Skip to main content

Advertisement

Log in

NR4A1 Aggravates Myocardial Ischaemia–Reperfusion Injury by Inhibiting OPA1-Mediated Mitochondrial Fusion

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Mitochondrial fusion is an important process that protects the myocardium. However, mitochondrial fusion is often inhibited in myocardial ischaemia–reperfusion injury (IR). The upstream mechanism of this effect is unclear. Nuclear receptor subfamily 4 group A member 1 (NR4A1) can aggravate myocardial IR and increase the level of oxidative stress, thereby affecting mitochondrial function and morphology. Inhibiting NR4A1 can improve oxidative stress levels and mitochondrial function and morphology, thereby reducing IR. Downregulating NR4A1 increases the expression level of the mitochondrial fusion-related protein optic atrophy 1 (OPA1), which is associated with these benefits. Inhibiting OPA1 expression with MYLS22 abrogates the effects of NR4A1 downregulation on IR. Furthermore, NR4A1 disrupts mitochondrial dynamics and activates the STING and NF-κB pathways. Insufficient mitochondrial fusion and increased apoptosis and inflammatory reactions worsen irreversible damage to cardiomyocytes. In conclusion, NR4A1 can exacerbate IR by inhibiting OPA1, causing mitochondrial damage.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

NR4A1:

Nuclear receptor subfamily 4 group A member 1

OPA1:

Optic atrophy 1

Mfn2:

Mitofusin 2

ROS:

Reactive oxygen species

MPP:

Mitochondrial membrane potential

mPTP:

Mitochondrial permeability transition pore

References

  1. Hausenloy DJ, Yellon DM. Ischaemic conditioning and reperfusion injury. Nat Rev Cardiol. 2016;13(4):193–209.

    Article  CAS  PubMed  Google Scholar 

  2. Konijnenberg LSF, Damman P, Duncker DJ, Kloner RA, Nijveldt R, van Geuns RM, Berry C, Riksen NP, Escaned J, van Royen N. Pathophysiology and diagnosis of coronary microvascular dysfunction in ST-elevation myocardial infarction. Cardiovasc Res. 2020;116(4):787–805.

    Article  CAS  PubMed  Google Scholar 

  3. Wang J, Zhou H. Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia-reperfusion injury. Acta Pharm Sin B. 2020;10(10):1866–79.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chang X, Lochner A, Wang HH, Wang S, Zhu H, Ren J, Zhou H. Coronary microvascular injury in myocardial infarction: perception and knowledge for mitochondrial quality control. Theranostics. 2021;11(14):6766–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chan DC. Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol. 2020;15:235–59.

    Article  CAS  PubMed  Google Scholar 

  6. Chen L, Gong Q, Stice JP, Knowlton AA. Mitochondrial OPA1, apoptosis, and heart failure. Cardiovasc Res. 2009;84(1):91–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou H, Zhu P, Wang J, Toan S, Ren J. DNA-PKcs promotes alcohol-related liver disease by activating Drp1-related mitochondrial fission and repressing FUNDC1-required mitophagy. Signal Transduct Target Ther. 2019;4:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou H, Zhu P, Wang J, Zhu H, Ren J, Chen Y. Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2alpha-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy. Cell Death Differ. 2018;25(6):1080–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou H, Zhu P, Guo J, Hu N, Wang S, Li D, Hu S, Ren J, Cao F, Chen Y. Ripk3 induces mitochondrial apoptosis via inhibition of FUNDC1 mitophagy in cardiac IR injury. Redox Biol. 2017;13:498–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou H, Toan S, Zhu P, Wang J, Ren J, Zhang Y. DNA-PKcs promotes cardiac ischemia reperfusion injury through mitigating BI-1-governed mitochondrial homeostasis. Basic Res Cardiol. 2020;115(2):11.

    Article  PubMed  Google Scholar 

  11. Zhou H, Shi C, Hu S, Zhu H, Ren J, Chen Y. BI1 is associated with microvascular protection in cardiac ischemia reperfusion injury via repressing Syk-Nox2-Drp1-mitochondrial fission pathways. Angiogenesis. 2018;21(3):599–615.

    Article  CAS  PubMed  Google Scholar 

  12. Moll UM, Marchenko N, Zhang XK. p53 and Nur77/TR3 - transcription factors that directly target mitochondria for cell death induction. Oncogene. 2006;25(34):4725–43.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang XK. Targeting Nur77 translocation. Expert Opin Ther Targets. 2007;11(1):69–79.

    Article  CAS  PubMed  Google Scholar 

  14. Wang C, Liu G, Dou G, Yang Y, Chen L, Ma H, Jiang Z, Ma H, Li C, Li L, et al. Z-Ligustilide selectively targets AML by restoring nuclear receptors Nur77 and NOR-1-mediated apoptosis and differentiation. Phytomedicine. 2021;82:153448.

    Article  CAS  PubMed  Google Scholar 

  15. Hu M, Luo Q, Alitongbieke G, Chong S, Xu C, Xie L, Chen X, Zhang D, Zhou Y, Wang Z, et al. Celastrol-induced Nur77 interaction with TRAF2 alleviates inflammation by promoting mitochondrial ubiquitination and autophagy. Mol Cell. 2017;66(1):141–153 e146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Safe S, Karki K. The paradoxical roles of orphan nuclear receptor 4A (NR4A) in cancer. Mol Cancer Res. 2021;19(2):180–91.

    Article  CAS  PubMed  Google Scholar 

  17. Zhan Y, Du X, Chen H, Liu J, Zhao B, Huang D, Li G, Xu Q, Zhang M, Weimer BC, et al. Cytosporone B is an agonist for nuclear orphan receptor Nur77. Nat Chem Biol. 2008;4(9):548–56.

    Article  CAS  PubMed  Google Scholar 

  18. Zhou H, Wang J, Zhu P, Zhu H, Toan S, Hu S, Ren J, Chen Y. NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2alpha. Basic Res Cardiol. 2018;113(4):23.

    Article  PubMed  Google Scholar 

  19. Zhou H, Du W, Li Y, Shi C, Hu N, Ma S, Wang W, Ren J. Effects of melatonin on fatty liver disease: the role of NR4A1/DNA-PKcs/p53 pathway, mitochondrial fission, and mitophagy. J Pineal Res. 2018;64(1)

  20. Luo W, Wang Y, Zhang L, Ren P, Zhang C, Li Y, Azares AR, Zhang M, Guo J, Ghaghada KB, et al. Critical role of cytosolic DNA and its sensing adaptor STING in aortic degeneration, dissection, and rupture. Circulation. 2020;141(1):42–66.

    Article  CAS  PubMed  Google Scholar 

  21. Hayden MS, West AP, Ghosh S. SnapShot: NF-kappaB signaling pathways. Cell. 2006;127(6):1286–7.

    Article  PubMed  Google Scholar 

  22. Herkenne S, Ek O, Zamberlan M, Pellattiero A, Chergova M, Chivite I, Novotná E, Rigoni G, Fonseca TB, Samardzic D, et al. Developmental and tumor angiogenesis requires the mitochondria-shaping protein Opa1. Cell Metab. 2020;31(5):987–1003.e1008.

    Article  CAS  PubMed  Google Scholar 

  23. Ye Z, Zhuo Q, Hu Q, Xu X, Mengqi L, Zhang Z, Xu W, Liu W, Fan G, Qin Y, et al. FBW7-NRA41-SCD1 axis synchronously regulates apoptosis and ferroptosis in pancreatic cancer cells. Redox Biol. 2021;38:101807.

    Article  CAS  PubMed  Google Scholar 

  24. Vagnozzi RJ, Maillet M, Sargent MA, Khalil H, Johansen AKZ, Schwanekamp JA, York AJ, Huang V, Nahrendorf M, Sadayappan S, et al. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature. 2020;577(7790):405–9.

    Article  CAS  PubMed  Google Scholar 

  25. Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA, Braunwald E. Myocardial infarct size and ventricular function in rats. Circ Res. 1979;44(4):503–12.

    Article  CAS  PubMed  Google Scholar 

  26. Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6(2):99–104.

    Article  CAS  PubMed  Google Scholar 

  27. Wang D, Yin Y, Wang S, Zhao T, Gong F, Zhao Y, Wang B, Huang Y, Cheng Z, Zhu G, et al. FGF1(DeltaHBS) prevents diabetic cardiomyopathy by maintaining mitochondrial homeostasis and reducing oxidative stress via AMPK/Nur77 suppression. Signal Transduct Target Ther. 2021;6(1):133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peng X, Wang W, Wang W, Qi J. NR4A1 promotes oxidative stresses after myocardial ischemia reperfusion injury in aged mice. Exp Gerontol. 2022;162:111742.

    Article  CAS  PubMed  Google Scholar 

  29. Senoner T, Dichtl W. Oxidative stress in cardiovascular diseases: still a therapeutic target? Nutrients. 2019;11(9):2090. https://doi.org/10.3390/nu11092090

  30. Wang J, Xiong M, Fan Y, Liu C, Wang Q, Yang D, Yuan Y, Huang Y, Wang S, Zhang Y, et al. Mecp2 protects kidney from ischemia-reperfusion injury through transcriptional repressing IL-6/STAT3 signaling. Theranostics. 2022;12(8):3896–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pu CM, Liu CW, Liang CJ, Yen YH, Chen SH, Jiang-Shieh YF, Chien CL, Chen YC, Chen YL. Adipose-derived stem cells protect skin flaps against ischemia/reperfusion injury via IL-6 expression. J Invest Dermatol. 2017;137(6):1353–62.

    Article  CAS  PubMed  Google Scholar 

  32. Jong WM, Ten Cate H, Linnenbank AC, de Boer OJ, Reitsma PH, de Winter RJ, Zuurbier CJ. Reduced acute myocardial ischemia-reperfusion injury in IL-6-deficient mice employing a closed-chest model. Inflamm Res: Official J Europ Histamine Res Soc. 2016;65(6):489–99.

    Article  CAS  Google Scholar 

  33. Shao G, He J, Meng J, Ma A, Geng X, Zhang S, Qiu Z, Lin D, Li M, Zhou H, et al. Ganoderic acids prevent renal ischemia reperfusion injury by inhibiting inflammation and apoptosis. Int J Mol Sci. 2021;22(19):10229. https://doi.org/10.3390/ijms221910229

  34. Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer. 2009;9(5):361–71.

    Article  CAS  PubMed  Google Scholar 

  35. Schapira AH. Mitochondrial diseases. Lancet (London, England). 2012;379(9828):1825–34.

    Article  CAS  PubMed  Google Scholar 

  36. Boyman L, Karbowski M, Lederer WJ. Regulation of mitochondrial ATP production: Ca(2+) signaling and quality control. Trends Mol Med. 2020;26(1):21–39.

    Article  CAS  PubMed  Google Scholar 

  37. Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020;21(5):268–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, Babenko VA, Zorov SD, Balakireva AV, Juhaszova M, et al. Mitochondrial membrane potential. Anal Biochem. 2018;552:50–9.

    Article  CAS  PubMed  Google Scholar 

  39. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94(3):909–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chandhok G, Lazarou M, Neumann B. Structure, function, and regulation of mitofusin-2 in health and disease. Biol Rev Camb Philos Soc. 2018;93(2):933–49.

    Article  PubMed  Google Scholar 

  41. Feng ST, Wang ZZ, Yuan YH, Wang XL, Sun HM, Chen NH, Zhang Y. Dynamin-related protein 1: A protein critical for mitochondrial fission, mitophagy, and neuronal death in Parkinson’s disease. Pharmacol Res. 2020;151:104553.

    Article  CAS  PubMed  Google Scholar 

  42. Filadi R, Pendin D, Pizzo P. Mitofusin 2: from functions to disease. Cell Death Dis. 2018;9(3):330.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gao S, Hu J. Mitochondrial fusion: the machineries in and out. Trends Cell Biol. 2021;31(1):62–74.

    Article  CAS  PubMed  Google Scholar 

  44. Del Dotto V, Fogazza M, Lenaers G, Rugolo M, Carelli V, Zanna C. OPA1: how much do we know to approach therapy? Pharmacol Res. 2018;131:199–210.

    Article  PubMed  Google Scholar 

  45. Decout A, Katz JD, Venkatraman S, Ablasser A. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol. 2021;21(9):548–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miyamoto S. Nuclear initiated NF-κB signaling: NEMO and ATM take center stage. Cell Res. 2011;21(1):116–30.

    Article  CAS  PubMed  Google Scholar 

  47. Sebban H, Yamaoka S, Courtois G. Posttranslational modifications of NEMO and its partners in NF-kappaB signaling. Trends Cell Biol. 2006;16(11):569–77.

    Article  CAS  PubMed  Google Scholar 

  48. Kondylis V, Kumari S, Vlantis K, Pasparakis M. The interplay of IKK, NF-κB and RIPK1 signaling in the regulation of cell death, tissue homeostasis and inflammation. Immunol Rev. 2017;277(1):113–27.

    Article  CAS  PubMed  Google Scholar 

  49. Zheng Y, Tao Y, Zhan X, Wu Q. Nuclear receptor 4A1 (NR4A1) silencing protects hepatocyte against hypoxia-reperfusion injury in vitro by activating liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) signaling. Bioengineered. 2022;13(4):8349–59.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cao J, Xu T, Zhou C, Wang S, Jiang B, Wu K, Ma L. NR4A1 knockdown confers hepatoprotection against ischaemia-reperfusion injury by suppressing TGFβ1 via inhibition of CYR61/NF-κB in mouse hepatocytes. J Cell Mol Med. 2021;25(11):5099–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shi W, Dong J, Liang Y, Liu K, Peng Y. NR4A1 silencing protects against renal ischemia-reperfusion injury through activation of the β-catenin signaling pathway in old mice. Exp Mol Pathol. 2019;111:104303.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang YJ, Song JR, Zhao MJ. NR4A1 regulates cerebral ischemia-induced brain injury by regulating neuroinflammation through interaction with NF-κB/p65. Biochem Biophys Res. 2019;518(1):59–65.

    Article  CAS  Google Scholar 

  53. Zhang Z, Yu J. NR4A1 promotes cerebral ischemia reperfusion injury by repressing Mfn2-mediated mitophagy and inactivating the MAPK-ERK-CREB signaling pathway. Neurochem Res. 2018;43(10):1963–77.

    Article  CAS  PubMed  Google Scholar 

  54. Zheng Z, Xiang S, Wang Y, Dong Y, Li Z, Xiang Y, Bian Y, Feng B, Yang B, Weng X. NR4A1 promotes TNFalphainduced chondrocyte death and migration injury via activating the AMPK/Drp1/mitochondrial fission pathway. Int J Mol Med. 2020;45(1):151–61.

    Article  CAS  PubMed  Google Scholar 

  55. Liu Z, Gu Y, Cheng X, Jiang H, Huang Y, Zhang Y, Yu G, Cheng Y, Zhou L. Upregulation lnc-NEAT1 contributes to colorectal cancer progression through sponging miR-486-5p and activating NR4A1/Wnt/beta-catenin pathway. Cancer Biomark. 2021;30(3):309–19.

    Article  CAS  PubMed  Google Scholar 

  56. Li B, Yao J, He F, Liu J, Lin Z, Liu S, Wang W, Wu T, Huang J, Chen K, et al. Synthesis, SAR study, and bioactivity evaluation of a series of Quinoline-Indole-Schiff base derivatives: compound 10E as a new Nur77 exporter and autophagic death inducer. Bioorg Chem. 2021;113:105008.

    Article  CAS  PubMed  Google Scholar 

  57. Pulakazhi Venu VK, Alston L, Iftinca M, Tsai YC, Stephens M, Warriyar KVV, Rehal S, Hudson G, Szczepanski H, von der Weid PY, et al. Nr4A1 modulates inflammation-associated intestinal fibrosis and dampens fibrogenic signaling in myofibroblasts. Am J Physiol Gastrointest Liver Physiol. 2021;321(3):G280–97.

    Article  PubMed  Google Scholar 

  58. Dromard Y, Arango-Lievano M, Fontanaud P, Tricaud N, Jeanneteau F. Dual imaging of dendritic spines and mitochondria in vivo reveals hotspots of plasticity and metabolic adaptation to stress. Neurobiol Stress. 2021;15:100402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Carpenter MD, Hu Q, Bond AM, Lombroso SI, Czarnecki KS, Lim CJ, Song H, Wimmer ME, Pierce RC, Heller EA. Nr4a1 suppresses cocaine-induced behavior via epigenetic regulation of homeostatic target genes. Nat Commun. 2020;11(1):504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Peng SZ, Chen XH, Chen SJ, Zhang J, Wang CY, Liu WR, Zhang D, Su Y, Zhang XK. Phase separation of Nur77 mediates celastrol-induced mitophagy by promoting the liquidity of p62/SQSTM1 condensates. Nat Commun. 2021;12(1):5989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li XX, Wang ZJ, Zheng Y, Guan YF, Yang PB, Chen X, Peng C, He JP, Ai YL, Wu SF, et al. Nuclear receptor Nur77 facilitates melanoma cell survival under metabolic stress by protecting fatty acid oxidation. Mol Cell. 2018;69(3):480–492 e487.

    Article  CAS  PubMed  Google Scholar 

  62. Wai T, García-Prieto J, Baker MJ, Merkwirth C, Benit P, Rustin P, Rupérez FJ, Barbas C, Ibañez B, Langer T. Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science (New York, NY). 2015;350(6265):aad0116.

    Article  Google Scholar 

Download references

Funding

This study was financially supported by grants from the National Natural Science Foundation of China (No. 81870178). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yundai Chen.

Ethics declarations

Ethics Approval

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees. No human studies were carried out by the authors for this article.

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Guoping Li oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Hu, Y., Zhou, H. et al. NR4A1 Aggravates Myocardial Ischaemia–Reperfusion Injury by Inhibiting OPA1-Mediated Mitochondrial Fusion. J. of Cardiovasc. Trans. Res. 16, 1050–1063 (2023). https://doi.org/10.1007/s12265-023-10396-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-023-10396-4

Keywords

Navigation