019). It is worth noting that reactive oxygen spe-
cies and angiotensin II (AngII) are the two major factors 
that provoke dramatic increases of TRPC6-mediated  Ca2+ 
influx in diabetic kidney disease, resulting in hypertrophy 
and the death of podocytes (Ilatovskaya et al. 2015; Ma 
et al. 2016; Staruschenko et al. 2019). TRPC6 antagonist, 
BTP2, attenuates renal fibrosis and glomerulosclerosis in 
TRPC6-knockout mice (Wu et al. 2017a). However, Wang 
et al. revealed that TRPC6 knockout reduces proteinuria and 
decreases tubule injury but increases mesangial expansion 
and promotes insulin resistance, causing exacerbation of 
diabetic kidney disease in Akita mice (Wang et al. 2019c). 
AngII and endothelin-1-induced mesangial contraction are 
significantly decreased with the downregulation of TRPC1 
in TRPC1 antibody-treated rats. Hence, TRPC1 could play 
a specific role in regulating mesangial cell contractility 
(Woudenberg-Vrenken et al. 2009). Studies have indicated 
that TRPC5 blocker, AC1903, could successfully protect 
podocytes injury in vitro and the kidney filter function 
in vivo; thus, TRPC5 could be a potential therapeutic target 
for FSGS (Pablo and Greka 2019).

Nervous system diseases

TRPCs participate in the formation of synapses and the 
modulation of neurotransmitter release; this involvement 
of TRPCs plays a vital role in the neurological system’s 
functions, such as memory, movement, cognition, anxiety, 
and fear (Riccio et al. 2014; Hong et al. 2015). TRPCs are 
primarily expressed in the brain, which is susceptible to 
oxidative stress. The TRPC5-like current activated by oxi-
dized glutathione increases  Ca2+, which ultimately induces 
striatal neuronal cell death. TRPC5 inhibition by ML204 
predominantly attenuates oxidation-provoked striatal neu-
ronal cell death and improves motor and rearing behavior 
in Huntington’s disease transgenic mice (Hong et al. 2015). 
Many factors contribute to Parkinson’s disease, such as 
excitotoxicity, mitochondrial dysfunction, endoplasmic 
reticulum stress, reactive oxide species, and inflammation; 
almost all of them depend directly or indirectly on  Ca2+ 
signaling (Sukumaran et al. 2017). Reduction in apopto-
sis and  Ca2+ influx provides neuroprotection via activation 
of TRPC1 (Thapak et al. 2020). Studies have shown that 
TRPC6 specifically inhibits its cleavage by γ-secretase of 
amyloid precursor protein (APP) and reduces β-amyloid for-
mation by preventing APP from interacting with presenilin 
1, which could be a novel strategy for treating Alzheimer’s 
disease (Wang et al. 2015a). At the same time, neurotoxic 
TRPC6-mediated  Ca2+ entry is mediated by presenilin 2. 
Activation of TRPC6 increases adult hippocampal neuro-
genesis and long-term spatial memory but reduces Aβ accu-
mulation due to increased cerebrovascular P-glycoprotein 

(Thapak et al. 2020). Antonio Riccio et al. reported that 
 TRPC4−/− mice displays decreased anxiety-like behavior 
and Gq/11-dependent responses (Riccio et al. 2014). Simi-
larly, TRPC1/4/5 blocker, HC-070, alleviates anxiety and 
depression in mice (Just et al. 2018). Inhibition of TRPC6 
degradation by calpain inhibitors prevents ischemic neuronal 
death, improves behavioral performance, and provides neu-
roprotection through the Ras/MEK/ERK/CREB pathway 
(Thapak et al. 2020).

Other diseases

Some reports have shown that TRPCs are involved in other 
diseases, such as obesity, type II diabetes, and lung diseases 
(Yu et al. 2004; Krout et al. 2017). TRPC3/6 expression in 
the lung tissues and pulmonary artery smooth muscle cells 
of idiopathic pulmonary arterial hypertension patients was 
much higher than those normotensive or secondary pul-
monary hypertension patients (Yu et al. 2004). It has been 
reported that hypoxia-inducible factor-1 boosts the expres-
sions of TRPC1 and TRPC6 increasing intracellular  Ca2+ 
level in pulmonary artery smooth muscle cells (Wang et al. 
2006). Another study suggested that TRPC1 plays a cru-
cial role in adiposity via inducing autophagy and apoptosis; 
moreover, high-fat diet-induced obesity and type II diabetes 
were alleviated in TRPC1 knockout mice (Krout et al. 2017).

TRPCs agonists

TRPC5 channel

Methylprednisolone

The glucocorticoid methylprednisolone is a long-acting, 
reversible TRPC5 agonist with  EC50 of 12 µM, which is 
effectively inhibited by clemizole. Methylprednisolone only 
activates the TRPC5 channel and does not affect other TRPC 
subfamily members; however, the carbachol-induced TRPC4 
channel can also be activated by methylprednisolone. Pred-
nisolone can also act as a weak activator of TRPC5 channels 
with  EC50 of 64 μM (Beckmann et al. 2017). One study has 
demonstrated that local delivery of methylprednisolone suc-
cinate in combination with a copolymer of ethylene oxide 
and propylene oxide facilitates spinal cord sensorimotor cir-
cuitry and increases excitability (Baltin et al. 2021). Addi-
tionally, methylprednisolone acetate administration intra-
articularly or intravenously has shown to improve the lung 
function of horses and infants with severe asthma and bron-
chopulmonary dysplasia, respectively (Millares-Ramirez 
et al. 2021; Billion et al. 2021; Wang et al. 2021a).
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AM237

AM237, a xanthine derivative synthesized compound, 
potently activates the TRPC5:C5 channel with  EC50 of 
15–20 nM in  Ca2+ assays. AM237 does not activate either 
the TRPC4-C1, TRPC5-C1, TRPC4:C4, TRPC1:C5, 
TRPC1:C4 channels, or native TRPC1:C4 channel in 
A498 cells; instead, it suppresses the activation evoked by 
(−)-englerin A (Minard et al. 2019).

GW‑1929

A rosiglitazone-related peroxisome proliferator-activated 
receptor-γ (PPAR-γ) agonist, N-(2-benzoylphenyl)-O-[2-
(methyl-2-pyridinylamino)ethyl]-l-tyro-sine (GW-1929), 
can weakly stimulate the TRPC5 channel (Majeed et al. 
2011). GW1929 inhibits TRPC1 and TRPC6 expressions 
in the pulmonary artery smooth muscle cells through the 
activation of PPARγ (Lu et al. 2010; Wang et al. 2013).

TRPC6 channel

Hyperforin

Hyperforin is isolated from the leaves, stems, and roots of 
the dried herb Hypericum perforatum L (St John’s wort); it 
has been used for mild to moderate depression, multidrug-
resistant Staphylococcus aureus, and (other) gram-positive 
bacteria (Laakmann et al. 1998; Orth et al. 1999; Ebrey 
1999; Singer et al. 1999; Szewczyk et al. 2019). Hyperforin 
is a specific and highly selective activator of the TRPC6 
channel without activating TRPC1/4/5 and TRPC3/7 chan-
nels (Leuner et al. 2010; Tu et al. 2010). Hyperforin has 
a neuroprotective effect by reducing aluminum-induced 
Aβ production and tau phosphorylation against Alzhei-
mer’s disease (AD), which could provide a potential AD 
therapy (Huang et al. 2017; Jiang et al. 2018; Wang et al. 
2019a). TRPC6 channel activation can attenuate brain dam-
age (Lin et al. 2013) and substantially improve recurrent 
moderate hypoglycemia-induced cognitive impairment (He 
et al. 2020). Hyperforin has also been demonstrated to pro-
mote post-stroke neurovascular regeneration and functional 
recovery via astrocytic IL-6-mediated negative immune 
regulation (Yao et al. 2019) and improve post-stroke social 
isolation-induced exaggeration of post-stroke depression and 
post-stroke anxiety via TGF-β (Zhang et al. 2019). Addition-
ally, hypericum extracts have been reported to have a protec-
tive effect on the brain, improve anxiety-like behavior (Sev-
astre-Berghian et al. 2018) and exhibit an antidepressant-like 
activity in mice (Pochwat et al. 2018). Besides, as a specific 
activator for TRPC6, hyperforin usage could reduce the 
growth and viability of the various human and rat cancer cell 
lines by apoptosis with  IC50 between 3 and 15 μM (Schempp 

et al. 2002; Chen et al. 2018; Liu et al. 2019). The anti-tumor 
activity of H. perforatum L. and hyperforin has been proven 
to be linked with mediating inflammatory signaling, ROS 
generation, and proton dynamics, as well as exhibiting anti-
proliferative effects (Allegra and Tonacci 2020). Hyperforin 
causes apoptosis through extrinsic/intrinsic pathways and 
inhibits NF-κB-mediated invasion, enhancing the survival 
potential in bladder cancer and non-small cell lung cancer 
(Chen et al. 2018; Liu et al. 2019); it also inhibits the EGFR/
ERK/NF-κB-modulated anti-apoptotic potential in glioblas-
toma (Hsu et al. 2020). Hyperforin could prevent parental 
and oxaliplatin-resistant human adenocarcinoma cells’ 
metastasis through anti-adhesion therapy (Šemeláková et al. 
2018). TRPC6 activation stimulates the differentiation and 
proliferation of keratinocytes, playing a significant role in 
treating atopic dermatitis and psoriasis; therefore, hyperforin 
presents an innovative therapeutic strategy in skin disorders 
(Takada et al. 2017). Additionally, TRPC6 gene silencing 
through ryanodine receptor type 1 can partially ameliorate 
muscle cation dyshomeostasis and the halothane’s response 
to malignant hyperthermia in a mouse model (Lopez et al. 
2020b). Hyperforin also prevents the growth of infection-
induced inflammatory responses of glial cells and neuro-
tropic parasite Toxoplasma gondii (Shinjyo et al. 2021).

OAG

Leuner et al. (2010) demonstrated that 2, 4-diaetylphloro-
glucinol derivative has the pharmacophore of diacylglyc-
erol and hyperforin; it is also TRPC6 selective. Tesfai et al. 
(2001) revealed that the membrane-permeant analogs of 
DAG initiate the activation of  Ca2+ inflow in the adrenal 
chromaffin cell line (PC12 cell); similarly is the permeant 
DAG analog 1-oleoyl-2-acetyl-sn-glycerol (OAG) effect 
(Hofmann et al. 1999; Tesfai et al. 2001; Venkatachalam 
et al. 2003; Tu et al. 2009; Fuchs et al. 2011). It has been 
reported that the TRPC6 channel is essential for acute 
hypoxic pulmonary vasoconstriction (HPV) in mice. Under 
the condition of repetitive hypoxic ventilation, OAG dose-
dependently attenuates the strength of acute HPV by TRPC6 
channel activation (Fuchs et al. 2011).

20‑HETE

20-hydroxyeicosatetraenoic acid (20-HETE) is an eicosa-
noid compound that can activate the TRPC6 channel in the 
HEK293 cell line, Hek-t6.11 with  EC50 of 0.8 μM (Basora 
et al. 2003).

Flufenamic acid

Flufenamic acid is a non-steroidal anti-inflammatory that 
belongs to the fenamates family and can induce the TRPC6 
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expression; it also does not significantly affect TRPC7 
expression and reduces TRPC3 expression (Foster et al. 
2009). Blocking the TRPC3 channel by flufenamic acid 
modulates the depolarization of cholinergic interneurons 
(Xie and Zhou 2014). Increased expression of TRPC6 by 
flufenamic acid promotes cell proliferation in human mega-
karyocytes (Ramanathan and Mannhalter 2016) (Table 1).

TRPC1/5 channels

Riluzole

Riluzole is a marketed drug that plays a role in the surviv-
ability of amyotrophic lateral sclerosis (ALS) and acts as 
an antidepressant (Miller et al. 2000; Grant et al. 2010; 
Minard et al. 2018). Richter et al. (2014b) identified rilu-
zole as a novel TRPC5 channel agonist with  EC50 of 9.2 μM. 
Riluzole can activate the heteromeric TRPC1:C5 channel 
expressed in HEK293 cells and the endogenous TRPC5:C5 
channel expressed in the U-87 glioblastoma cell lines. The 
riluzole-induced TRPC5 activation mechanism is inde-
pendent of G protein signaling and PLC activity as it dif-
fers from the  La3+-mediated TRPC5 activation. Finally, the 
recordings of excised inside-out patches demonstrated that 
riluzole has a relatively direct effect on TRPC5 activation. 
Riluzole improves recovery from ischemia in mice through 
TRPC5 activation in the endothelial cells (Zhu et al. 2019). 
Additionally, riluzole has neuroprotection and therapeutic 

application to prevent oxaliplatin-induced neuropathy (Trinh 
et al. 2021). Riluzole can also treat severe hyponatremia sec-
ondary to amyotropic lateral sclerosis (Tambe et al. 2021).

Rosiglitazone

Rosiglitazone, a high-affinity PPAR-γ ligand, can activate 
TRPC5 with  EC50 of about 30 μM. The effects of rosigli-
tazone on TRPC5 occur rapidly and reversibly on washout 
(Majeed et al. 2011). It has been reported that rosiglitazone 
also activates the heteromeric TRPC1:C5 channel. Rosigli-
tazone (as a thiazolidinedione) is an antidiabetic drug that 
acts as an insulin sensitizer. Rosiglitazone decreases free 
fatty acids released from adipocytes to ameliorate skeletal 
muscle insulin resistance. Rosiglitazone can also inhibit 
angiotensin II-induced proliferation of rats’ glomerular 
mesangial cells via the Gαq/Plcβ4/TRPC signaling path-
way (Wei et al. 2017b). Moreover, rosiglitazone ameliorates 
rat radiation-induced intestinal inflammation by inhibiting 
NLRP3 inflammasome and TNF-alpha production (Hu et al. 
2020a). The development and progression of endometriosis 
are impacted by rosiglitazone likely by inhibiting angiogen-
esis and inducing apoptosis (Zhang et al. 2021). Rosiglita-
zone treatment improves cognitive areas that mainly depend 
on the dorsal hippocampus (Cortez et al. 2020). However, it 
has been withdrawn from clinical use in most countries due 
to its side effects, such as heart attacks and sudden death 
(Rubaiy 2019; Gong et al. 2020).

Table 1  TRPCs agonists (1)

Modulators Chemical structure Targeting channels and IC50 Predicted effects Reference

Methylprednisolone

 

12 µM (TRPC5:C5) Activate TRPC5 channel and 
improve the lung function

Beckmann et al. (2017), Millares-
Ramirez et al. (2021)

AM237

 

15–20 nM (TRPC5:C5) Suppress activation evoked by 
(−)-EA

Minard et al. (2019)

GW-1929

 

TRPC5:C5 a Rosiglitazone-related PPAR-γ 
agonist

Lu et al. (2010), Majeed et al. 
(2011)

Hyperforin

 

3–15 μM (TRPC6) Mild to moderate depression, 
inhibit bacteria, Alzheimer’s 
disease, the various human and 
rat cancer cell lines

Jiang et al. (2018), Liu et al. (2019)

OAG

 

TRPC3/6/7 The activation of  Ca2+ inflow, 
acute HPV in mice

Fuchs et al. (2011)

20-HETE

 

0.8 μM (TRPC6) Activate TRPC6 channel in 
HEK293 cell line, Hek-t6.11

Basora et al. (2003)

Flufenamic acid

 

TRPC6 Non-steroidal anti-inflammatory Foster et al. (2009)
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TRPC3/6 channels

Artemisinin

Artemisinin has been identified as a well-known TRPC3 
channel agonist; it was discovered by screening 2000 bioac-
tive compounds in a  Ca2+ influx assay (Urban and Schaefer 
2020). Artemisinin has a strong stimulatory effect on TRPC3 
or heteromeric TRPC3:C6 channels, and it weakly affects 
the TRPC6 and TRPC7 channels, or these channels lack the 
response to artemisinin (Urban and Schaefer 2020). Arte-
misinin is an antimalarial agent isolated from the Chinese 
medicinal plant Artemisia annua L. (Liu et al. 2011; String-
ham et al. 2018) and has been used as an effective treatment 
for malaria (Wang et al. 2021b; van der Pluijm et al. 2021). 
At the same time, artemisinin, as a novel anti-cancer drug, 
targets a global cancer pandemic through drug repurpos-
ing (Xu et al. 2020; Augustin et al. 2020). Furthermore, 
Bai et al. (2020) revealed the vital role of pH-dependent 
molecular rearrangement in the activation and activity of 
artemisinin against cancer. Interestingly, artemisinin and its 
derivatives may be valuable in treating obesity and diabe-
tes (Shen et al. 2020; Jiang et al. 2020b). Artemisinin can 
also ameliorate inflammation by suppressing the process of 
epithelial-mesenchymal transition and inducing macrophage 
polarization to the M2 phenotype, which may help treat 
inflammatory bowel disease in the future (Huai et al. 2020). 
Zhou et al. (2020) discovered novel artemisinin derivatives 
through structural optimization of artemisinin that works 
against liver and ovarian cancers.

GSK1702934A

GSK1702934A is a small 1,3-dihydro-2H-benzo[d]mida-
zole-2-one-based potent agonist that activates TRPC3/6 
channels directly with  EC50 of 0.08 mM and 0.44 mM, 
respectively. Whole-cell patch-clamp experiments have 
proven that GSK1702934A can activate the TRPC3/6-cur-
rents in HEK293 cells (de la Cruz et al. 2017). Cardiovas-
cular morbidity and mortality are associated with increased 
blood pressure variability (BPV). Activation of TRPC6 by 
GSK1702934A exacerbates the systolic and diastolic BPV 
(Wang et al. 2020d), while TRPC3 activation substantially 
contributes to cardiac contractility control and arrhythmo-
genesis (Doleschal et al. 2015).

TRPC1/4/5 channels

Tonantzitlolone

Tonantzitlolone is extracted from the Mexican plant Still‑
ingia sanguinolenta; it has been used against fibroblasts 

cells in mice and certain types of human cancer cells, such 
as human breast cancer cells and renal cell carcinoma cells 
(Jasper et al. 2005; Busch et al. 2016; Pfeffer et al. 2016; 
Rubaiy et al. 2018). In the NCI-60 human tumor cell lines 
screen, many of the sixty cancer cells were resistant to 
tonantzitlolone in nanomolar concentrations, indicating 
that tonantzitlolone could have a beneficial effect on spe-
cific subtypes of cancer cells (Rubaiy et al. 2018). Tonantz-
itlolone works against renal cancer cells through protein 
kinase C isoform θ- and heat shock factor 1-dependent 
(Sourbier et al. 2015). Though the profile of tonantzitlolone 
in this screen is exceptionally parallel to (−)-englerin A, the 
structures of tonantzitlolone and (−)-englerin A are entirely 
distinguishable from each other (Rubaiy et al. 2018; Rubaiy 
2019).

Rubaiy et al. (2018) revealed that tonantzitlolone is a 
novel potent agonist for TRPC4, TRPC5, TRPC4-TRPC1, 
and TRPC5-TRPC1 channels with  EC50 of 123 nM, 83 nM, 
140 nM, and 61 nM, respectively, which could be useful 
for investigating the function of these ion channels. How-
ever, tonantzitlolone could not activate endogenous SOCE 
in HEK 293 cells and over-expressed the TRPC3, TRPV4, 
and TRPM2 channels. In whole-cell patch-clamp record-
ings, tonantzitlolone was washed-out reversibly and inhib-
ited potently by Pico145, a TRPC1/4/5 inhibitor (Rubaiy 
et al. 2017b). Tonantzitlolone A and its synthetic enanti-
omer inhibit cell proliferation and kinesin-5 function, and 
the synthetic enantiomer shows a more potent inhibitory 
effect; thus, it is possible to enhance the anti-proliferative 
effect of tonantzitlolon A by chemical modification (Pfeffer 
et al. 2016).

(−)‑englerin A

Similar to tonantzitlolone, (−)-englerin A is a guaian-type 
sesquiterpene and a natural product that originates from 
the Tanzanian plant Phyllanthus engleri; it is isolated and 
fractionated from the roots and bark of this plant (Rat-
nayake et al. 2009). Ratnayake et al. (2009) revealed that 
(−)-englerin A has 1000-fold selectivity to six of the eight 
renal cancer cell lines with  GI50 between 1 and 87 nM. 
(−)-englerin A can selectively inhibit the growth of renal 
cancer cell lines in the NCI-60 cytotoxicity screen. However, 
its use in the pharmaceutical treatment of cancer is limited 
due to its instability and toxicity (Akbulut et al. 2015; Wu 
et al. 2017b; Grant et al. 2019; Rubaiy 2019). Although 
(−)-englerin A has selective cytotoxic to cancer cells, 
adverse reactions in mice and rats have been reported. One 
study found that TRPC4 and TRPC5 single knockout mice 
were partially protected from adverse reactions, and double 
knockout mice were fully protected (Cheung et al. 2018). 
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Moreover, (−)-englerin A directly activates PKCθ to limit 
the access of tumor cells to glucose, resulting in glucose 
dependence and insulin resistance in tumor cells through 
the activation of heat shock transcription factor, HSF1, and 
insulin receptor substrate 1 (IRS1) (Muraki et al. 2017).

(−)-englerin A is a highly selective and potent activator 
of both homomeric and heteromeric TRPC1/4/5 channels, 
which helps study these proteins’ pharmacological action 
(Akbulut et al. 2015; Minard et al. 2018; Rubaiy 2019). 
(−)-englerin A could activate TRPC1/4/5 channels to influ-
ence A498 renal cancer cells (Haque et al. 2017). Acute 
inflammatory response induced by (−)-englerin A could 
modulate anti-tumor immunity. Additionally, Batova et al. 
(2017) revealed that lipid metabolism and ER stress could 
be targeted vulnerabilities in renal cell carcinoma. However, 
(−)-englerin B, a (−)-englerin A metabolic product, could 
not activate TRPC1/4/5 channels to influence A498 renal 
cancer cells (Wu et al. 2017b). As stated, (−)-englerin A is 
a potent TRPC4:C4 and TRPC5:C5 channels activator in 
HEK293 cells with  EC50 of 11.2 nM and 7.6 nM, respec-
tively (Akbulut et al. 2015). (−)-englerin A may have a simi-
lar activating effect on TRPC1:C4 and TRPC4-containing 
channels, but it does not affect TRPC6, TRPM2, TRPV4 
channels, 10 other ion channels, and 59 GPCRs (Akbulut 
et al. 2015; Minard et al. 2018). Grant et al. (2019) showed 
that (−)-englerin A-evoked cytotoxicity results in rapid can-
cer cell death in two different triple-negative breast cancers 
cancer cells, BT-549 and Hs578T.

BTD

Beckmann et al. identified a novel TRPC5 agonist, which 
is N-[3-(adamantan-2-yloxy)propyl]-3-(6-methyl-1, 
1-dioxo-2H-1λ6,2,4-benzothiadiazin-3-yl)propanamide 
(BTD) with  EC50 of 1.4 µM in  Ca2+ assays and  EC50 of 
1.3 µM in the electrophysiological whole-cell patch-clamp 
recordings from screening the ChemBioNet compound 
library (Beckmann et al. 2017). BTD is long-lasting, revers-
ible, and sensitive to clemizole, which is a TRPC5 blocker. 
Furthermore, BTD displayed selectivity to TRPC1/4/5 
channels; it can activate the homomeric TRPC5:C5 chan-
nel as well as the heteromeric TRPC1:C5 and TRPC4:C5 
channels, and to a less extent, the TRPA1, TRPV1, TRPM3, 
and TRPM8 channels; however, it does not activate the 
TRPC4:C4 and TRPC1:C4 channels (Beckmann et al. 2017) 
(Table 2).

TRPC3/6/7 channels

4m–4p

4m–4p are a series of potent and direct agonists of 
TRPC3/6/7 channels belonging to pyrazolopyrimidines 
(Qu et al. 2017). They activate the TRPC3/6/7 channels 
with a potency order of TRPC3 > C7 > C6. One of the 4n is 
the most potent with  EC50 of < 20 nM for TRPC3 channel 
activation.

Table 2  TRPCs agonists (2)

Modulators Chemical structure Targeting channels and IC50 Predicted effects Reference

Riluzole

 

9.2 μM (TRPC5:C5)
TRPC1:C5

ALS and anti-depressant Richter et al. (2014b)

Rosiglitazone
 

 ~ 30 μM (TRPC5:C5)
TRPC1:C5

An antidiabetic drug and an 
insulin sensitizer

Majeed et al. (2011)

artemisinin

 

TRPC3, TRPC3:C6 Antimalarial agent; anti-cancer 
drug

Urban and Schaefer, (2020), Xu 
et al. (2020)

GSK1702934A

 

0.08 mM (TRPC3)
0.44 mM (TRPC6)

Activation of TRPC3/6-currents de la Cruz et al. (2017)

Tonantzitlolone

 

123 nM (TRPC4), 83 nM 
(TRPC5)

140 nM (TRPC4-TRPC1), 61 nM 
(TRPC5-TRPC1)

Against mouse fibroblasts cells, 
human breast cancer and renal 
cell carcinoma cells

Pfeffer et al. (2016), Rubaiy et al. 
(2018)

(−)-englerin A

 

11.2 nM ( TRPC4:C4)
7.6 nM ( TRPC5:C5)

Inhibit growth of various cancer 
cell lines, breast cancers cancer 
cells and activate PKCθ

Minard et al. (2018), Ratnayake 
et al. (2009)

BTD
 

1.3 µM (TRPC5:C5), TRPC1:C5, 
TRPC4:C5

Be sensitive to clemizole Beckmann et al. (2017)
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TRPCs antagonists

TRPC3 channel

Pyr3

Ethyl -1- (4- (2 ,3 ,3 - t r i ch loroacr ylamide)phenyl ) -
5-(trifluoromethyl)-1H-pyrazole-4-carboxylate (Pyr3) is a 
specific and direct inhibitor of TRPC3 channel. Pyr3 ame-
liorates intracerebral hemorrhage-induced brain injury and 
could be used as a novel treatment strategy for TRPC3-medi-
ated diseases, including pathological cardiac remodeling and 
heart failure (Glasnov et al. 2009; Munakata et al. 2013). 
Moreover, Pyr3 exerts an inhibitory effect on the growth of 
human glioblastoma cancer cells and triple-negative breast 
cancer cells in vitro and vivo through inducing apoptosis 
and inhibiting migration (Chang et al. 2018; Wang et al. 
2019d). The inhibitory effect of Pyr3 is dose-dependent in 
acute lymphoblastic leukemia cell lines (Abdoul-Azize et al. 
2016). Pyr3 also inhibits smooth muscle proliferation and 
alleviates stent implantation-induced arterial injury (Álva-
rez-Miguel et al. 2017). Exposure to PM2.5 can increase the 
propensity to cardiac arrhythmias which could be attenu-
ated with TRPC3 inhibition by Pyr3 (Cai et al. 2019). Pyr3 
can also significantly decreases intracellular calcium con-
centrations, normalize resorptive activity and osteoclastic 
differentiation of TRPC6-deficient cells (Klein et al. 2020; 
Sato et al. 2020), and promotes systolic blood pressure in 
hypertensive patients (Hu et al. 2020d).

TRPC5 channel

Galangin

Galangin is a natural flavonoid compound from the gin-
ger family that is used as a novel antidiabetic. It has been 
screened as a lanthanide-induced  Ca2+ entry antagonist in 
overexpressed TRPC5 HEK293 cells with  IC50 of 0.45 μM 
through a screen of natural compounds in traditional Chinese 
medicines (Naylor et al. 2016; Brás et al. 2020). Galangin 
also inhibits lanthanide-induced TRPC5-mediated current 
and calcium entry. TRPC5 is less inhibited by other related 
natural flavonols, such as kaempferol and quercetin, and is 
not affected by myricetin, luteolin, and apigenin. Galangin 
can attenuate isoproterenol-induced inflammation, car-
diac fibrosis, pulmonary fibrosis and non-alcoholic fatty 
liver disease (Thangaiyan et al. 2020; Wang et al. 2020c; 
Zhang et  al. 2020). Galangin can also reduce cerebral 
ischemia–reperfusion injury by inhibiting ferroptosis and 
activating the SLC7A11/GPX4 axis (Guan et al. 2021). 
Additionally, galangin improves cardiac remodeling through 
the MEK1/2-ERK1/2 and PI3K-AKT pathways (Wang et al. 
2019b). Differentiation of dendritic cells hows tolerogenic 

properties in response to lipopolysaccharide stimulation dur-
ing galangin treatment (Song et al. 2021). Also, galangin has 
a protective effect on ulcerative colitis induced by dextran 
sulfate sodium in mice and rats (Sangaraju et al. 2019; Fan 
et al. 2021). Galangin inhibits cell growth and metastasis of 
cholangiocarcinoma by downregulating the expression of 
microRNA-21 (Zou et al. 2020). Besides, galangin inhibits 
epithelial-mesenchymal transition and angiogenesis of gli-
oma by downregulating CD44 (Chen et al. 2019a). Simulta-
neously, galangin promotes apoptosis of diverse cancer cells, 
such as hepatocellular carcinoma cells, ovarian cancer cells 
and glioblastoma cells (Kong et al. 2019; Fang et al. 2019; 
Zhong et al. 2020; Huang et al. 2020). One study suggested 
that galangin, either alone or combined with insulin, can 
reduce glucose levels and improve skeletal muscle health in 
patients with diabetes (Kalhotra and Chittepu 2019).

AC1903

AC1903 is a specific TRPC5 inhibitor synthesized through 
experimentation. By comparison, AC1903 is nearly equi-
potent to ML204 in blocking riluzole-activated TRPC5-
mediated whole-cell current, but AC1903 fails to inhibit 
carbachol (CCh)-evoked TRPC4 and OAG-induced TRPC6 
currents in whole-cell patch recordings, with a half-maxi-
mal inhibitory concentration of 14.7 μM (Zhou et al. 2017). 
AC1903, as a TRPC5 inhibitor, can provide a therapeutic 
benefit to podocyte survivability in chronic kidney diseases, 
such as focal and segmental glomerulosclerosis (Zhou et al. 
2017; van der Wijst and Bindels 2018; Sharma et al. 2019; 
Pablo and Greka 2019).

NU6027

NU6027 is a cyclin-dependent kinase inhibitor that inhibits 
the basal and zinc-augmented TRPC5 currents in TRPC5 
overexpressed HEK293 cells. It has a neuroprotective effect 
on oxidative neuronal injury in prolonged seizures. NU6027 
is considered a potent antagonist of the TRPC5 chan-
nel (Park et al. 2019). TRPC5 suppression using NU6027 
reduces the neuronal death that may occur after traumatic 
brain injury (Park et al. 2020).

TRPC6 channel

Ribemansides A and B

Ribemansides A and B are two new acylated β-hydroxynitrile 
glycosides isolated from the aerial parts of Ribes manshu‑
ricum. They can inhibit the activity of the TRPC6 chan-
nel with  IC50 of 24.5 and 25.6 μM, respectively. These two 
compounds can suppress transforming growth factor β1 
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(TGF-β1)-induced fibrogenesis in HK-2 cells, similar to 
SAR7334, a TRPC6 inhibitor (Zhou et al. 2018).

Larixyl acetate

Through testing and identifying several preparations from 
plant extracts, larixol and larixyl acetate were identified as 
TRPC6 inhibitors of receptor-induced  Ca2+ entry (Urban 
et al. 2016). TRPC6 channel is inhibited by larixyl acetate 
in the DAG-stimulated rat’s pulmonary artery smooth mus-
cle cells with  IC50 of 0.1–0.6 μM. Larixyl acetate can also 
prevent hypoxia-induced pulmonary vasoconstriction (HPV) 
(Urban et al. 2016) and improve the endothelial function 
after traumatic brain injuries in mice (Chen et al. 2019b). 
TRPC3/7 and TRPC4/5 channels are weakly blocked by 
larixyl acetate, whereas no significant inhibition occurs in 
other related TRPV or TRPM channels (Urban et al. 2016). 
Moreover, larixyl acetate has analgesic and anti-inflamma-
tory effects on neuropathic pain; therefore, it can be a novel 
therapy for intractable chronic pain (Wang et al. 2020b).

FK506

FK506 (Tacrolimus) is a potent immunosuppressive agent 
isolated from the filamentous bacteria fermentation broth, 
a strain of Streptomyces tsukubaensis No.9993. FK506 
has been generally used in liver and kidney transplanta-
tion therapy (Kino et al. 1987; Dumont 2000; Tang et al. 
2021). Studies have demonstrated that FK506 could sup-
press TRPC6 expression to ameliorate podocyte injury in 
T2DM cells (Chang et al. 2019); it also affects proteinuria 
and renal damage progression in renal tissues (Wei et al. 
2017a; Chen et al. 2021). Down-regulation of TRPC6 by 
FK506 can also be used to treat overactive bladder (Chang 
et al. 2019). Besides, FK506-binding protein 52, as a novel 
interaction partner of TRPC3, improves the hypertrophic 
growth of cardiomyocyte cultures (Bandleon et al. 2019). 
Also, FK506 induces the TGF-beta 1/Smad 3 pathway to 
prevent intervertebral disk degeneration independent of cal-
cineurin inhibition (Ge et al. 2020).

BI 749327

BI 749327 is an orally bioavailable TRPC6 antagonist that 
has been reported by Lin et al. (2019) with  IC50 of 13 nM; 
it can boost cardiac function and ameliorate renal disease 
fibrosis.

DS88790512

DS88790512 is another orally bioavailable compound that 
is potent and a selective blocker of the TRPC6 channel; it 
is a icycle [4.3.0] nonane derivative with  IC50 of 11 nM. 

However, there have not been any reports of its efficacy 
in vivo (Motoyama et al. 2018)  (Table 3).

TRPC1/5 channels

Clemizole

Richter et al. (2014a) identified clemizole as a novel, revers-
ible TRPC5 blocker that can efficiently inhibit TRPC5 cur-
rents and  Ca2+ entry with  IC50 ranging from 1.0 to 1.3 μM. 
In excised inside-out membrane patches, clemizole could 
still block TRPC5 current at single-channel level; it also 
affected TRPM3 and M8 and weakly impacted the TRPV1, 
V2, V3, and V4 channels at higher concentrations. Simul-
taneously, clemizole inhibits the heterologous TRPC1:C5 
channel and the native TRPC5-like currents in the U-87 glio-
blastoma cell line. Studies have also shown that clemizole 
can have a certain therapeutic effect on Dravet syndrome 
(Strzelczyk and Schubert-Bast 2020). As a TRPC5 chan-
nel inhibitor, clemizole hydrochloride reduces electric field 
stimulation amplitude, which causes muscarinic receptor-
induced contractions impairment of the detrusor and carotid 
arteries (Griffin et al. 2018; Liang et al. 2019).

TRPC4/5 channels

ML204

Through a cell-based high-throughput fluorescence assay for 
305,000 compounds, ML204 has been reported as a novel, 
potent, and relatively selective antagonist of the TRPC4 and 
TRPC5 channels with  IC50 of 13.6 μM (Zhou et al. 2017), 
as well as weakly inhibiting TRPC6. ML204 has a direct 
inhibitory effect on TRPC4/5 channels; it also can affect 
other GPCR-independent receptors (Miller et  al. 2011; 
Alom et al. 2018). ML204 can prevent pseudocyst forma-
tion; thus, podocyte numbers can be preserved by treat-
ment with ML204 (Zhou et al. 2017). Also, ML204 reduces 
carotid arteries endothelium-dependent contractions in mice 
(Liang et al. 2019). The histamine-induced depolarization is 
significantly inhibited by ML204, which reduces neuronal 
excitation (Sato et al. 2020). Although ML204 cannot inhibit 
pacemaker activity, it modulates the depolarization of the 
membrane potential (Lee et al. 2020a). Intradermal injec-
tions of ML204 in psoriasiform skin significantly reversed 
chronic pruritus and the inflammation induced by imiquimod 
(Lee et al. 2020b). Recent studies have reported that ML204, 
as a selective TRPC4/5 blocker, can completely revert ace-
tylcholine relaxations (Alom et al. 2018; Silva and Ballejo 
2019). ML204 can also reduce electric-field stimulation and 
CCh-evoked contractions in  TRPC4−/− detrusor strips mice 
(Griffin et al. 2018).



364 Y.-Y. Gao et al.

1 3

M084

M084 is a 2-aminobenzimidazole derivative similar to 
ML204 reported to effectively block the TRPC4 and TRPC5 
channels with  IC50 of 10.3 and 8.2 µM, respectively. On 
the other hand, M084 weakly inhibits TRPC3 and moder-
ately inhibits TRPC6 (Zhu et al. 2015). Research has dis-
covered that M084 also has antidepressant and anti-anxiety 
effects in mice experiments (Yang et al. 2015). Additionally, 
Zhu et al. (2015) proved that M084 effectively inhibits the 
plateau potential induced by TRPC4-containing channels 
through electrophysiological recording in the lateral septal 
neurons of mice. Through synthesizing and testing a total 
of 28 structural analogs of M084, it has been found that the 
2-aminobenzimidazol skeleton is an essential requirement 
for blocking the TRPC4 channel (Zhu et al. 2015).

AM12

Based on structure–activity relationship studies of the stated 
natural and other synthetic flavonols, 3,5,7-trihydroxy-2-(2-
bromophenyl)-4H-chromen-4-one (AM12) was designed. 

AM12 can directly inhibit the activation of lanthanide-
induced and (−)-englerin A -evoked TRPC5 channel with 
 IC50 of 0.28 μM. Likewise, it inhibits TRPC4 channels and 
weakly inhibits the TRPC1-TRPC5 channel (Naylor et al. 
2016).

TRPC3/6 channels

Salvianolic acid B

Salvianolic acid B, extracted from the root of Salvia miltio‑
rrhiza Bunge (Lamiaceae), is the most abundant bioac-
tive compound that inhibits the expression of TRPC3 and 
TRPC6 channels. In the cardiovascular system, salvianolic 
acid B effectively counteracts doxorubicin (DOX)-evoked 
structural heart abnormalities and apoptotic damage, and 
inhibits the DOX-induced  Ca2+ overload and endoplasmic 
reticulum stress in cardiomyocytes via TRPC3 and TRPC6 
inhibition (Chen et al. 2017; Li et al. 2020a). Salvianolic 
acid B can also alleviate myocardial ischemic injury by 
inhibiting activation of the NLRP3 inflammasome and pro-
moting mitophagy (Hu et al. 2020c). Regarding its effects 

Table 3  TRPCs antagonists (1)

Modulators Chemical structure Targeting channels and IC50 Predicted effects Reference

Pyr3

 

TRPC3 Ameliorate severity of seizures and 
cardiac injury, inhibit human glio-
blastoma cancer and melanoma cells 
growth

Álvarez-Miguel et al. 
(2017), Cai et al. 
(2019)

Galangin

 

0.45 μM (TRPC5) Improve ulcerative colitis; apoptosis of 
diverse cancer cells

Fan et al. (2021), 
Naylor et al. (2016), 
Zhong et al. (2020)

AC1903

 

14.7 μM (TRPC5) Provide chronic kidney diseases Zhou et al. (2017)

NU6027

 

TRPC5 Inhibit TRPC5 currents, and oxidative 
neuronal injury

Park et al. (2019)

Ribemansides A and B

 
A: R = H B:R =  OCH3

24.5 μM (TRPC6, A)
25.6 μM (TRPC6, B)

Suppress TGF-β1-induced fibrogenesis 
in HK-2 cells

Zhou et al. (2018)

larixyl acetate

 

0.1–0.6 μM (TRPC6) Prevent HPV, improved traumatic brain 
injuries

Urban et al. (2016)

FK-506

 

TRPC6 Ameliorate liver and renal damage Chang et al. (2019)

BI 749327

 

13 nM (TRPC6) Support cardiac function and renal 
disease

Lin et al. (2019)

DS88790512

 

11 nM (TRPC6) Inhibit TRPC6 channel Motoyama et al. (2018)
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on the hepatic system, salvianolic acid B suppresses hepatic 
endoplasmic reticulum stress to improve insulin resistance in 
ob/ob mice (Shi et al. 2020). Salvianolic acid B also blocks 
the activation of hepatic stellate cells, protects against sep-
sis-induced liver injury, and prevents and alleviates liver, 
pulmonary and renal interstitial fibrosis (Su et al. 2020; Ma 
et al. 2020; Jiang et al. 2020a; Hu et al. 2020b; Tian et al. 
2021; Gong et al. 2021). Furthermore, salvianolic acid B 
prevents high-fat diet-induced obese mice body weight gain 
and regulates gut microbiota (Li et al. 2020b). Addition-
ally, salvianolic acid B decreases mice interleukin-1 beta-
induced colitis recurrence (Feng et al. 2020). Ragarding its 
effects on the skeletal system, salvianolic acid B promotes 
new bone formation and protects against oxidative damage 
(Kayalar et al. 2020; Xiao et al. 2020; Bian and Xiang 2020); 
it improves atherosclerosis by inhibiting the YAP/TAZ/JNK 
signaling pathway in endothelial cells and pericytes (Yang 
et al. 2020). In the nervous system, salvianolic acid B could 
improve the cognitive impairment of mice infected with Por‑
phyromonas gingivalis by inhibiting neuroinflammation and 
reducing Aβ level (Liu et al. 2020). Salvianolic acid B can 
also improve chronic mild stress-induced depressive behav-
iors in rats via the AMPK/SIRT1 signaling pathway (Liao 
et al. 2020). As an otoprotective agent, salvianolic acid B 
inhibits ototoxic drug-induced ototoxicity by suppressing 
the apoptosis pathway (Zheng et al. 2020).

Rox4560

Rox4560 is a TRPC3/6 channel antagonist that could sup-
press the elevation of thrombin intracellular calcium levels 
in podocytes (Guan et al. 2017).

TRPC1/6 channels

Sildenafil

Sildenafil inhibits TRPC1 and TRPC6 expressions through 
PPARγ-dependent mechanisms counteracting podocyte 
injury and proteinuria (Sonneveld et al. 2017). Sildenafil 
also has potential cardioprotective effects (Santiago-Vacas 
et al. 2021).

TRPC1/4/5 channels

Pico145

Pico145 (C31, HC-608) is a xanthine derivative that 
potently inhibits TRPC1/4/5 channels with  IC50 of 
1.3 nM (TRPC5:C5), 0.349 nM (TRPC4:C4), 0.199 nM 
(TRPC5:C1, heteromers), and 0.033  nM (TRPC4:C1, 
heteromers) (Rubaiy et al. 2017b). Pico145 can directly, 
reversibly, and competitively inhibits the AM237-mediated 

TRPC5:C5 channel activation (Rubaiy et al. 2017a; Minard 
et al. 2019; Wright et al. 2020). The potency of Pico145 
depends on the concentration of the (−)-englerin A (Rubaiy 
et al. 2017b). Pico145 was also found to be highly similar to 
HC-070 (Just et al. 2018). Inhibition of TRPC1 by Pico145 
causes group I metabotropic glutamate receptors-induced 
long-term depression and memory extinction in mice (Yerna 
et al. 2020). Additionally, Pico145 can prevent adverse 
reactions of the cancer cell cytotoxic agent (−)-englerin A 
(Cheung et al. 2018).

HC070

HC070 is a highly potent, small molecule antagonist 
of TRPC4 and TRPC5 invented by Just et al. (Just et al. 
2018). HC070 inhibits the homologous TRPC4:C4 
 (IC50 = 46.0 nM) and TRPC5:C5  (IC50 = 0.52 nM) chan-
nel, as well as the heterologous TRPC1:C5  (IC50 = 1.4 nM, 
 La3+-activated;  IC50 = 4.4 nM, M1 receptor-activated), and 
TRPC1:C4  (IC50 = 1.3 nM) channel. HC070 also reversibly 
inhibits the lanthanum-induced mouse TRPC5 current with 
 IC50 of 0.55 nM. Additionally, HC070 and Pico145 showed 
anxiolytic and antidepressant effects on mice (Just et al. 
2018; Rubaiy 2019).

TRPC3/6/7 channels

SAR7334

SAR7334 is a novel, highly potent, and bioavailable com-
pound that inhibits TRPC6-, TRPC3-, and TRPC7-induced 
 Ca2+ influx with  IC50 of 9.5, 282, and 226 nM, respec-
tively, whereas it does not affect TRPC4/5 channels (Maier 
et al. 2015). Furthermore, SAR7334 suppresses TRPC6-
dependent acute HPV in the isolated perfused lungs of 
mice (Maier et al. 2015) and (O-3)-induced airway inflam-
matory responses (Chen et al. 2020a). SAR7334 can also 
negate malignant hyperthermia hypersensitivity by blocking 
TRPC3/6 (Lopez et al. 2020a). There is a strong possibil-
ity that SAR7334 improves cognitive deficits (Uryash et al. 
2020). As for the cardiovascular system, SAR7334 dose-
dependently attenuates systolic and diastolic blood pres-
sure variability (Wang et al. 2020d). Additionally, TRPC6 
knockdown by SAR7334 inhibits renal tubular epithelial 
cells apoptosis upon oxidative stress through autophagy 
activation (Hou et al. 2018).

Compound 14a

Compound 14a is a novel TRPC6 antagonist that strongly 
inhibits 4o, TRPC3/6/7 agonist-induced, and receptor-
operated activation of the TRPC6 channel. Compound 14a 
inhibits TRPC3/6/7 (TRPC6 > C7 > C3) with  IC50 of around 
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1 µM against gastric cancer cell growth and xenograft tumor 
formation. Compound 14a weakly affects the TRPC4 chan-
nel and doesn’t affect other TRP channels (Ding et al. 2018).

TRPC3/5/6 channels

KB‑R7943

Whole-cell voltage-clamp experiments confirmed that 
KB-R7943 could potently block TRPC3, TRPC6, and 
TRPC5 currents with  IC50 of 0.46, 0.71, 1.38 µM, respec-
tively, and nearly fully suppress the OAG-induced  Ca2+ 
entry in HEK293 cells (Kraft 2007) (Table 4).

Nonselective TRPCs

SKF96365

Merritt et al. (1990) originally identified SKF96365 as a 
novel inhibitor of ROCE, (1-(β-[3-(4-methoxy-phenyl) 
propoxy]-4-methoxyphen-ethyl)-l H-imidazole hydrochlo-
ride), with  IC50 of around 10 μM. However, SKF96365 was 
not as potent or selective as desired because it could also 
block T-type calcium channels (Singh et al. 2010). A previ-
ous study indicated that SKF96365 inhibits TRPC channels, 
arrests the cell cycle in the G2/M phase, and suppresses cell 
growth in AGS or MKN45 human gastric cancer cell lines 

Table 4  TRPCs antagonists (2)

Modulators Chemical structure Targeting channels and IC50 Predicted effects Reference

Clemizole

 

1.0–1.3 μM (TRPC5)
TRPC1:C5

Inhibit TRPC1:C5 channel and 
TRPC5 currents in the U-87 
glioblastoma cell line

Richter et al. (2014a)

ML204

 

13.6 μM (TRPC4/5) Block riluzole-activated 
TRPC5-mediated current; 
reduce the mouse carotid 
arteries endothelium-depend-
ent contractions

Liang et al. (2019), Miller et al. 
(2011), Zhou et al. (2017)

M084
 

10.3 µM (TRPC4), 8.2 µM 
(TRPC5)

Antidepressant and anti-anxiety 
effects

Yang et al. (2015), Zhu et al. 
(2015)

AM12

 

0.28 μM (TRPC5)
TRPC4

Inhibit the activation TRPC5 
channel

Naylor et al. (2016)

Salvianolic acid B

 

TRPC3, TRPC6 Counteracted DOX-evoked heart 
abnormalities and tissue injury

Chen et al. (2017), Su et al. 
(2020)

Rox4560

 

TRPC3/6 Suppress calcium levels in 
podocytes

Guan et al. (2017)

Sildenafil

 

TRPC1/6 Counteracting renal injury; 
cardioprotective effects

Lu et al. (2010), Santiago-Vacas 
et al. (2021), Sonneveld et al. 
(2017)

Pico145

 

1.3 nM (TRPC5:C5), 0.349 nM 
(TRPC4:C4)

0.199 nM (TRPC5:C1), 
0.033 nM (TRPC4:C1)

Inhibit AM237-mediated 
TRPC5:C5 channel activation

Minard et al. (2019), Rubaiy et al. 
(2017a, b)

HC070

 

46.0 nM (TRPC4:C4), 0.52 nM 
(TRPC5:C5)

1.4 nM (TRPC1:C5), 1.3 nM 
(TRPC1:C4)

Anxiolytic and anti-depressant Just et al. (2018)

SAR7334

 

9.5 nM (TRPC6), 282 nM 
(TRPC3)

226 nM (TRPC7)

Suppress acute HPV; attenuate 
renal injury

Hou et al. (2018), Maier et al. 
(2015)

Compound 14a

 

 ~ 1 µM (TRPC3/6/7) Inhibit gastric cancer cell 
growth

Ding et al. (2018)

KB-R7943

 

0.46 µM (TRPC3), 0.71 µM 
(TRPC6)

1.38 µM (TRPC5)

Suppress  Ca2+ entry Kraft (2007)
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(Ge et al. 2018), as well as arresting the cell cycle in the S 
and G2 phases in glioblastoma cells (Song et al. 2014). SKF-
96365 is proven effective in the therapy of primary thermal 
and mechanical hyperalgesia and persistent spontaneous 
nociception (Ding et al. 2011, 2012). As a SOCE inhibitor, 
SKF-96365 also exhibits potent anti-neoplastic activity in 
non-small cell lung cancer cells (Wang et al. 2018b). Moreo-
ver, recent reports showed evidence that SKF-96365 induces 
reduction in cardiac conduction (He et al. 2017). Moreover, 
SKF96365 reduces  Ca2+ concentration and airway smooth 
muscle cell viability in asthmatic mice (Zhang et al. 2018a).

2‑APB

2-Aminoethoxydiphenyl borate (2-APB) is an inositol 
1,4,5-trisphosphate receptors (IP3Rs) antagonist and TRPC 
channel antagonist that blocks the expression of human 
TRPC5 and TRPC6 in HEK-293 cells. In the concentra-
tion–response curve, 2-APB has  IC50 of 20 μM (Diver et al. 
2001; Xu et al. 2005; Sekaran et al. 2007). 2-APB can act 
directly on TRPC ion channels in melanopsin-expressing 
ganglion cells (Sekaran et al. 2007). TRPC1/3/6 inhibi-
tion by SKF96365 and 2-APB attenuates TGF-β1-induced 
epithelial-mesenchymal transition in gastric cancer via the 
Ras/Raf1/ERK signaling pathway (Ge et al. 2018) (Table 5).

All nonselective TRPCs antagonists have certain inhibi-
tory effects on various cell types and can target a particu-
lar channel or disease through structural modification, 
which presents a novel TRPCs therapeutic target for drug 
discovery.

Discussion

TRPCs are associated with the occurrence and development 
of many diseases. Studies have proved that they are linked 
with different crucial roles in the pathophysiological process 
of many diseases; thus, they present a novel target for the 

intervention and treatment of some diseases. Additionally, 
the emergence of TRPCs modulators can prompt an under-
standing of these channels in health and disease.

At present, highly potent and highly selective TRPCs 
modulators, such as (−)-englerin A, hyperforin, ML204, 
Pico145, HC070, Pyr3, DS88790512, and AC1903 are still 
unprecedented opportunities for TRPCs research. How-
ever, some obstacles, such as the toxicity and instability of 
(−)-englerin A in the cardiac and respiratory systems limit 
their use (Wu et al. 2017b; Minard et al. 2018; Rubaiy 2019). 
Additionally, hyperforin is also unstable and susceptible to 
oxygen, heat, and light. Pico145 and HC070 are suitable for 
in vivo studies, whereas ML204 and DS88790512 were only 
conducted in vitro studies; thus, there are no reports on their 
in vivo efficacy. AC1903 could cause a developmental defect 
in the amygdala. These problems are collectively obstruc-
tive to the usage of the current selective TRPCs modulators; 
thus, the development of new TRPCs modulators drugs that 
are more potent and more selective is needed.

With the tremendous advancement of science and drug 
technologies, discovering the means to overcome the men-
tioned undesired effects becomes possible. In structural biol-
ogy, high-resolution structures are increasingly becoming 
the dominant method for determining the structures of many 
receptor complexes through cryo-EM technology. In recent 
decades, rich combinatorial compound libraries provide 
an abundant material basis for high-throughput screening 
due to their vast quantities and diverse structures that have 
become a popular approach to discovering and developing 
new medications, offering possibilities for finding suitable 
TRPCs modulators. Furthermore, many reports revealed 
that antisense oligonucleotide therapies and small molecule 
peptides therapies have increasingly become a novel strategy 
for treating a variety of diseases (Yamamoto et al. 2016; 
Beekman and Howell 2016; Mignani et al. 2019; Chen et al. 
2020b; Tahirovic et al. 2020). Studying channel domains 
functions, especially the precise interpretation of modula-
tors’ binding sites, helps discover highly selective TRPCs 

Table 5  TRPCs antagonists (3)

Modulators Chemical structure Targeting channels and IC50 Predicted effects Reference

SKF96365

 

TRPC, low-voltage-
activated T-type calcium 
channels

10 μM

suppress growth in human gastric cancer cell lines, 
glioblastoma cells, non-small cell lung cancer 
and colorectal cancer cells, primary thermal and 
mechanical hyperalgesia and persistent spontane-
ous nociception, induce a reduction in cardiac 
condition

Ding et al. (2011), Singh 
et al. (2010), Song 
et al. (2014), Ge et al. 
(2018)

2-APB

 

TRPC, TRPM3
20 μM

Act directly on a TRPC ion channel in melanopsin-
expressing ganglion cells, block human TRPC5, 
TRPC6 and TRPM3 channels

Diver et al. (2001), Ge 
et al. (2018), Sekaran 
et al. (2007), Xu et al. 
(2005)
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modulators. These new technologies permit a more compre-
hensive assessment of the structures and function of TRPCs 
in physiology and pathophysiology, thereby providing the 
means to find more potent and selective TRPCs modulators.
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