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Abstract The a-amino-3-hydroxy-5-methyl-4-isoxazolepro-

pionic acid receptor (AMPAR) is a major glutamate-gated

ion channel in the brain and is important for synaptic trans-

mission, synaptic plasticity, and learning. Palmitoylation, a

post-translational modification, is a critical process regulat-

ingAMPAR trafficking, synaptic function and plasticity, and

learning and memory in health and diseases. In this review,

we discuss current knowledge on the palmitoylation-de-

pendent regulation of AMPAR trafficking and functions.We

focus on the palmitoylation of AMPARs and other synaptic

proteins that directly or indirectly interact with AMPARs,

including postsynaptic density 95, glutamate receptor-in-

teracting protein/AMPAR-binding protein, A-kinase

anchoring protein 79/150, and protein interacting with C

kinase 1. Finally, we discuss what future studies should

address in the field of palmitoylation-dependent AMPAR

trafficking and function with regard to physiology and neu-

rodegenerative diseases.
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Introduction

Synapses are the fundamental bases of brain structure and

function and consist of a presynaptic terminal, synaptic

cleft, and postsynaptic site. Neurons communicate with

each other by releasing neurotransmitters from presynaptic

terminals to synaptic clefts, detecting neurotransmitters

with postsynaptic neurotransmitter receptors, and translat-

ing the detection into electrical and chemical signals in the

postsynaptic cells. In addition to synaptic transmission,

synapses also possess a remarkable ability to modulate

their outputs in response to various synaptic inputs, which

is called synaptic plasticity. The most well characterized

examples of synaptic plasticity in the brain are long-term

potentiation (LTP) and long-term depression (LTD).

The a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid receptor (AMPAR), a major glutamate-gated ion

channel in the mammalian central nervous system, play

important roles in synaptic transmission, synaptic plasticity

such as LTP and LTD, and ultimately, learning and

memory cognitive function in the brain. The synaptic

localization and abundance of AMPARs are critical for

synaptic function and are regulated by exocytosis, endo-

cytosis, recycling, and lateral mobility on the surface

membranes of AMPARs (Lu et al. 2001; Borgdorff and

Choquet 2002; Tardin et al. 2003; Park et al. 2004; Heine

et al. 2008; Patterson et al. 2010; Wu et al. 2017; Park

2018). Post-translational modifications (PTMs), including

phosphorylation (Banke et al. 2000; Lee et al.

2000, 2003, 2010; Lu and Roche 2012; Lussier et al. 2015),

glycosylation (Hollmann et al. 1994; Standley and Baudry

2000; Traynelis et al. 2010), ubiquitination (Schwarz et al.

2010; Lussier et al. 2011, 2012; Widagdo et al. 2015; Wei

et al. 2016), sumoylation (Craig and Henley 2012; Jaafari

et al. 2013; Lee et al. 2013), and palmitoylation (Hayashi
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et al. 2005; Lin et al. 2009; Thomas et al. 2012, 2013;

Diering and Huganir 2018), are also critical regulatory

factors for AMPAR function, synaptic plasticity, and

learning and memory in health and diseases. Among these

PTMs, palmitoylation, which was the most frequently

observed in neuronal cells than other lipid modifications

and was demonstrated to play crucial roles in synaptic

function and neurodegenerative diseases (Fukata and

Fukata 2010; Cho and Park 2016), will be discussed in this

review.

Palmitoylation is a lipid modification that occurs by a

covalent attachment of the 16 carbon-containing saturated

fatty acid palmitate to specific cysteine (Cys) residues of

target proteins via a thioester bond. This process is cat-

alyzed by conserved Aspartate-Histidine-Histidine-Cys

(DHHC) motif-containing palmitoyl acyltransferases

(PATs), also known as DHHC enzymes because of their

catalytic DHHC motif, and reversed by depalmitoylating

enzymes such as acyl protein thioesterases and palmitoyl

protein thioesterases. The reversibility of palmitoylation

enables precise and dynamic regulation of protein func-

tions in neurons, including synaptic targeting, glutamate

receptor trafficking, synaptic transmission, and synaptic

plasticity (Kang et al. 2004, 2008; Hayashi et al. 2009; Lin

et al. 2009; Noritake et al. 2009; Keith et al. 2012; Thomas

et al. 2012). Further, the activities of a variety of PATs and

depalmitoylating enzymes have been linked to many neu-

rodegenerative diseases (Han et al. 2015; Cho and Park

2016).

Given the importance of AMPARs and palmitoylation in

the physiology of synaptic function, synaptic plasticity and

learning, we present the current knowledge on palmitoy-

lation-mediated synaptic regulation of AMPARs and their

interacting proteins and discuss possible future studies on

palmitoylation-dependent AMPAR trafficking in neurode-

generative diseases in this review. The interacting proteins

discussed include postsynaptic density 95 (PSD-95), glu-

tamate receptor-interacting protein (GRIP1)/AMPAR-

binding protein (ABP), A-kinase anchoring protein 79/150

(AKAP79/150), and protein interacting with C kinase 1

(PICK1).

AMPAR palmitoylation

AMPARs are heterotetrameric proteins composed of the

subunits GluA1-GluA4 (also called GluR1-GluR4 or

GluRA-GluRD) (Wisden and Seeburg 1993; Hollmann and

Heinemann 1994; Dingledine et al. 1999; Collingridge

et al. 2009; Traynelis et al. 2010). In the hippocampus, the

composition of AMPARs is developmentally distinct

(Wenthold et al. 1996; Zhu et al. 2000), with GluA1/GluA2

heteromeric AMPARs more predominant than GluA2/

GluA3 heteromers in mature hippocampal neurons (Wen-

thold et al. 1996; Lu et al. 2009). Nevertheless, all four

AMPAR subunits have similar structures and topologies

(Malinow and Malenka 2002; Lu and Roche 2012). Each

subunit has a large extracellular N-terminal domain, four

hydrophobic transmembrane domains (TMDs), including

three that are membrane spanning (TMD1, TMD3, and

TMD4) and the membrane-embedded TMD2 that con-

tributes to channel pore formation, and three intracellular

domains (loop1, loop2, and a C-terminal tail) (Fig. 1).

Although the N-terminal domain and four hydrophobic

TMDs are highly homologous among the subunits, their

C-terminal intracellular tails are distinct, which confer

distinct regulation to the AMPAR subunits through specific

interactions with cytoplasmic proteins (Malinow and

Malenka 2002; Shepherd and Huganir 2007).

All four AMPAR subunits are palmitoylated at two

conserved Cys residues: one immediately next to TMD2,

and the other next to TMD4 in the C-tail juxtamembrane

region (labeled red in Fig. 1) (Hayashi et al. 2005; Diering

and Huganir 2018). Palmitoylation at Cys585 in GluA1 and

at Cys610 in GluA2 immediately after TMD2, which is

mediated by a PAT, DHHC3 (also known as Golgi-specific

DHHC zinc finger protein [GODZ]; (Uemura et al. 2002)

(Fig. 2), accumulated AMPARs in the Golgi apparatus and

reduced AMPAR surface expression (Hayashi et al. 2005).

The finding of accumulation of palmitoylated AMPARs at

the Golgi apparatus implies that depalmitoylation of

AMPARs at the Golgi apparatus would be a releasing

signal for AMPARs to traffic forward to the plasma

membrane. Palmitoylation at Cys811 in GluA1 and at

Cys836 in GluA2 in the C-tail juxtamembrane region did

not affect the AMPAR surface expression level at steady

state. Rather, it inhibited the interaction of GluA1 with the

4.1N protein and regulated activity-dependent endocytosis

of GluA1 (Hayashi et al. 2005), the insertion of GluA1 into

the plasma membrane, and LTP (Lin et al. 2009). Inter-

estingly, GluA1 palmitoylation requires anterograde traf-

ficking from the endoplasmic reticulum (ER) to the Golgi

apparatus, where DHHC3/GODZ is located (Uemura et al.

2002), whereas GluA2 palmitoylation primarily occurs

within the ER (Yang et al. 2009). Because DHHC3/GODZ

was reported to be exclusively located on the Golgi appa-

ratus (Uemura et al. 2002), the PAT in the ER that

palmitoylates GluA2 remains to be revealed. In addition,

because palmitoylation next to TMD2 at Cys585 in GluA1

and at Cys610 in GluA2 occurred only when co-expressed

with DHHC3/GODZ (Hayashi et al. 2005), it is very

plausible that other PATs palmitoylate AMPAR residues

immediately after TMD2 endogenously or that DHHC3/

GODZ or other PATs palmitoylate AMPAR residues when

some stimuli are applied.
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Fig. 1 a-Amino-3-hydroxy-5-

methyl-4-isoxazolepropionic

acid receptor (AMPAR)

structure and palmitoylation.

Schematic diagrams show each

of the four AMPAR subunits. In

each diagram, the large

extracellular N-terminal domain

includes S1, which forms the

glutamate binding site together

with S2 that is located on the

extracellular loop linking

transmembrane domain 3

(TMD3) and TMD4. Four

hydrophobic TMDs including

three membrane-spanning

TMDs (TMD1, TMD3, and

TMD4) and one membrane-

embedded TMD (TMD2) and

three intracellular domains

(intracellular loop1, loop2, and

the cytoplasmic tail) are shown.

Palmitoylation sites for each

subunit are marked in red

Fig. 2 Interaction network

between palmitoyl

acyltransferases (PATs)/

depalmitoylating enzymes and

their synaptic substrates. Only

the PAT/depalmitoylating

enzyme–substrate pairs

described in this review are

shown. Blue circles, PAT

enzymes; red circles,

depalmitoylating enzymes;

black circles, synaptic

substrates. PSD-95,

postsynaptic density 95; GRIP1,

glutamate receptor-interacting

protein; AKAP79/150, A-kinase

anchoring protein 79/150;

PICK1, protein interacting with

C kinase 1; ABHD17, a/b-
hydrolase domain-containing

protein 17
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Neuronal activity also regulates AMPAR palmitoylation

dynamically (Hayashi et al. 2005; Yang et al. 2009; Spi-

nelli et al. 2017). Glutamate treatment, which stimulates

neurons, induced depalmitoylation of AMPARs (Hayashi

et al. 2005; Yang et al. 2009) whereas tetrodotoxin (TTX)

treatment, which blocks neuronal activity, enhanced

palmitoylation of AMPARs (Yang et al. 2009). Interest-

ingly, a high-fat diet elevated levels of palmitic acid and

insulin resistance, which led to increased expression of

DHHC3/GODZ in the hippocampus (Spinelli et al. 2017).

Elevated levels of palmitic acid and DHHC3/GODZ

caused GluA1 palmitoylation, which suppressed its activ-

ity-dependent delivery to the plasma membrane and

impaired LTP and memory in mice fed a high-fat diet

(Spinelli et al. 2017). In addition to the studies on AMPAR

palmitoylation in hippocampal and cortical neurons

(Hayashi et al. 2005; Lin et al. 2009; Yang et al. 2009;

Spinelli et al. 2017), a study performed in the nucleus

accumbens demonstrated that intraperitoneal administra-

tion of cocaine enhanced palmitoylation of GluA1 and

GluA3 and redistributed intracellular GluA1 and GluA3

(Van Dolah et al. 2011). Cocaine-induced palmitoylation

and subcellular redistribution of GluA1 and GluA3 were

blocked by the application of the palmitoylation inhibitor

2-bromopalmitate (Van Dolah et al. 2011). These findings

suggest that the differential roles of AMPAR palmitoyla-

tion in various forms of synaptic plasticity should be

investigated further in multiple brain regions.

Regulation of AMPARs by palmitoylation
of synaptic proteins

In addition to the direct palmitoylation of AMPARs

themselves, palmitoylaton of synaptic proteins directly or

indirectly interacting with AMPARs (Kim and Sheng

2004) such as PSD-95, GRIP1, GRIP2, PICK1, and

AKAP79/150, can also be an important regulatory factor

for AMPAR trafficking and function (Fukata and Fukata

2010; Thomas and Huganir 2013; Han et al. 2015).

PSD-95, the major PSD scaffolding protein, regulates

synaptic trafficking of AMPARs (El-Husseini et al. 2000;

Fig. 3 AMPAR palmitoylation and regulation of AMPARs by palmitoylation of synaptic proteins. Palmitoylation at Cys811 in the GluA1

C-terminus inhibits the interaction of GluA1 with 4.1N and triggers activity-dependent endocytosis of AMPARs. PSD-95 palmitoylations at

Cys3 and Cys5 mediated by DHHC2, DHHC3, DHHC5, DHHC7, DHHC8, and DHHC15, stabilize PSD-95-AMPAR interaction via Stargazin.

GRIP1b palmitoylation targets GRIP1b to recycling endosomes and enhances activity-dependent recycling of GluA2-containing AMPARs to the

plasma membrane. AKAP79 palmitoylations at Cys36 and Cys129 mediated by DHHC2 are necessary for AKAP79 targeting to recycling

endosomes and dendritic spines. PSD-95, postsynaptic density 95; GRIP1, glutamate receptor-interacting protein; AKAP79/150, A-kinase

anchoring protein 79/150
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Elias and Nicoll 2007). PSD-95 is palmitoylated at Cys3

and Cys5 by DHHC2, DHHC3/GODZ, DHHC5, DHHC7,

DHHC8, and DHHC15 (Fukata et al. 2004) (Figs. 2, 3),

which is required for its synaptic targeting (Topinka and

Bredt 1998; Craven et al. 1999; El-Husseini et al. 2000;

Noritake et al. 2009; Sturgill et al. 2009) and for the

synaptic trafficking of AMPARs (El-Husseini et al. 2000;

El-Husseini Ael et al. 2002; Schnell et al. 2002; Noritake

et al. 2009). Overexpression of PSD-95 increased

AMPAR-mediated synaptic transmission (El-Husseini

et al. 2000; Schnell et al. 2002) whereas the non-palmi-

toylatable form of PSD-95 disrupted GluA1 clustering and

AMPAR-mediated synaptic transmission (El-Husseini

et al. 2000; El-Husseini Ael et al. 2002; Schnell et al.

2002). Glutamate treatment (10 lM) caused PSD-95

depalmitoylation, PSD-95 synaptic cluster dispersal, and

AMPAR internalization (El-Husseini Ael et al. 2002).

Ca2?/calmodulin (CaM) binding to the N-terminus of PSD-

95 was shown to block PSD-95 palmitoylation at Cys3 and

Cys5, which triggered PSD-95 dispersal and dissociation

from the postsynaptic membrane (Zhang et al. 2014).

Conversely, treatment with neuronal activity blockers such

as kynurenic acid (an ionotropic glutamate receptor

blocker), APV (an N-methyl-D-aspartate receptor

[NMDAR] blocker), CNQX (an AMPAR blocker), and

TTX (a sodium channel blocker) increased the palmitoy-

lation and synaptic clustering of PSD-95 (Noritake et al.

2009) as TTX increased AMPAR palmitoylation (Yang

et al. 2009). This activity-dependent palmitoylation of

PSD-95 is mediated by DHHC2, which is translocated

from the dendritic shaft to the PSD upon activity blockade

(Noritake et al. 2009). The palmitoylation of PSD-95

altered its conformation from a compact to an extended

form, which was oriented perpendicular to the PSD mem-

brane (Jeyifous et al. 2016) and associated indirectly with

AMPARs via Stargazin, an AMPAR auxiliary protein

(Tomita et al. 2005) (Fig. 3), or NMDARs via the GluN2B

subunit. Increased PSD-95 palmitoylation also increased

the surface AMPAR level with no change in the NMDAR

level, indicating the differential regulation of AMPAR and

NMDAR trafficking by PSD-95 palmitoylation (Jeyifous

et al. 2016).

In addition to controlling the PSD-95 palmitoylation

process, direct regulation of the PSD-95 depalmitoylation

process is definitely another key regulatory step for

synaptic function. Recently, long-awaited PSD-95

depalmitoylating enzymes were identified as a/b-hydrolase
domain-containing protein 17 members (ABHD17A,

ABHD17B, and ABHD17C) (Yokoi et al. 2016) (Figs. 2,

3). Overexpression of ABHD17B selectively depalmitoy-

lated PSD-95 and decreased the synaptic clustering of

PSD-95 and GluA1 (Yokoi et al. 2016). Further investi-

gations on PSD-95 deplamitoylation and palmitoylation

mechanisms will help clarify the regulatory mechanisms

underlying synaptic function and plasticity.

GRIP1 and GRIP2 (also known as ABP), which have

multi-PSD-95/discs large/zona occludens (PDZ) domains,

directly interact with the C-termini of the AMPAR GluA2

and GluA3 subunits through its PDZ and stabilize

AMPARs (Dong et al. 1997; Srivastava et al. 1998)

(Fig. 3). The genes encoding GRIP1 and GRIP2 have

multiple splice isoforms (Dong et al. 1997; Wyszynski

et al. 1999), and GRIP1b and GRIP2b (also known as

pABP-long [pABP-L]) have additional N-terminal

sequences, which contain a unique Cys residue that is

palmitoylated (Yamazaki et al. 2001; DeSouza et al. 2002;

Thomas et al. 2012). Palmitoylatable pABP-L targets the

plasma membrane of dendritic spines where it associates

with surface GluA2, whereas the non-palmitoylat-

able ABP-L form (a variant of ABP with seven PDZ

domains) localizes with intracellular AMPARs (DeSouza

et al. 2002; Misra et al. 2010) (Fig. 3). In addition,

palmitoylated pABP-L increased the amplitude and fre-

quency of AMPAR-mediated excitatory postsynaptic cur-

rents (Misra et al. 2010). Palmitoylation-deficient pABP-L

that is mutated at the 11th amino acid Cys (to alanine)

changed its localization to intracellular clusters from the

spinal plasma membrane, indicating the requirement of

pABP-L palmitoylation in its synaptic localization (DeS-

ouza et al. 2002). Whereas the palmitoylation of GRIP2/

ABP induced plasma membrane targeting, the palmitoy-

lation of GRIP1b, which is mediated by DHHC5 and

DHHC8 (Thomas et al. 2012) (Figs. 2, 3), targeted intra-

cellular endosomes and enhanced NMDA-induced

AMPAR endocytic recycling trafficking. This finding

indicates the involvement of GRIP1 palmitoylation in

AMPAR endocytic recycling during NMDA-induced LTD

(Hanley and Henley 2010; Thomas et al. 2012) (Fig. 3).

Although the PATs for GRIP1b, DHHC5 and DHHC8

were identified (Thomas et al. 2012), the PATs for GRIP2b

remain to be discovered.

AKAP79/150 (AKAP79 in humans and AKAP150 in

rodents), a scaffold protein that is not a direct binding

protein with AMPARs, is palmitoylated at Cys36 and

Cys129 in AKAP79 by DHHC2 (Keith et al. 2012; Delint-

Ramirez et al. 2015; Woolfrey et al. 2015) (Figs. 2, 3).

Palmitoylation of AKAP79/150 is required for its targeting

to recycling endosomes (Keith et al. 2012; Purkey et al.

2018) and dendritic spines upon LTP-inducing stimulation

(Keith et al. 2012; Woolfrey et al. 2015). Conversely,

LTD-inducing stimulation, which is accompanied by spine

shrinkage, required depalmitoylation and synaptic removal

of AKAP79/150 (Keith et al. 2012; Woolfrey et al. 2018).

Super-resolution (approximately 40–60 nm) stimulated

emission depletion microscopy revealed that palmitoyla-

tion-deficient AKAP150 localization to the PSD was
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significantly reduced in AKAP150 palmitoylation-deficient

knockin mice (Purkey et al. 2018). In addition, AKAP150

palmitoylation restricted synaptic localization of Ca2?-

permeable AMPARs containing GluA1 but lacking GluA2

in the basal state and was required for Ca2?-permeable

AMPAR-dependent LTP (Purkey et al. 2018).

In addition to PSD-95, GRIP/ABP, and AKA79/150,

many other synaptic proteins have also been reported to be

palmitoylated (Fukata and Fukata 2010; Cho and Park

2016). PICK1 is a PDZ domain-containing protein that

directly interacts with GluA2 and GluA3 (Dev et al. 1999;

Xia et al. 1999). PICK1 plays critical roles in cerebellar

LTD (Steinberg et al. 2006; Anggono et al. 2013; Thomas

et al. 2013), hippocampal synaptic plasticity (Terashima

et al. 2004, 2008; Volk et al. 2010; Anggono et al. 2011)

and cortical synaptic plasticity (Clem et al. 2010) by reg-

ulating synaptic abundance, trafficking, and functions of

AMPARs. Palmitoylation of PICK1 by DHHC8 was

reported to be critical for cerebellar LTD (Thomas et al.

2013). Even though important work has reported the roles

of PICK1 in AMPAR trafficking, synaptic plasticity, and

learning and memory, very little is known about how

PICK1 is palmitoylated and how this contributes to

AMPAR trafficking and synaptic function.

Perspectives

Our understanding of the roles of palmitoylation in

synaptic targeting, glutamate receptor trafficking, synaptic

transmission, synaptic plasticity, and learning and memory

has increased with the aid of identifications of pamitoy-

lating enzymes, namely, the DHHC family PATs (Fukata

et al. 2004; Fukata and Fukata 2010) and depalmitoylating

ABHD enzymes (Yokoi et al. 2016) and development of

the non-radioactive palmitoylation assay (Wan et al. 2007)

and omics technologies (Kang et al. 2008). Many neuronal

substrates for PATs have been discovered with rather broad

specificities of the PATs as well as the substrates (Fukata

and Fukata 2010; Cho and Park 2016). Future investiga-

tions will be required to clarify specific substrate and PAT

pairs by dissecting the mechanisms underlying these

specificities. In addition, the detailed mechanisms under-

lying how PATs regulate synaptic function in pathophysi-

ology remain to be revealed. Furthermore,

depalmitoylation-mediated regulation of synaptic function

remains largely unexplored.

Palmitoylation of AMPARs is affected by another PTM,

namely phosphorylation (Lin et al. 2009). Depalmitoyla-

tion at Cys811 in the C-tail of GluA1 positively regulates

nearby protein kinase C phosphorylation at Ser816 and

Ser818, which enhances the interaction of 4.1N with

GluA1, and facilitates GluA1 insertion and LTP (Lin et al.

2009). Given that ubiquitination has also been suggested to

modulate signaling for fine regulation of AMPAR traf-

ficking via communication with palmitoylation (Yang et al.

2009) or phosphorylation of GluA1 (Kessels et al. 2009),

and that synaptic targeting of PSD-95 is also reciprocally

controlled by nitrosylation and palmitoylation (Ho et al.

2011), it will be important to further dissect how AMPAR

trafficking and synaptic function are regulated through

crosstalk among PTMs.

Protein palmitoylation is impaired in various neurode-

generative diseases including Alzheimer’s disease (Mizu-

maru et al. 2009; Bhattacharyya et al. 2013), Huntington’s

disease (Singaraja et al. 2002; Huang et al. 2004; Yanai

et al. 2006; Singaraja et al. 2011; Milnerwood et al. 2013),

schizophrenia (Liu et al. 2002; Mukai et al. 2004, 2008;

Mukai et al. 2015), intellectual disability (Mansouri et al.

2005; Tarpey et al. 2009; Masurel-Paulet et al. 2014;

Mitchell et al. 2014), and neuronal ceroid lipofuscinosis

(Vesa et al. 1995; Henderson et al. 2016). Altered AMPAR

trafficking has also been described in neurological disor-

ders (Ikonomovic et al. 1995, 1997; Muddashetty et al.

2007; Suvrathan et al. 2010; Reinders et al. 2016; Jurado

2017). To our knowledge, however, studies showing direct

evidence of palmitoylation-mediated regulation of

AMPAR trafficking in neurological diseases are absent.

Future studies detailing how the palmitoylation and

depalmitoylation of AMPARs and other synaptic proteins

affect the pathogeneses of neurodegenerative diseases are

needed.

AMPAR trafficking, especially the surface delivery of

AMPARs, is crucial for the physiological functioning of

synapses and pathogeneses of neurodegenerative diseases.

As described in this review, AMPARs themselves and

other AMPAR-interacting neuronal proteins are palmitoy-

lated, and palmitoylation plays important roles in the sur-

face delivery of AMPARs, which is necessary for synaptic

function. Therefore, future studies in the field of neuronal

palmitoylation should focus on the regulation of AMPAR

trafficking by specific PATs and depalmitoylating enzymes

in pathophysiological conditions. This will provide infor-

mative clues for the development of selective pharmaco-

logical therapeutics aimed at ameliorating

neurodegenerative diseases derived from PATs or

depalmitoylating enzymes associated with AMPAR

trafficking.
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