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Abstract The tumor necrosis factor (TNF)-related apop-

tosis-inducing ligand (TRAIL) induces apoptosis via death

receptor (DR) 4 or DR5 preferentially in cancer cells, and

not in normal cells with relatively high decoy receptor

expression. However, multiple mechanisms in cancer cells

induce resistance to DRs-mediated apoptosis. Therefore,

understanding of molecular mechanisms for resistance to

DRs-mediated apoptosis can find the strategy to increase

sensitivity. Although multiple proteins are involved in

resistance to DRs-mediated apoptosis, we focus on modu-

lation of DR5 to overcome resistance. Here, we discuss

regulation of DR5 expression or activation by epigenetic

modification, transcription factor at the transcriptional

levels, micro RNA and RNA-binding proteins at the post-

transcriptional levels, and ubiquitination and glycosylation

at the post-translational levels. In addition, we also mention

about relationship between localization of DR5 and death

signaling activation. The purpose of this review is to help

understand relationship between regulatory mechanisms of

DR5 and resistance to TRAIL or DRs-targeted agonist

monoclonal antibodies, and to develop innovative anti-

cancer therapies through regulation of DR5 signaling.
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Introduction

Apoptosis, a form of cell death in which a programmed

sequence of events, is most frequent cell death mode

induced by anti-cancer drugs in cancer cells. The tumor

necrosis factor (TNF)-related apoptosis-inducing ligand

(TRAIL) induces apoptosis via death receptors (DRs), DR4

or DR5, in cancer cells. In contrast, since normal cells

highly express decoy receptors (DcRs), which are partially

or completely lack of functional death domain (DD),

ligation of TRAIL fails to induce cell death. Underlying

mechanism of TRAIL-induced apoptosis is that ligation of

TRAIL induces oligomerization of DRs, and Fas-associ-

ated protein with death domain (FADD) binds to DD of

DRs. Death-inducing signaling complexes (DISCs) for

extrinsic apoptosis are composed of DRs, cytosolic adaptor

FADD, and pro-caspase-8/cFLIP. Assembly of DISC is

accomplished by interaction of DDs and death effecter

domains (DEDs). Procaspase-8 is recruited to DED of

FADD, and then multiple procaspase-8 is assembled

through DED of caspase-8. DISC formation is critical for

activation of caspase-8 via cleavage of procaspase-8, and

then activates effector caspases, such as caspase-3, 6, and

7, leading to induction of apoptosis in type 1 cells (Ma-

halingam et al. 2009). Mitochondrial pathway could be

involved in TRAIL-mediated apoptosis in type 2 cells.

When caspase-8 truncates Bid, it is oligomerized with Bak

and Bax which induces mitochondrial membrane perme-

abilization. Cytochrome c released from mitochondria

forms apoptosome with Apaf-1, which provide platform for

recruitment and activation of procaspase-9. Activated

caspase-9, like a caspase-8, triggers apoptosis via activa-

tion of effector caspases (Mahalingam et al. 2009). As

mentioned above, ligation of TRAIL with DRs produces

the first signal to induce apoptosis in both type 1 and type 2
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cells. Therefore, dysregulation of expression and localiza-

tion of DRs are resistant to TRAIL.

DR5 gene located on chromosome 8p (MacFarlane et al.

1997), and DR5 has two splice variants, long and short

DR5, which is absence of 29 different amino acids in the

extracellular region (Mert et al. 2017). Interestingly, Van

Roosmalen et al. (2014) reviewed about DRs preference for

TRAIL-induced apoptosis. These results are derived from

experiments which used single recombinant TRAIL, DR4-

(Tur et al. 2008), and DR5-selective TRAIL variants (van

der Sloot et al. 2006). According to their research, TRAIL

has different sensitivity to DRs-induced apoptosis

depending on cancer cell lines. For examples, leukemic

cells have a preference for DR4-induced apoptosis, and

lymphoma, myeloma, and most solid tumor shows

heterogeneity. In addition, Truneh et al. reported that

TRAIL binding affinity to DR5 is the strongest at 37 �C,
compared with other DRs and DcRs (Truneh et al. 2000).

There are various mechanisms for inducing TRAIL resis-

tance, but we discuss about enhancement of DRs-mediated

apoptosis via modulation of human DR5.

Modulatory mechanisms of DR5 expression

Transcriptional regulation

Sp1 (specificity protein 1)

Sp1 activates the transcription by binding CG-rich Sp-

binding sites in promoter of genes, which are related with

cell growth, differentiation, apoptosis, and carcinogenesis

(Vizcaino et al. 2015). DR5 is one of Sp1-regulated genes.

DR5 promoter contains minimal promoter element at -198

to -166, which region also overlap with two Sp1 binding

sites. These two Sp1 sites play a critical role in basal

transcription activity of DR5 (Yoshida et al. 2001). In

addition, anti-cancer drugs induced DR5 expression in a

Sp1-dependent manner. For examples, deoxycholic acid

and sodium butyrate increase DR5 expression via Sp1

transcriptional activation (Higuchi et al. 2004; Kim et al.

2004). Quercetin (30,30,40,5,7-pentahydroxyflavone), a fla-

vonoid found in fruits and vegetables, also increases Sp1-

mediated DR5 expression (Kim et al. 2008). Beta-lanone,

butein, piceatannol, and capsaicin sensitize TRAIL-medi-

ated apoptosis via up-regulation of Sp1-mediated DR5

expression (Kim et al. 2010; Moon et al. 2010, 2012; Kang

et al. 2011). Notch is important signaling molecules in

tumorigenesis by modulation of cell differentiation, pro-

liferation and death in cancer cells. Recently, inhibition of

notch1 signaling enhances TRAIL-mediated apoptosis in

glioblastoma, and these mechanisms are related with up-

regulation of DR5 by JNK-mediated Sp1 activation (Fassl

et al. 2015).

p53

p53 is mortal of cellular growth, division and proliferation

by regulation of cell cycle arrest and apoptosis. In the

initial study, p53 status seems not to be important in

TRAIL-induced cell death. Since p53 status is mutated in a

half of cancer cells, p53-indenepent cell death by TRAIL

seems attractive. However, Wu et al. reported that DR5 is a

DNA damage-inducible p53-regualted gene (Wu et al.

1997). DR5 is identified as a transcript induced by anti-

cancer drugs including doxorubicin (Lowe et al. 1993), and

doxorubicin activates p53-dependent signaling pathway.

Therefore, Wu et al. hypothesized that DR5 is a gene

controlled by p53, and found that doxorubicin increases

DR5 expression in p53 wild-type cells, but not p53-mu-

tated cells (Wu et al. 1997). The binding sites (BS) of p53

transcription factor were identified three sited in DR5

promoter region. There are BS1, BS2, and BS3, and they

are located - 0.82 Kb, ? 0.25 Kb (within Intron 1), and

? 1.25 Kb (within Intron 2) of the ATG site, respectively.

Among them, BS2 has critical roles on p53-dependnet DR5

expression (Takimoto and El-Deiry 2000). Anti-cancer

drugs [etoposide, CPT-11 (Wang and El-Deiry 2003), and

nutlin-3 (Hori et al. 2010)] or ionizing radiation (Sheikh

et al. 1998) increase DR5 mRNA expression in a p53-

dependent manner.

CHOP (CCAAT/enhancer-binding protein homologous

protein)

CHOP is endoplasmic reticulum (ER) stress-induced a

major transcriptional factor. CHOP induces ER-stress-me-

diated apoptosis depending on duration and severity of ER

stress (Oyadomari and Mori 2004). ER stress inducers,

including thapsigargin and tunicamycin, induce DR5

expression, and CHOP as a transcription factor plays crit-

ical roles on DR5 expression (Yamaguchi and Wang 2004;

Shiraishi et al. 2005). Yamaguchi and Wang (2004) iden-

tify the CHOP binding element in the DR5 promoter

between - 276 and - 264 (? 1 represents the translation

start site). Proteasome inhibitor (MG132) (Yoshida et al.

2005), farnesyltransferase inhibitor (Sun et al. 2007), sili-

binin (Son et al. 2007), and 15-deoxy-D12, 14-pros-

taglandin J2 (15d-PGJ2) increases CHOP-dependent DR5

transcription (Su et al. 2008). In addition, adverse effect in

a cardiovascular or anti-cancer effect of cyclooxygenase-2

(COX-2) inhibitor (celecoxib and ON09310) is related with

CHOP-dependent DR5 expression in a COX-2 independent

manner, followed by cell death (He et al. 2008). Interest-

ingly, although IRE1a, as an unfolded protein response
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(UPR) sensor transiently triggers decay of DR5 mRNAs,

persistent ER stress increases CHOP-dependent DR5

expression. Up-regulated DR5 induces TRAIL-indepen-

dent apoptosis via caspase-8 (Lu et al. 2014). In contrast,

Glab et al. reported that ER stress by thapsigargin, tuni-

camycin, or subtilase cytotoxin triggers apoptosis in a

DR5-independent manner, and Bim is more important on

ER-stress induced cell death (Glab et al. 2017). Therefore,

ER stress could increase DR5 expression via CHOP, but

roles of DR5 on ER stress-induced apoptosis are

controversial.

NF-jB (nuclear factor kappa-light-chain-enhancer

of activated B cells)

NF-jB is composed of five Rel family members (RelA/

p65, RelB, c-Rel, p50, and p52). In canonical pathways,

IjB kinase (IKK) activation by stimuli induces phospho-

rylation and degradation of IjB. Released NF-jB dimer

(predominantly p65/p50) from IjB translocate into

nucleus. In non-canonical pathway, NF-jB-inducing
kinase (NIK) induces activation of IJJa, and then phos-

phorylates p100, followed by processing of p100. Gener-

ated p52 from p100 binds RelB, and then translocates into

the nucleus (Sun 2011). The function of NF-jB in cancer is

controvercial, depending on cell types, stimuli, and regu-

lated genes. NF-jB signaling is also involved in DR5

expression. Among NF-jB subunits, c-Rel is a critical for

DR5 transcription (Ravi et al. 2001). TRAIL induces

apoptosis in RelA-/- or wild-type mouse embryonic

fibroblast (MEF), but not c-Rel-/- MEF, which are

absence of DR5 expression. Although c-Rel activation by

TNF-a increases DR5 expression, RelA is also induces

anti-apoptotic proteins, such as Bcl-xL, resulted in inhibi-

tion of apoptosis by TRAIL (Ravi et al. 2001). In addtion,

overexpression of RelA inhibits DR5 expression, whereas

overexpression of c-Rel enhances DR5 expression in

TRAIL-treated cells (Chen et al. 2003). The subunit of NF-

jB has difference preferences, depending on consensus

sequence of target genes (Baeuerle and Baltimore 1996).

Proteasome inhibitor, apple procyanidins, Smac mimetics,

and hepatitis B virus X (HBx) protein increase DR5

expresion via NF-jB activation (Chen et al. 2008; Mal-

donado et al. 2010; Eckhardt et al. 2013; Kong et al. 2015).

Furthermore, knock down of death-associated protein

kinase 2 (DAPK2) by siRNA induces NF-jB transcrip-

tional activity, leads to the induction of DR5 expression

(Schlegel et al. 2014). It reported that NF-jB binding site

lies between ? 385 and ? 394 in the first intron of DR5

(Yoshida et al. 2001). However, NF-jB is also key sig-

naling molecules to induce anti-apoptotic proteins, thus the

role of NF-jB in DRs-mediated apoptosis must be care-

fully mentioned.

YY1 (Yin Yang 1)

YY1 is a 65 kDa of zinc finger transcription factor and

modulates transcriptional activity of gene promoter as

activator or repressor depending on interacting proteins,

such as a histone deacetylases (HDAC) and a histone

acetyltransferases (HAT) (Thomas and Seto 1999). In case

of DR5, YY1 acts as a repressor. The binding site for the

YY1 is localized between - 804 and - 794 in the pro-

moter of DR5 (Yoshida et al. 2001; Baritaki et al. 2007a),

and multiple chemotherapeutic drugs, including cisplatin,

etoposide, adriamycin and vincristine, increase DR5

expression through inhibition of YY1 expression and

transcriptional activity (Baritaki et al. 2007a). In addition,

Raf-1 kinase inhibitor protein (RKIP) inhibits NF-jB
activity, followed by inhibition of YY1 expression (Bari-

taki et al. 2007b). Since NF-jB directly or indirectly reg-

ulates YY1 expression (Baritaki et al. 2007a, b; Wang et al.

2007), the novel proteasome inhibitor (NPI-0052) also

inhibits NF-jB activity by accumulation of p-IjB, and

sequentially induces up-regulation of DR5 expression

through inhibition of YY1 expression and transcriptional

activity (Baritaki et al. 2008). In addition, nitric oxide

(Huerta-Yepez et al. 2009) and BH3-mimetics obatoclax

also sensitizes TRAIL-induced apoptosis through up-reg-

ulation of DR5 expression by inhibition of YY1 tran-

scriptional activity (Martinez-Paniagua et al. 2011).

Others

Other transcriptional factors are also involved in DR5

expression. For examples, epithelium-specific Ets factor,

family member 3 (ESE-3) increases DR5 expression by

binding to purine-rich GGAA/T sequences in cooperation

with CBP and p300 (Lim et al. 2006), and activating

transcription factor 3 (ATF3) is a transcriptional factor for

DR5 induction through ROS-ER stress pathways (Edagawa

et al. 2014). In contrast, nuclear Bcl-2 nineteen kilodalton

interacting protein (BNIP3) binds to the DR5 promoter,

and then decreases DR5 expression (Burton et al. 2013).

Epigenetic modification

Methylation

DNA methylation is important on chromatin remodeling

and gene expression, and DNA methyltransferases

(DNMTs) induce cellular DNA methylation (Li et al.

2013). To identify the roles of methylation enzymes

(DNMT1 and DNMT3b) in cell survival, expression of

both are blocked by siRNA in human hepatocellular car-

cinoma cells. Double knock-down of DNMT1 and

DNMT3b by siRNA increased TRAIL-treated cell death
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via up-regulation of DR5 mRNA and protein expression

(Kurita et al. 2010). However, alteration of methylation in

DR5 promoter is not detected. Therefore, TRAIL sensiti-

zation by inhibition of methylation is indirectly related

with up-regulation of DR5 expression.

Histone lysine demethylase 4A (KDM4A) is a member

of the Jumonji C domain-containing KDM4 subfamily of

histone demethylase, which induces demethylation of his-

tone H3 on lysine 9 and 36, and histone H1.4 on lysine 26

(Berry and Janknecht 2013). Recently, Wang et al. reported

that inhibition of KDM4A induces DR5 mRNA and protein

expression and enhances apoptosis in cancer cells. How-

ever, KDM4A did not directly bind to the promoter of

DR5, and indirectly increases association of histone mod-

ifying enzyme complexes in promoter of CHOP expres-

sion, resulted in induction of DR5 expression (Wang et al.

2016). Since there is very little methylation in the DR5

promoter (van Noesel et al. 2002), there seems to be dif-

ficult in finding direct links between the demethylation and

DR5.

Acetylation

Acetylation and deacetylation of lysine residues in nucleo-

somal histones is regulated by histone acetyltransferase and

histone deacetylase (HDACs), respectively. Hyper-acetyla-

tion of lysine residues in nucleosomal histones increases or

restores gene expression, which is associated with cell cycle

arrest, cell death, and differentiation. For this reason, HDAC

inhibitors are recognized as a target of cancer therapy

(Newbold et al. 2016). LAQ824, a HDAC inhibitor, sensi-

tizes TRAIL-induced apoptosis in human acute leukemia

cells. The molecular mechanism of LAQ824-induced

TRAIL sensitization is associatedwith up-regulation of DR5

mRNA and protein expression. LAQ824 acetylates histones

H3 and H4 in DR5 promoter, resulted in induction of DR5

expression and DISC formation (Guo et al. 2004). In addi-

tion, depletion of HDAC2, not HDAC1, and HDAC inhibi-

tors [trichostatin A (TSA), sodium butyrate, and

suberoylanilide hydroxamic acid (SAHA)] increase TRAIL-

induced apoptosis in cancer cells, but they did not show the

acetylation of nucleosomal histones in DR5 gene (Nakata

et al. 2004; Schuler et al. 2010). Therefore, modulation of

nucleosomal histones acetylation using HDAC inhibitors

could sensitize TRAIL-mediated apoptosis through up-reg-

ulation of DR5 expression.

Post-transcriptional regulation

RNA-binding protein HuR

The stability of mRNAs is regulated by binding of mRNA

binding proteins in the adenylate-uridylate (AU)-rich

elements in the 30-untranslated region (UTR). It has been

known that the stability of DR5 mRNA is also modulated

by several stimuli. For examples, the 15d-PGJ2 (Nakata

et al. 2006) and thapsigargin (He et al. 2002) induces DR5

expression via stabilization of DR5 mRNA. The 30UTR
and 50UTR of human DR5 gene has AU-rich elements.

Kandasamy et al. identify the specific sequences, which are

critical for DR5 mRNA stability (Kandasamy and Kraft

2008), and it is the AU-rich element from 3556 to 3587 in

the 30UTR region of human DR5 gene. Among mRNA

binding proteins, only HuR binds to this AU-rich element,

leads to stabilization of DR5 mRNA by proteasome inhi-

bitor (PS-341) in LNCaP human prostate cancer cells, but

not PC-3 and DU145 (Kandasamy and Kraft 2008). In

addition, chloroquine also increases DR5 mRNA stability

in human renal carcinoma Caki cells, but HuR is not

involved (Park et al. 2016). In contrast, Pineda et al.

reported that DR5 agonist induces cleavage and translo-

cation from nucleus to cytoplasm of HuR, and then binding

of HuR to 50UTR by DR5 agonist inhibits DR5 translation

in pancreatic cancer cells (Pineda et al. 2012).

MicroRNA(miR)-1246 and miR-133a

MicroRNAs are small endogenous noncoding RNA (* 22

nucleotides), which reduces mRNA stability or inhibit

translation by binding in 30UTR of target mRNA target

genes (Filipowicz et al. 2008). The miR-1246 released

from irradiated cancer cells moves to recipient cells in an

exosome independent manner, and induces proliferation

and radio-resistance of irradiated recipient cells. They

found that DR5 is direct target of miR-1246, which

represses mRNA and protein expression of DR5. Extra-

cellular miR-1246 by radiation has bystander effects,

which are related with resistance in surrounding cells

(Yuan et al. 2016). Although they did not investigate

whether miR-1246 is involved in TRAIL resistance, the

relationship between the two is predictable. However, it

needs to prove through accurate experiments. In addition,

miR-133a also modulates DR5 expression in glioblastoma.

miR-133a suppresses DR5 expression directly by binding

in 30UTR of DR5, which is related with TRAIL resistance

(Wang et al. 2017).

Others

Zhang et al. reported that levels of DR5 protein expression

is critical roles on TRAIL sensitivity in multiple melanoma

cells, since between mRNA and protein levels of DR5 has

no correlation (Zhang et al. 2004). They identified the

reason as a difference in regulation of translation. Luci-

ferase activity with 30UTR of DR5 in TRAIL-resistance

cells was suppressed compared with that in TRAIL-
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sensitive cells, and a 23 base (TAAATGCTTTATTTATTT

ATTTG) in AU-rich element of 30UTR plays critical roles

in translation of DR5 in TRAIL-treated cells. Although

specific RNA binding proteins were not identified, at least

this response is independent of HuR and HuD (Zhang et al.

2004). Therefore, studies are not enough to understand the

regulatory mechanism of mRNA stabilization and transla-

tion of DR5. Modulation of DR5 mRNA stability and

translation might be dependent of cell types, stimulator,

RNA binding proteins and binding sites.

Post-translational regulation

Ubiquitination

Ubiquitination to the target proteins can change protein

stability and functions and is mediated by three enzymes,

such as E1 (ubiquitin activation), E2 (ubiquitin conjuga-

tion), and E3 (ubiquitin ligase) (Hershko and Ciechanover

1998). DR5 is also regulated by ubiquitin–proteasome

pathway, and proteasome inhibitors (PS-341, MG132, and

epoxomicin) increase DR5 protein expression, resulted in

enhancement of TRAIL-mediated apoptosis (He et al.

2004; Liu et al. 2007). Recently, Song et al. reported that

c-Casitas B-lineage lymphoma (Cbl) induces degradation

of DR5 in TRAIL-treated cells (Song et al. 2010). Cbl is a

multi-adaptor protein. c-Cbl, Cbl-b, and Cbl-c (Cbl-3) are

identified. Cbl-b and c-Cbl have E3 ligase activity (Thien

and Langdon 2005), both Cbls regulate DR5 expression.

The c-Cbl binds to DR5 and induces degradation of DR5 in

TRAIL-treated cells, resulted in the early phase of acquired

TRAIL resistance (Song et al. 2010). In addition, bufalin is

a major active ingredient of the traditional Chinese medi-

cine ChanSu, increases DR5 expression via down-regula-

tion of Cbl-b expression (Yan et al. 2012), and shRNA-

expressing adenovirus against c-Cbl also enhances TRAIL-

mediated apoptosis through induction of DR5 expression

(Kim et al. 2013). Although there is not direct deubiquiti-

nase (DUB) of DR5, the DUB also controls the expression

of DR5. b-AP15 blocks ubiquitin-specific protease

(USP)14 and ubiquitin carboxyl-terminal hydrolase L

(UCHL) 5, which are 19S regulatory particle-associated

DUBs, followed by accumulation of the ubiquitin conju-

gated proteins via inhibition of proteasomal function

(D’arcy and Linder 2012). DR5 accumulated by b-AP15

sensitized TRAIL-mediated apoptosis (Oh et al. 2017).

Therefore, ubiquitin–proteasome pathway is involved in

modulation of DR5 protein expression.

Glycosylation

Glycosylation is a common post-modification that occur

more than 50% of proteins, and is known to control not

only protein folding but also the ability to signaling

transduction by proteins. DR5 also occurs with O-glyco-

sylation, which increases TRAIL-mediated apoptosis. O-

glycosylation is mediated by N-acetyl-galactosamine

(GalNAc) and N-acetyl-glucosamine (GlcNAc). Wagner

et al. reported that sensitivity to TRAIL is correlated with

levels of O-glycosyltransferase by N-acetyl-galactosamine

transferase (GALNT)14 or GALNT3 with O-glycan pro-

cessing enzymes fucosyltransferases (FUT) 3 and FUT6

depending on cell types (Wagner et al. 2007). DR5 is O-

glycosylated on two stretches of serine and threonine in

front of cysteine rich domains (CRD) 2 and within CRD2

and CRD3 (Micheau 2018). Interestingly, glycosylation of

DR5 has no effect on TRAIL binding affinity and DR5 cell

surface expression, and promotes receptor clustering and

DISC formation. Furthermore, they identify that Ser201 is

a primary modification site in DR5. Based on these results,

Howard et al. reported that immunocytochemistry assay to

detect GALNT14 and FUT3/6, but not GALNT3, can be

used to distinguish patients, who have effectiveness in

dulanermin- and drozitumab-based therapy (Stern et al.

2010). O-GlcNAcylation of DR5 by GlcNAc induces DR5

clustering and DISC formation, resulted in enhancement of

TRAIL-induced apoptosis in non-small cell lung cancer

cells (Liang et al. 2018). We summarized the molecular

mechanisms and published papers that regulate expression

and activation of DR5 (Fig. 1 and Table 1).

Modulation of DR5 localization

Lipid rafts

It has been well-known that ceramide converts raft domain

in membrane into larger domains (lipid raft domains, gly-

cosphingolipid-enrich domains or ceramide-enriched

domains), which are important on initiation of receptor-

specific signaling via clustering, re-organization of sig-

naling molecules, amplification of signal, and exclusion of

inhibitory signals and, thus, amplify a receptor-mediated

signals (Bollinger et al. 2005; Grassme et al. 2007). Like

other receptor-mediated signaling, localization of DR5 in

lipid raft is important on induction of TRAIL-mediated

apoptosis. Sensitivity of leukemia to TRAIL-induced

apoptosis is determined by recruitment of DISC compo-

nents including DR5 to the lipid raft (Min et al. 2009). In

addition, reactive oxygen species-dependent acid sphin-

gomyelinase activation by TRAIL induces ceramide

release, regulated in induction of ceramide-enriched

domains in plasma membrane. Clustering of DR5 in these

domains plays critical roles in TRAIL-mediated apoptosis

(Dumitru and Gulbins 2006). In addition, the importance of

DR5 clustering in lipid raft domains in TRAIL-induced

apoptosis has been reported in many studies. For examples,
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inhibition of COX-2 enhances TRAIL-induced apoptosis

through clustering of DR5 and DISC components in cer-

amide-enriched caveolae (Martin et al. 2005), and DR5

clustering in lipid rafts is a mechanism of TRAIL sensiti-

zation by doxorubicin (Dumitru et al. 2007), ursodeoxy-

cholic acid (Lim et al. 2011), oxaliplatin (Xu et al. 2009),

and synthetic alkyl-lysophospholipids (ALPs) (Gajate and

Mollinedo 2007). Interestingly, c-Cbl and Cbl-b also

inhibit localization of DR5 in lipid rafts (Xu et al. 2009). In

contrast, ceramide synthase 6 and exogenous ceramide

increase TRAIL sensitivity (Voelkel-Johnson et al. 2005;

White-Gilbertson et al. 2009).

Cytosolic localization by endocytosis

Before TRAIL is incorporated into the DRs, the endocy-

tosis of DRs is sufficient to provide resistance to TRAIL

(Zhang and Zhang 2008; Chen et al. 2012b), and it has

been known that endocytosis of receptor is not required for

TRAIL-induced apoptosis in Burkitt lymphoma B cell line

(Kohlhaas et al. 2007). However, Austin et al. (2006)

reported about positive feedback mechanism of TRAIL-

induced apoptosis with regard to endocytosis in TRAIL-

sensitive cells. DR5 activation by TRAIL induces cleavage

of adaptor protein (AP)2a, AP1/2b, and clathrin heavy

chain (CHC), which are machinery of clathrin-dependent

endocytosis, and attenuates DR5 endocytosis, leading to

amplification of TRAIL-induced apoptosis signaling. In

contrast, clathrin-dependent endocytosis is critical for

TRAIL-induced apoptosis via lysosomal membrane per-

meabilization in hepatocellular carcinoma (Akazawa et al.

2009). TRAIL triggers endocytosis of DR5, and DR5 with

trafficking to lysosomal membrane induces release of

cathepsin and apoptosis. Inhibition of endocytosis by

dominant negative dynamin blocks TRAIL-induced apop-

tosis via inhibition of endocytosis (Akazawa et al. 2009).

Therefore, so far, the role of endocytosis in DRs-mediated

apoptosis is unclear.

Autophagosome

The role of autophagy in cell death is controversial, and

expression of DR5 by autophagy is also dependent of

stimulators. Gefitinib and ginsenoside compound K

increase DR5 expression and inhibition of autophagy

reduces DR5 expression in human colon cancer cells (Chen

et al. 2016a, b). In contrast, telmisartan, a drug for

hypertension, causes induction of DR5 via inhibition of

autophagy (Rasheduzzaman et al. 2018). However, there is

no direct mechanism how autophagy controls the expres-

sion of DR5. Therefore, we only discuss about direct reg-

ulation of DR5 expression by autophagy. Di et al. found

that the sensitivity to TRAIL negatively correlated with

LC3 II in multiple breast carcinomas, and DR5 is localized

in autophagosomes in TRAIL-resistance cells. When

autophagy is inhibited by knock-down of ATG7, beclin-1,

Fig. 1 Modulatory mechanisms of DR5 expression and activation to enhance DRs-mediated apoptosis signaling. a Summary for control

mechanism of DR5. b Modulatory mechanism of activation and expression of DR5. Expression of DR5 is directly or indirectly regulated by

methylation and acetylation, and multiple transcription factors and RNA-binding proteins also increase or decrease DR5 expression depending on

regulatory proteins and binding sites. In addition, expression and clustering of DR5 are modulated by ubiquitin–proteasome pathway and

glycosylation
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Table 1 Drugs that control DR5 expression and activation Table 1 continued
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or LC3, DR5 expression on cell surface is increased,

leading to induction of TRAIL-induced apoptosis. How-

ever, inhibitor of lysosomal activity had no effect on DR5

surface expression (Di et al. 2013). Recently, although it is

not related with TRAIL-induced apoptosis, HBx induces

DR5 protein degradation via activation of autophagy. The

underlying mechanisms are that DR5 is recruited to pha-

gophores by direct interaction with HBx and autophagy

induction by HBx (Shin et al. 2016). It is certain that DR5

is controlled by autophagy-lysosome pathway, but it need

further study to identify the accurate mechanism. We

summarized the regulation of cell death by modulation of

DR5 localization (Fig. 2).

Nucleus

DR5 has two nuclear localization signals (NLS), and

nuclear localization of DR5 is correlated with TRAIL

resistance. Kojima et al. reported that HeLa and HepG2

cells highly express DR5 at nucleus, and both cells are

resistant to TRAIL-mediated apoptosis. In contrast, levels

of DR5 nuclear expression are low in DU145 cells, which

are sensitive to TRAIL. Nuclear translocation of DR5 is

mediated by importin b1 via the recognition of NLS

sequences, and knock-down importin b1 abrogates DR5

expression at the nucleus (Kojima et al. 2011).

Table 1 continued

CaM Calmodulin, PARP Poly(ADP-ribose) polymerase, KDM4A Histone lysine demethylase 4A, DNMT DNA methyltransferases 1, HDAC2

histone deacetylase, SAHA Suberoylanilide hydroxamic acid, TSA Trichostatin A, DTCD 6-(4-N,N-dimethylaminophenyltelluro)-6-deoxy-b-

cyclodextrin, Sp1 Specificity protein 1, CHOP CCAAT/enhancer-binding protein homologous protein, 15d-PGJ2 15-deoxy-Delta 12,

14-prostaglandin J2, NF-jB Nuclear factor-jB, RKIP Raf kinase inhibitor protein, YY1 Yin Yang 1, HuR Human antigen R, Cbl casitas B-lineage

lymphoma, USP14 Ubiquitin-specific protease 14, UCHL5 Ubiquitin c-terminal hydrolase L5, GALNT14 N-acetyl-galactosamine transferase,

GlcNAc N-acetylglucosamine, DISC death-inducing signaling complex

Fig. 2 Schematic illustration of the effect of DR5 localization on cell death. Localization and clustering in the lipid raft by modulation of

autophagy and endocytosis is important on DRs-mediated apoptosis. Blue indicates modulators of DR5 localization as mentioned in our

manuscript
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Conclusion

Because of TRAIL induces apoptosis preferentially in

cancer cells, target for DRs-mediated signaling is promis-

ing anti-cancer strategy. For this reason, various approa-

ches have been conducted to strengthen DRs-mediated

apoptosis signals. Here, we describe the modulatory

mechanisms of DR5 activation and expression (Fig. 1), and

importance of DR5 localization in the cells (Fig. 2).

Understanding of these mechanisms could contribute to the

improvement of the anti-cancer effect using recombinant

TRAIL or antagonistic monoclonal antibodies, as well as

DR-specific TRAIL variant and combination treatment.
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