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Abstract
The c.40_42delAGA variant in the phospholamban gene (PLN) has been associated with dilated and arrhythmogenic cardiomyopathy, 
with up to 70% of carriers experiencing a major cardiac event by age 70. However, there are carriers who remain asymptomatic 
at older ages. To understand the mechanisms behind this incomplete penetrance, we evaluated potential phenotypic and genetic 
modifiers in 74 PLN:c.40_42delAGA carriers identified in 36,339 participants of the Lifelines population cohort. Asymptomatic 
carriers (N = 48) showed shorter QRS duration (− 5.73 ms, q value = 0.001) compared to asymptomatic non-carriers, an effect we 
could replicate in two different independent cohorts. Furthermore, symptomatic carriers showed a higher correlation (rPearson = 0.17) 
between polygenic predisposition to higher QRS (PGSQRS) and QRS (p value = 1.98 × 10–8), suggesting that the effect of the genetic 
variation on cardiac rhythm might be increased in symptomatic carriers. Our results allow for improved clinical interpretation for 
asymptomatic carriers, while our approach could guide future studies on genetic diseases with incomplete penetrance.

Keywords  Incomplete penetrance · Cardiomyopathy · Genome-wide association study · Polygenic score · Modifiers of 
Mendelian disorders

Introduction

Inherited cardiomyopathies are genetic disorders that 
cause cellular and/or molecular imbalances that affect the 
functioning of the cardiac muscle. Different cardiomyopathy 
subtypes are now recognized by the European Society of 
Cardiology: hypertrophic cardiomyopathy (HCM), dilated 
cardiomyopathy (DCM), arrhythmogenic cardiomyopathy 
(ACM), left ventricular non-compaction cardiomyopathy, 
and restrictive cardiomyopathy [1]. Cardiomyopathy 
symptoms can vary from mild symptoms to life-threatening 
arrhythmias or end-stage heart failure (HF), and the absence 
or presence of a phenotype is established using a mix of 
imaging and electrocardiographic techniques. More than 60 
genes have now been associated with one or more inherited 
forms of cardiomyopathy, with all forms characterized by 
incomplete penetrance and variable expression [2].

One of these genes, the gene encoding phospholam-
ban (PLN), has shown definitive evidence of association 
with cardiomyopathy [3]. PLN is a regulator of the sarco-
plasmic reticulum Ca2+ (SERCA2a) pump and has been 
implicated in Ca2+ homeostasis in cardiac muscle cells [4]. 
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The pathogenic variant PLN:c.40-42delAGA (p.Arg14del; 
ClinVar ID VCV000044580.20) is a founder variant iden-
tified in the Netherlands, particularly in the northern part 
of the country (estimated allele frequency 0.07%–0.22%) 
[5]. This variant has been associated with both DCM and 
ACM and is characterized by an increased risk of develop-
ing malignant ventricular arrhythmias (VAs) and end-stage 
HF, with age-dependent incomplete penetrance (> 50% of 
carriers show symptoms above the age of 60 years) [6–8].

Given the high penetrance of PLN:c.40-42delAGA, car-
riers at risk or subjects from suspected families are screened 
by a cardiologist for early disease detection. However, the 
under-explored mechanisms behind the incomplete pen-
etrance of this variant create challenges in determining risk 
for carriers and thus hamper the decision-making process 
about therapies. To understand the incomplete penetrance 
and support early disease detection, researchers have been 
looking for environmental or genetic factors that modify the 
risk of disease manifestation. Typically, this research col-
lects and analyzes phenotypical, environmental, and demo-
graphic information for carriers [8–12]. One very recent 
study by Verstraelen et al. [13] used abnormalities observed 
in carriers to calculate the risk for malignant VA and guide 
the decision of when to start or withhold preventive thera-
pies, including intracardiac defibrillators. Moreover, the 
search for risk predictors has been extended to investigate 
the cumulative impact of common genetic variants previ-
ously associated with cardiac-related traits in the form of 
polygenic scores (PGSs), an approach that has generated 
preliminary evidence for the existence of a polygenic com-
ponent to both HCM and DCM [14–16].

Previous studies searching for modifiers used approaches 
that had two main features: (i) they only studied carriers and 
did not include information from the general population and 
(ii) they focused on factors that increase the risk of developing 
cardiomyopathy symptoms (i.e., differences between sympto-
matic and healthy carriers), an approach that could miss poten-
tial protective factors that prevent carriers from developing 
symptoms (i.e., differences in healthy carriers as compared to 
symptomatic carriers and the general population). An example 
scenario of the potential gain of including the general popu-
lation in these designs comes from studies in sickle cell and 
thalassemia patients, where individuals with milder symp-
toms showed a higher frequency of common genetic variants 
in the BCL11A gene, which had previously been associated 
with increased production of fetal hemoglobin, as compared to 
both patients with severe symptoms and to the general popula-
tion [17, 18]. It is only recently that large-scale general popu-
lation biobanks have enabled unbiased identification of the 
PLN:c.40-42delAGA variant, providing more power to detect 
potential protective factors compared to a patient cohort. To 

our knowledge, no such analysis has been conducted for the 
detection of potential protective factors to explain the incom-
plete penetrance of PLN:c.40-42delAGA in cardiomyopathy.

In this study, we aimed to fill this gap by performing asso-
ciation analyses between the absence of cardiomyopathy 
symptoms and genetic and phenotypic information available 
for 36,339 volunteers of the Lifelines cohort, a population 
biobank from the Northern Netherlands [19]. In the absence of 
the imaging-based measurements typically used for the diag-
nosis of cardiomyopathy, such as chest X-ray and echocardio-
gram, we defined the symptomatic group using a combination 
of electrocardiographic (ECG) abnormalities suggestive of 
PLN-associated cardiomyopathy and self-reported heart dis-
ease symptoms at baseline assessment or during the 5-year 
follow-up visit (“Methods”). This identified 74 carriers, and 
we classified the 48 carriers who did not report or show signs 
or symptoms as asymptomatic. We then compared the distribu-
tion of quantitative phenotypes and genetic variation in asymp-
tomatic carriers to the general population (asymptomatic non-
carriers) (Fig. 1). We found that, in asymptomatic carriers, 
QRS duration and heart rate (HR) variability were significantly 
lower, while HR was increased. We then replicated the lower 
QRS duration that we observed in asymptomatic carriers in 
two additional cohorts, providing the first robust evidence for 
factors that associate with absence of symptoms in carriers. 
We also observed higher correlation between the PGS of QRS 
(PGSQRS) and QRS in the symptomatic carriers (meaning a 
higher response for the polygenic effect in symptomatic carri-
ers). This finding still requires confirmation from replication 
cohorts with enough genetic information, but it aligns with the 
emerging evidence of the polygenic nature of many Mendelian 
disorders [14, 15, 20, 21].

Results

Distribution of the PLN:c.40_42delAGA Variant 
and Clinical Profile of Lifelines Samples

Genotyping data, including genotyping information for the 
PLN:c.40_42delAGA variant, was available for 36,339 Life-
lines participants with an average age of 39.9 years (range 
4.0–90.0 years, 58.5% males and 41.5% females). Among 
them, we identified 74 carriers of the deletion (0.2%; 43 
females and 31 males), with ages ranging from 8.0 to 
68.0 years and an average age of 40.9 years (Supplementary 
Fig. 1a). The PLN:c.40_42 deletion allele showed a minor 
allele frequency (MAF) of 0.1%, and none of the partici-
pants was homozygous carriers of the variant. Genotype 
intensities were screened and indicated lack of spurious 
genotype calls (Supplementary Fig. 2). We then classified 
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all volunteers into four groups according to the presence 
or absence of self-reported symptoms or ECG abnormali-
ties suggestive of cardiomyopathy (see “Methods”) in the 
baseline and follow-up visits and to the presence or absence 
of the PLN:c.40_42delAGA variant. This identified 34,201 
asymptomatic non-carriers, 2064 symptomatic non-carriers, 
48 asymptomatic carriers, and 26 symptomatic carriers. A 
description of the self-reported symptoms, diseases, and 
measured ECG signs that we used for symptomatic defini-
tion is shown in the graphic summary (Fig. 1b, Methods).

Using this definition, we estimated an odds ratio (OR) of 
8.98 (CI = 5.33–14.79, two-sided p value = 2.18 × 10–14) for 
the PLN:c.40_42delAGA variant in conferring risk of pre-
senting any of the signs and symptoms and an OR of 11.2 

for HF (CI = 5.31–21.64, two-sided p value = 2.05 × 10–8), 
strongly supporting the previously reported pathogenicity 
of this variant. We further noticed that asymptomatic carri-
ers were significantly younger than asymptomatic non-car-
riers (average ages 34.6 and 39.1, respectively, two-sided p 
value = 0.037), even when restricting the analyses to partici-
pants older than 40.0 years (two-sided p value = 0.001, Sup-
plementary Fig. 1b and c), and we therefore used age as a 
covariate in all our analyses.

Considering that the Lifelines cohort has a family design, 
in our primary analyses, we also accounted for familial rela-
tionships, either using the kinship matrix or removing rela-
tives because they can introduce spurious correlation at both 
phenotypic and genetic level (“Methods”). While 34 of the 74 
carriers did not have other relatives carrying the variant, the 

Fig. 1   Graphic summary. a Distribution of the PLN:c.40_42delAGA 
carriers and non-carriers and ratio of the symptomatic and asymp-
tomatic group in the subset of the Lifelines cohort. b Definition of 
symptomatic status and relative proportions of people showing each 
clinical outcome or abnormal ECG signs. c Analysis scheme used in 
this study. Briefly, we screen for potential protective factors by com-
paring them between asymptomatic non-carriers and asymptomatic 
carriers and then confirm them by comparing with the other groups 

(see “Methods”). Furthermore, we assessed whether there is an inter-
action effect between the symptoms and carrier status and the pre-
dictability of PGS for the phenotype that shows potential protective 
effects. d Potential protective factors analyzed in this study. GWAS, 
genome-wide association study; HA, heart attack; HF, heart failure; 
Infarct, infarction; AF, atrial fibrillation; TWAS, transcriptome-wide 
association study; VE, ventricular ectopic beats; VT, ventricular tach-
ycardia
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remaining 40 carriers belong to 17 families with two or three 
carriers (Supplementary Fig. 3).

ECG Measurements Are Significantly Different 
in Asymptomatic Carriers Compared to Population 
Controls

We analyzed the 38 cardiac, metabolic, and anthropomet-
ric quantitative traits that were available for at least 25 
of the asymptomatic carriers (Supplementary Table 1). 
Among these traits, four were significantly different 
between asymptomatic carriers and asymptomatic non-
carriers (multiple testing–adjusted false discovery rate 
q value ≤ 0.05; see “Methods”) after correcting for age, 
gender, and kinship. Specifically, asymptomatic carriers 
showed on average a significantly faster HR of 6.41 beats/
min (95% CI = 3.09–9.72, q value = 2.61 × 10–4), a shorter 
QRS duration of − 5.7 ms (95% CI =  − 9.22 to − 2.24, q 
value = 1.04 × 10–3) and reduced HR variability measured 
by both the natural logarithm of the root mean square of 
successive differences (lnRMSSDc: beta =  − 0.182, stand-
ard error (SE) = 0.090, q value = 0.0435) and by the natu-
ral logarithm of the standard deviation of the normal-to-
normal intervals (lnSDNN: beta =  − 0.216, SE = 0.094, q 
value = 0.0242) (Supplementary Table 2, Fig. 2). These 

results were confirmed when we repeated the analyses for 
these four groups using phenotype values measured in the 
same individuals during the first follow-up visit (visit 2), 
which took place approximately 5 years after the first visit, 
and observed consistent effects (Fig. 2). The results were 
also consistent when comparing asymptomatic carriers to 
a subset of age- and sex-matched controls (Supplementary 
Table 2F).

To exclude the possibility that these results were being 
driven by a direct impact of the PLN:c.40_42delAGA vari-
ant on the phenotype, we compared the distribution of these 
significant phenotypes among all four groups in our analy-
sis scheme (“Methods”). Here, we observed a consistent 
association between high HR and low QRS duration and 
absence of symptoms when comparing asymptomatic car-
riers to symptomatic non-carriers (Fig. 3, Supplementary 
Fig. 4): asymptomatic carriers showed significantly higher 
HR that was faster by 5.58 beats/min (95% CI = 1.63–9.54, 
two-sided p value = 0.0057) and a QRS duration that 
was − 7.24 ms lower (95% CI =  − 11.92 to 2.56, two-sided 
p value = 0.0024). Interestingly, we also found a higher 
QRS duration in symptomatic carriers (8.52 ms higher, 95% 
CI = 4.11–12.93, two-sided p value = 1.5 × 10–4) compared to 
asymptomatic non-carriers, an opposing effect to that seen 
when comparing the asymptomatic carriers with this group. 

Fig. 2   Forest plot of effect sizes for significant quantitative pheno-
types. Squares represent the effect size (beta). Lines represent stand-
ard error. Blue squares and the numbers in the columns correspond 
to analysis results for the baseline visit (visit 1). Red squares corre-
spond to the second visit approximately 5 years later (visit 2). Phe-
notypes are separated by the scale in panels a and b. N asymptomatic 
carriers (or non-carriers) refer to participants with non-null informa-

tion at visit 1; p val, p value for the independent association; q val, 
false discovery rate for conjoined analysis of all the traits that takes 
into account 1000 permutations for each of the 38 traits; lnRMSSD, 
natural logarithm of the root mean square of successive differences; 
lnRMSSDc, RMSSD corrected by heart rate; lnSSDN, natural loga-
rithm of the normal-to-normal intervals
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In contrast, HR variability features were not significantly 
different in asymptomatic carriers compared to other groups 
(Supplementary Fig. 5).

Association of Shorter QRS Duration 
with Absence of Symptoms in Carriers Replicates 
in an Independent Population Cohort and a Patient 
Registry

We sought to replicate the associations we observed for HR 
and QRS in two additional cohorts: a second subset of the 
Lifelines cohort and a cohort of PLN:c.40_42delAGA car-
riers from the ACM/PLN patient registry [22], which also 
includes asymptomatic carriers.

The Lifelines subset used for replication comprised 
21,771 volunteers (62.7% females) with an average age 
of 41.8y (range 8.0–93.0 years), of which 50 carry the 
PLN:c.40_42delAGA variant. Following the criteria for 
group assignment from the primary analysis (Fig. 1), this 
cohort was divided into 32 asymptomatic and 18 sympto-
matic carriers and 20,447 asymptomatic and 1274 symp-
tomatic non-carriers. When comparing the distribution 
of QRS and HR between the two Lifelines subsets, we 
observed the same direction of effect and comparable 
magnitude (Cochran’s Q test two-sided p value for dif-
ferences in effect size = 0.134) for QRS duration only 
(decrease =  − 3.87 ms, 95% CI =  − 7.79 to 0.056, one-
sided p value = 0.028, Fig. 4, Supplementary Table 3A). 

Fig. 3   Distribution of HR and QRS with carrier status and symptom 
manifestation. For each phenotype, the distribution within groups is 
represented in two forms: the truncated violin plots in gray display 
the density, while the boxplots display the median (center horizontal 
line), the first and third quartiles (box hinges) and the values up to 
1.5 interquartile ranges (IQR) away from the respective hinges (upper 
and lower whiskers). Values above or below these extremes are rep-
resented as individual points. a HR. b QRS duration. The differ-

ent distribution for asymptomatic carriers compared to all the other 
groups is visually apparent for both these traits but is more variable 
in the HR variability-related traits (Supplementary Fig. 3). P values 
correspond to the regression coefficient of the adjusted trait (Y-axis) 
in the model described in Eq. 1, comparing the groups indicated by 
the ticks; only significant p values are shown. The distribution of 
unadjusted traits can be observed in Supplementary Fig. 3. Asympt, 
asymptomatic; sympt, symptomatic

Fig. 4   Comparison of the effect 
sizes for HR and QRS duration 
in the two replication datasets 
and the discovery dataset. The 
figure shows the effect sizes 
from the Lifelines discovery 
cohort and the two replication 
cohorts: an additional subset 
of Lifelines participants and 
the ACM/PLN registry. Note 
that the effect in the Lifelines 
cohorts reflects the difference 
between the asymptomatic 
carriers and asymptomatic 
non-carriers, whereas replica-
tion in the ACM/PLN registry 
compares symptomatic carriers 
to asymptomatic carriers
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Since some of the volunteers in this second Lifelines sub-
set were relatives of volunteers in our discovery set, we 
carried out a joint analysis, adjusting for batch-effect and 
relatedness, which confirmed the legitimacy of this asso-
ciation (pdiscovery = 1 × 10–3 vs pjoint = 2 × 10–4, Supplemen-
tary Table 3A).

The observation of low QRS duration was also con-
firmed in the ACM/PLN patient registry, which comprises 
592 carriers of the PLN:c.40_42delAGA variant with an 
average age of 41 years (range 2.0–80.0 years) (Supplemen-
tary Fig. 6). Among the 592 carriers, 423 were classified 
as symptomatic and 169 as asymptomatic. We analyzed 
the heart-related phenotypes collected during each indi-
vidual’s first visit using the same model used in the dis-
covery cohort (“Methods”) except for the genetic principal 
component (PC) confounders, which were not available for 
this study because no genome-wide genotyping data was 
available. We also evaluated if the observed associations 
showed consistent effect when the symptomatic are defined 
using the symptoms definitions of ACM/PLN registry (Sup-
plementary Table 3B). Here, we observed consistent rep-
lication for QRS durations (Fig. 4, Supplementary Fig. 6, 
Supplementary Table 3C). Asymptomatic carriers in the 
ACM/PLN registry showed significantly decreased QRS 
duration (− 6.91 ms, 95% CI =  − 3.69 to − 10.12, two-sided 
p value = 2.0 × 10–4) compared to symptomatic carriers, and 
this effect was consistent even after stratifying the cohort 
into younger (< 40.0 years) and older (≥ 40.0 years) carriers 
(Supplementary Fig. 6, Supplementary Table 3C).

Two Common Genetic Variants May Be Associated 
with Absence of Symptoms in Carriers

We then searched for genetic factors that could explain 
the incomplete penetrance of PLN:c.40_42delAGA. We 
first analyzed the genetic region near the variant to look 
for other variants that could explain symptoms and signs 
of disease manifestation in carriers. We observed that the 
majority of carriers (N = 70) share a long identical haplotype 
of common and low-frequency variants (MAF ≥ 0.01) span-
ning 1.38 Mb (from 604 to − 766 Kb from the PLN gene), 
which is consistent with previous observations [8], while 
the remaining four samples carried distinct haplotypes vary-
ing from 1 to 330 single-nucleotide polymorphisms (SNPs). 
We then took a closer look by including rare variants with 
minor allele counts ≥ 4 in the carrier chromosomes, which 
allowed us to test more SNPs differentiating haplotype 
groups (n ≥ 3). However, neither these SNPs nor those at 
the boundaries of the long and shared haplotypes were sig-
nificantly associated with manifestation of symptoms (Sup-
plementary Table 4 and Supplementary Fig. 7).

We next expanded our search for potentially associated 
genetic factors to the rest of the genome by analyzing the 

single additive effect of 16,478,162 common variants in 
autosomes (see “Methods”). For this analysis, we used 
only unrelated samples (39 asymptomatic carriers and 
20,103 asymptomatic non-carriers). Here, we observed a 
long stretch of hundreds of variants located on chromo-
some 6 spanning a region of ~ 9.6 Mb that show signifi-
cant associations at a classical genome-wide threshold of 
p value ≤ 5 × 10–8 (Supplementary Fig. 8, Supplementary 
Table 5). All these associations, however, could be attrib-
uted to common variants tagging the haplotype carrying 
the PLN:c.40_42delAGA, and thus, this association was 
not related to presence/absence of symptoms (Supplemen-
tary Text). We also found two associations independent of 
PLN:c.40_42delAGA (Supplementary Fig. 9) that were 
close to the classical genome-wide significance threshold of 
5 × 10–8: one in chromosome 3 with SNP rs6768326 (allele 
G beta = 1.52 corresponding to an OR = 4.57, SE = 0.29, 
two-sided p value = 9.26 × 10–8, Fig.  5a) located near 
(~ 180 Kb) the gene RAP2B and one in chromosome 16 
with SNP rs112525682 (allele A beta = 1.42 corresponding 
to an OR = 4.14, SE = 0.28, two-sided p value = 2.64 × 10–7, 
Fig. 5b) located in the gene GSE1. However, we were unable 
to test for replication of these signals in the additional Life-
lines subset as none of these SNPs was directly available 
due to the different genotyping platforms (“Methods”). For 
the signal in chromosome 3, we could assess a proxy SNP, 
rs6791558 (r2 = 0.85 rs6768326 in 1000 Genomes Europe-
ans) but found no significant association with asymptomatic 
carriers in the replication cohort (beta = 0.27, SE = 0.40, 
two-sided p-value = 0.49, Supplementary Table 5C). No 
proxy SNP was available for the signal in chromosome 16, 
so this SNP could not be tested.

Rare Variant Loads in Cardiac‑Related Genes Did Not 
Associate with Presence or Absence of Symptoms 
in PLN:c.40_42delAGA Carriers in Our Dataset

Finally, we searched for any potential aggregated effect 
of rare variants at 80 genomic regions previously asso-
ciated with cardiomyopathies or cardiac phenotypes and 
for the regions surrounding our two GWAS signals on 
chromosome 3 and chromosome 16 (see “Methods”). 
Here, we observed a significant association for variants 
in the gene SLC35F1 when using the low-frequency 
threshold (MAF ≤ 0.05, two-sided p value = 4.3 × 10–22) 
and the rare variant threshold (MAF ≤ 0.01, two-sided p 
value = 2.8 × 10–26) for variant inclusion (Supplementary 
Table 6). Subregion analyses in the same gene revealed 
significant associations with asymptomatic carriers in 
regions containing exons 1, 2, 4, and 8. These results are 
interesting because the common variants near SLC35F1 
are already known to associate with QRS duration [23], 
QT interval [24], and resting HR [25]. However, this gene 
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is also in close proximity (< 250 kb) to the PLN gene and 
spurious association may thus arise due to different combi-
nations of variants in the core haplotype shared by carriers 
compared to non-carriers. Due to the limited sample size 
of the symptomatic carrier group, we could not compare 
symptomatic carriers with asymptomatic carriers to show 
a different load of rare variants between groups. However, 
when comparing the rare variant burden in the same sub-
regions between symptomatic carriers and asymptomatic 
non-carriers, these were also significantly different and 
had the same effect direction (Supplementary Table 6). 
We therefore concluded that these signals at SLC35F1 are 
the result of a confounding effect driven by the specific 
genetic composition of the founder haplotype carrying the 
PLN:c.40_42delAGA variant and cannot be attributed to 
the presence or absence of symptoms.

Polygenic Burden for Most Cardiac Phenotypes Does 
Not Differ Between Asymptomatic and Symptomatic 
Carriers of the PLN:c.40_42delAGA Variant

We next evaluated potential associations between common 
genetic variants known to associate with cardiac traits and 
absence of symptoms by calculating PGSs for 89 unique 
traits and compared PGS distributions between asymp-
tomatic carriers and asymptomatic non-carriers (“Meth-
ods” and Supplementary Table 7A). Several PGSs were 
significantly different (false discovery rate q value < 0.05, 
see “Methods”) in asymptomatic carriers (Supplementary 
Fig. 10 and Supplementary Table 7B), but no PGSs showed 
significant differences when comparing symptomatic and 
asymptomatic carriers (Supplementary Fig. 11). When we 

repeated the associations using PGSs calculated without 
the variants located in chromosome 6, we only observed 
a lower PGS for left ventricular end systolic volume cor-
rected by body surface area (LVESVI) in asymptomatic 
carriers (PGSLVESVI, beta =  − 0.30, SE = 0.15, q = 0.035) 
when compared to the asymptomatic non-carriers, which 
indicates that the other differences can be attributed to 
common variations located near the PLN:c.40_42delAGA 
variant (Supplementary Table 7C). PGSLVESVI was also 
lower, albeit non-significant, when comparing sympto-
matic carriers to the asymptomatic non-carriers; thus, the 
different polygenic burden observed is likely unrelated to 
the symptoms.

Polygenic Score of QRS Duration Better Predicts QRS 
Duration in Symptomatic Carriers

To further investigate the effect of PGSs for cardiac 
measurements, we modeled their prediction utility on 
their respective measurements and potential interac-
tions with age, gender, and participant group assignment. 
Here, we found that the PGSQRS has a stronger impact 
for predicting QRS in symptomatic carriers (two-sided 
p value = 4.27 × 10–11, Fig. 6b, Supplementary Table 8) 
compared to the other groups, and this interaction 
remained significant when applying inverse-rank nor-
malization to the trait (two-sided p value = 1.53 × 10–5) 
and when calculating PGSQRS without chromosome 6, 
thus excluding variants within or near PLN (two-sided p 
value = 2.30 × 10–5, Supplementary Table 8). Furthermore, 
PGSQRS was not associated with the severity of symptoms 

Fig. 5   Genotype distribution of SNPs in chromosomes 3 and 6 
according to carrier status and symptom manifestation. Frequency bar 
plots depicting the genotypes for a SNP rs6768326 in chromosome 
3 and b SNP rs112525682 in chromosome 16. Stacked bars are used 
to represent the relative counts of individuals with 2 (red), 1 (green), 

or 0 (blue) alternative alleles. Discrete genotypes were derived by 
rounding the allele dosage to the nearest integer value or setting it to 
missing if their value was more than 0.3 away. p values are derived 
from linear models adjusted for age, sex, and the first PC
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and signs observed in symptomatic carriers (Supplemen-
tary Fig. 12). We also found a significant interaction for 
PGSPR, but this was not robust to normalization of the 
measurement.

No Evidence for Gene Expression Differences 
Predicted by Common Variants

Finally, we searched for potential gene expression differ-
ences that could explain the presence/absence of symptoms 
in PLN:c.40_42delAGA carriers by performing a transcrip-
tome-wide association study (TWAS). Briefly, we used 
PrediXcan [26] to impute gene expression levels for up to 
8610 genes in the tissues artery aorta, artery tibial, heart 
atrial appendage, and heart left ventricle and compared the 
imputed gene expression between asymptomatic carriers and 
asymptomatic non-carriers and between symptomatic carri-
ers and symptomatic non-carriers (“Methods”). Expression 
of the PLN gene was also predicted and evaluated. Among 
all the genes tested, four (MARVELD2, LAMA4, FAM184A, 
and NCBP1) were significantly different in one of the com-
parisons and one (NT5DC1) was significantly different in 
both comparisons. We closely examined the TWAS results 
in the most relevant tissue, heart left ventricle, but found 
that these association signals were similar in size and effect 
direction in both comparisons (Supplementary Fig. 13, Sup-
plementary Table 9); therefore, differences in these genes 
cannot be related to presence/absence of symptoms in 
PLN:c.40_42delAGA variant carriers.

Discussion

In this study, we used the Lifelines Dutch general population 
biobank to search for modifiers of the PLN:c.40_42delAGA 
variant, a Dutch founder variant known to increase a car-
rier’s risk of developing malignant VA and HF. We 

observed that QRS duration was significantly shorter in 
PLN:c.40_42delAGA carriers who showed no signs or 
symptoms of the disease as compared to other carriers and 
non-carriers. We then replicated this observation in another 
subset of the same population and in a patient registry. 
QRS duration reflects ventricular activation and depolari-
zation [27], and QRS widening has been established as an 
intrinsic element of HF that comes with worse outcomes. 
In line with this, deformations of the QRS complex are fre-
quently found in DCM patients [28], and an increased QRS 
(≥ 120 ms) duration is frequently observed in severe cardiac 
outcome (up to 47% of patients with HF) [29]. Increased 
QRS duration was also previously observed in symptomatic 
PLN:c.40_42delAGA carriers compared to asymptomatic 
carriers [13], and thus, until now, increased QRS duration 
was only considered a risk factor. Here, however, we show 
that QRS duration was significantly lower in asymptomatic 
carriers even when compared to the general population, 
which suggests that short QRS may offset or postpone dis-
ease. On the other hand, QRS widening is a risk factor, as 
explained by its established relationship with myocardial 
scarring and remodeling. Intriguingly, the lower QRS dura-
tion in asymptomatic carriers and the higher QRS in symp-
tomatic carriers could not be explained by differences in 
genetic predisposition conferred by common variants that 
were previously associated to QRS duration (PGSQRS).

We observe that the effect of common genetic variation 
on QRS duration is more pronounced in symptomatic carri-
ers, with the correlation between PGSQRS and measured QRS 
duration significantly stronger in symptomatic carriers of the 
PLN:c.40_42delAGA variant. This is more complex than 
just a genetic interaction because this effect was not seen in 
asymptomatic PLN:c.40_42delAGA carriers. This effect is 
also unlikely to be caused by HF by itself because people 
with the wild-type PLN allele (non-carriers) and HF also 
show normal sensitivity to the PGSQRS. That said, we have 
not identified a mechanistic explanation and these results 

Fig. 6   Interaction of PGSQRS 
with symptomatic carrier 
status. a Schematic over-
view of the interaction. 
PLN:c.40_42delAGA carriers 
show an increased risk of devel-
oping cardiac symptoms. In 
turn, symptomatic carriers show 
a higher correlation between 
PGSQRS and QRS compared 
to asymptomatic non-carriers. 
b Scatter plot and regression 
line for the partial correlation 
between PGSQRS and QRS 
for each group studied (colors 
according to the legend)
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require replication in an independent cohort. However, repli-
cation will be challenging because the PLN:c.40_42delAGA 
variant is less frequent in other populations. According to 
gnomAD, the variant was identified in only 2 out of 25,328 
North-western European samples sequenced and was not 
found in any of the 39,118 samples of other European or 
non-European origin.

For now, we can only speculate as to why we observe this 
complex interaction effect. In this manuscript, we explored 
the modifiers that make the PLN:c.40_42delAGA variant 
pathogenic in some people but not in others. However, it 
might also be that the genetic or environmental modifi-
ers that influence the penetrance of the PLN variant also 
increase the impact of PGSQRS. This is not unlikely as the 
main mechanism disturbed by the PLN:c.40_42delAGA 
variant is calcium homeostasis, and we can infer that part 
of the pathogenicity might be explained by disturbance in 
this system. Several genes implicated by the GWAS on QRS 
are calcium-handling proteins [30], and it has been shown 
that calcium levels can influence ventricular repolarization, 
although the impact on QRS duration is weak [31].

Further studies are needed to investigate this hypoth-
esis. For example, as larger GWAS on QRS are carried 
out and more associated genetic variants are discovered, 
the increased power and resolution of PGSQRS could help 
clarify the signal in both groups of carriers by pinpointing 
a subset(s) of genes involved in specific pathways through 
pathway-based PGS [32, 33]. Of note, full summary statis-
tics will be required for the PGS construction; if we would 
only take the leading variants of the QRS GWAS the interac-
tion is not observed (p > 0.05).

Studies aiming to investigate differences in non-genetic 
factors between symptomatic and asymptomatic carriers will 
be more difficult to establish. Although genetics explains less 
than half of the intra-individual variation in QRS [34], the 
environmental factors that contribute to differences in QRS 
duration in the general population are largely unknown. We 
can speculate that physical activity might be one of these, 
as athletes and those engaging in regular physical training 
have relevant cardiac structural and electrical changes [35]. 
Nonetheless, in our Lifelines population cohort, we did not 
find significant associations between QRS duration and 
exercise or between QRS duration and participants living in 
less urban locations (Supplementary Text, Supplementary 
Table 10A).

We cannot rule out that the association of QRS duration 
that we observe is merely a proxy for other potentially pro-
tective factors that were not measured in Lifelines partici-
pants. For example, a recent study carried out on the ACM/
PLN patient registry identified certain ECG- or MRI-derived 
features, such as left ventricular ejection fraction (LVEF) 
and 24-h premature ventricular contraction (PVC) count, as 
stronger risk factors for developing ventricular arrhythmia 

than QRS duration [13]. Given the existing correlation 
between QRS and LVEF and the 24-h PVC count (Supple-
mentary Fig. 14, Supplementary Text), we cannot exclude 
that our signal based on QRS actually captures the effect of 
unmeasured LVEF and 24-h PVC count in our cohort. How-
ever, genetics and experimental model studies suggest that 
QRS duration could have a non-null causal role in symptom 
manifestation. Previous studies have shown computational 
evidence and suggestive experimental evidence in other 
organisms. In Zebrafish, the plna R14del variant causes 
beat-to-beat variations in cardiac output in the absence of 
cardiac remodeling, suggesting that the cardiac contractile 
dysfunction is not caused by but rather causal for cardiac 
remodeling [36]. Causal relationships between anomalies 
in the QRS complex, specifically in the Q-R upslope, and 
increased risk of DCM have been found through the Mende-
lian randomization approach using genetic variants of ECG 
signatures [37].

Given the replicated association between shorter QRS 
duration and absence of symptoms in carriers, we further 
explored its potential clinical predictive value in a recently 
proposed predictive model [13], by replacing PVC and 
LVEF with QRS to simulate situations of absence of MRI 
measurements, whereas Verstraelen et al. [13] found QRS 
duration to have limited predictive ability for VA com-
pared to other cardiac measurements, we found that its 
effect still significantly improved the baseline prediction 
model in the ACM/PLN registry (Supplementary Fig. 15, 
Supplementary Text). Therefore, we suggest that QRS 
duration could be further explored for its clinical value in 
predicting other severe events and interim outcomes for 
PLN:c.40_42delAGA carriers.

We increased the statistical power to identify a protective 
effect by comparing asymptomatic non-carriers to a large set 
of asymptomatic non-carriers from the general population. 
This approach has great potential for use in other popula-
tion-based cohorts, especially for more common monogenic 
traits with incomplete penetrance. For example, mutations 
in BRCA​ genes show an approximate prevalence of carriers 
without breast cancer symptoms ranging from 0.05 to 0.30 
[38]. In this scenario, a biobank with a sample size compa-
rable to our study (n = 40,000) would have 80% power to 
detect ORs as small as 1.5 (Supplementary Fig. 16C).

Our study comes with limitations. While we used a large 
population cohort to search for genetic variants that could act as 
potential genetic modifiers of PLN:c.40_42delAGA, our study 
was still underpowered for finding associations at the genome-
wide level. For example, our sample size provides 80% power for 
detection of ORs > 4.5 at variants with MAF > 0.15 or of ORs > 5 
at variants with MAF > 0.1, with p < 5 × 10–8 (Supplementary 
Fig. 16). In addition, as we had no power to detect similar or 
smaller effects at rarer variants, we implemented additional strat-
egies to investigate the cumulative impact of rare variants by 
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aggregating their effects, but we still found no significant signal. 
As our study did not have whole-genome or exome sequenc-
ing data available, our rare variants analyses are underpowered 
since they are limited to those rare and very rare variants that 
were genotyped directly or well imputed. We were also limited 
in investigating our findings in the replication datasets because 
of lack of genotyping information; no genotyping information 
was available for the ACM/PLN registry, and the information 
for the second Lifelines subset came from a different genotyping 
array and did not include imputed variants. Therefore, we could 
not validate one of the two suggestively significant findings in 
GWAS and were unable to replicate the PGS interaction in symp-
tomatic carriers. Additionally, for the general population in the 
Lifelines cohort, we did not have specialized cardiac phenotypes 
such as cardiac MRI measurements that could be better indica-
tors of risk or protection. Finally, we recognize that it is possible 
for both carriers and non-carriers to be misclassified as asympto-
matic because, for participants of young age, we cannot establish 
with certainty who will remain asymptomatic over the long-term. 
To mitigate this, we used all available follow-up data (5-year 
follow-up data in Lifelines, including death records, and an aver-
age of 9.5 years follow-up in the ACM/PLN registry) to classify 
individuals in the two groups. Notably, our results hold true when 
analyzing only the 22 individuals aged > 40 years in Lifelines 
(Supplementary Table 2E), and replication was consistent in the 
ACM/PLN registry with the 248 individuals aged > 40 years 
(Supplementary Table 3C), suggesting that our findings are 
robust. Additionally, the association of lower QRS duration with 
asymptomatic carriers was confirmed in the ACM registry when 
repeating the analyses using a more comprehensive definition of 
symptomatic groups (Supplementary Table 3C). For this analy-
sis, no individuals who were classified as “asymptomatic” later 
exhibited symptoms.

In conclusion, we used a large population cohort to identify 
phenotypic and genetic modifiers of PLN:c.40_42delAGA, a 
variant that leads to an inherited genetic disorder with incom-
plete penetrance. By taking advantage of the unbiased iden-
tification and inclusion of carriers showing no symptoms, we 
identified and replicated an association between shorter QRS 
duration and a lack of disease signs and symptoms. We envi-
sion that this approach can be applied to other highly penetrant 
disorders in other large population cohorts, thereby capitaliz-
ing on the hundreds of thousands or millions of participants so 
that rare disease-causing variants reach a substantial number 
of carriers with variable symptoms.

Methods

Cohort Description

Lifelines is a multi-disciplinary population-based cohort 
study with a three-generation design that examines the health 

and health-related behaviors of 167,729 people living in the 
north of the Netherlands. Lifelines employs a broad range of 
investigative procedures to assess the biomedical, socio-demo-
graphic, behavioral, physical, and psychological factors that 
contribute to the health, disease, and quantitative traits of the 
general population, with a special focus on multi-morbidity 
and genetics [19]. Participants visited Lifelines research sites 
for a physical examination, including blood pressure and ECG 
measurements and blood and urine collection to measure sev-
eral disease biomarkers. Data from one follow-up visit 5 years 
after the baseline recruitment visit is now available for most 
participants. The Lifelines study was approved by the medical 
ethical committee from the University Medical Center Gron-
ingen (METc number: 2007/152). An informed consent was 
collected for all participants.

Genotype Data

A subset of 38,030 Lifelines participants were genotyped within 
the UMCG Genotyping Lifelines Initiative (UGLI) using the 
Infinium Global Screening array® (GSA) Multiethnic Dis-
eases version, which includes around 700 K variants. Samples 
were processed at the Rotterdam Genotyping Center and the 
Department of Genetics of the UMCG, following manufacturer 
instructions. Standard quality control procedures were used to 
flag and remove low-quality samples and genetic markers, and 
the genetic content of the final quality-controlled dataset was 
augmented through genotype imputation carried out using the 
Haplotype Reference Consortium panel v1.172, as described 
previously [39]. Quality-controlled, genotyped and imputed 
genotype information was obtained for 36,339 participants and 
39,131,578 genetic variants on autosomes, which were used for 
genetic analyses. Based on a PC analysis that analyzed all the 
36,339 Lifelines participants together with the 1000 Genomes 
samples [39], only 34 participants were of non-European origin 
and were not used for the analyses.

D e l e t i o n / i n s e r t i o n  o f  r s 3 9 7 5 1 6 7 8 4 -AG A 
(PLN:c.40_42delAGA) was genotyped directly. Genotype 
intensities were screened and indicated a lack of spurious 
genotype calls (Supplementary Fig. 2). Quality control 
parameters indicated that the variant was genotyped with 
high quality (genotyping call rate = 99.96%, Hardy–Wein-
berg equilibrium p value = 1). Genotypes at this variant 
were used to classify samples into carriers and non-carri-
ers according to the presence or absence of the deletion. 
All identified carriers were of European ancestry.

Definition of Asymptomatic Participants 
in the Lifelines Cohort

We defined a participant to be asymptomatic for cardiomyo-
pathic disease if they did not report any cardiac symptoms in 
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the self-reported questionnaire at baseline or follow-up visit 
and the cardiologist did not report any sign of the disease 
during the ECG measurements at these time points, which 
are spaced a maximum of 5 years apart. We considered 
the following to be symptoms of disease: HF, heart attack, 
infarct, and being treated for arrhythmia. We defined signs 
of disease as any of the following indicators noted by the 
ECG software and reviewed by the cardiologists: low volt-
age or micro-voltages, negative T, ventricular tachycardia, 
ventricular extrasystole, or atrial fibrillation. A participant 
presenting one or more of these symptoms or signs was 
classified as symptomatic. Additionally, for the carriers, we 
looked for the cause of death report (if death had occurred) 
to confirm if death was related to cardiac symptoms.

Analysis Scheme

To identify potentially protective factors, we analyzed phenotype 
and genetic variables using a 2-step procedure to compare 
different groups of participants according to carrier status and 
symptom manifestation and followed up significant results with 
more in-depth analyses (step 3) and replication (step 4) (Fig. 1). 
Specifically, in step 1, we screened all available variables by 
comparing asymptomatic carriers with asymptomatic non-
carriers. In step 2, variables showing significant differences 
(q < 0.05) were further investigated by comparing their 
distribution among the other groups. Specifically, we compared 
these variables between symptomatic carriers and asymptomatic 
non-carriers, where we expect to find either no difference or 
a difference in the opposite direction to that observed in step 
1. At the same time, we compared these variables between 
symptomatic carriers and asymptomatic carriers, where we 
expect to find a difference in the same direction as in step 1. 
For these comparisons, we used the equations described in the 
sections below by coding the outcome variable accordingly.

We used permutations to derive a proper significance 
threshold for step 1 that accounts for the high correlation 
between variables and the multiple tests performed. Specifi-
cally, we derived empirical q values from the p values of 
the joint results for all variables of 1000 permutations for 
each variable. In each permutation, the variable’s value was 
shuffled independently of the genetically related variables 
(kinship, PCs and carrier status), which remained linked. 
This was applied to analyses that investigated quantitative 
phenotypes and PGSs. For GWAS and rare variant burden 
analyses, we used the standard thresholds of p < 5 × 10–8 and 
2.5 × 10–6 [40], respectively.

Finally, to test the robustness of our results, we repeated the 
analyses with the normalized phenotypes using the Rank.norm() 
function of the RNOmni v1.0 R package [41], implemented in 
R v4.0.3, and with a case–control ratio of 1:4 in age- and sex-
matched asymptomatic carriers and asymptomatic non-carriers.

Quantitative Phenotypes: Definition and Analysis

We considered 64 quantitative phenotypes representing 
anthropometric measures and cardiometabolic functions as 
potentially protective factors. These phenotypes were meas-
ured as previously described [19]. Outliers and unrealistic 
values were removed, as described in our previous work 
[39], and further extreme or unrealistic values (HR > 200, 
QRS > 200, QTC > 600, PQ > 320) were removed for cardiac 
traits [42]. We also included four quantitative traits associ-
ated with HR variability that were derived from the ECG 
and calculated in the Lifelines cohort in a previous work 
[43]. The full description of the quantitative traits investi-
gated included, along with cohort descriptive statistics, can 
be found in Supplementary Table 1. We decided not to use 
phenotypes with fewer than 25 participants in the asympto-
matic carriers group. After applying all the filters described 
above, 38 phenotypes were considered for further analyses.

To evaluate the association with absence of symptoms, 
we compared the distribution of each variable between 
asymptomatic carriers and asymptomatic non-carriers. We 
used the lmekin() function of the R package coxme v2.2 [44] 
to fit a linear mixed model that predicts the phenotype under 
study based on the carrier status (outcome) and adjusted the 
model by age, age squared, the first four genetic PCs and sex, 
while accounting for familial relationships. Specifically, we 
used the following model:

where ~ (1|ID) is a random effect equivalent to twice 
the kinship matrix and outcome is a variable coded as 
1 for asymptomatic carriers and 0 for asymptomatic 
non-carriers. Genetic PCs were included to rule out the 
potential confounding effects of different geographic 
distribution of carriers and non-carriers.

PGS Definition and Analysis

We downloaded summary statistics of GWAS on quanti-
tative phenotypes and diseases related to cardiovascular 
function in the public repositories (Supplementary Table 7). 
When more than one study or repository was found for the 
same trait, we kept the study with the largest sample size 
and the highest number of available SNPs. In total, we found 
summary statistics for 89 traits (55 cardiac and circulatory 
system diseases, 10 cardiac magnetic resonance parameters, 
15 echocardiographic parameters, 4 electrocardiographic 
parameters, 2 HR variability parameters and 3 anthropo-
metric measures as control).

The selected summary statistics were used to calcu-
late PGSs using the PRS-CS software, which uses the full 
summary statistics in a Bayesian regression framework by 

(1)Y ∼ age + age2 + sex + PC1 + PC2 + PC3 + PC4 + outcome+ ∼ (1|ID)
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placing a continuous shrinkage prior on the effect size of 
SNPs while adjusting by the linkage disequilibrium from 
a reference panel [45]. This method has been shown to be 
more efficient, in multiple settings, than the classical clump-
ing and thresholding method [46]. We used the default 
parameters for all our calculations.

The resulting PGSs were used to identify the genetic sig-
natures of the phenotypes they represent and to assess if 
these signatures are associated with absence of symptoms in 
PLN:c.40_42delAGA carriers. We compared the distribution 
of PGSs between asymptomatic carriers and asymptomatic 
non-carriers using the following linear model:

where outcome is a variable coded as 1 for asymptomatic 
carriers and 0 for asymptomatic non-carriers.

PGSs in this model were used as continuous percentiles 
of the standardized PGS. We also analyzed the effect of hav-
ing an extreme PGS value by recoding the PGS variable as 
binary in the model. Specifically, we assessed the impact of 
having very high PGS by recoding the variable to 1 when 
PGS values were above the 80th percentile and to 0 other-
wise. Likewise, we assessed the impact of low PGS values 
by recoding the variable to 1 when PGS values were below 
the 20th percentile and to 0 otherwise.

Genetic Association Analyses

To evaluate  the genomic region nearby the 
PLN:c.40_42delAGA variant, we selected the imputed geno-
types of all genetic variants located within ± 2 Mb, with an 
imputation information score higher than 0.8 and with no 
Mendelian errors. We then phased the selected variants in 
the entire Lifelines cohort using SHAPEITv2.904 [47] with 
the options –duohmm and –output-max. Focusing only on 
the 74 carriers and the phased chromosome carrying the 
variant, we screened the haplotypes in increasing windows 
surrounding the PLN pArg14del variant. We started with 
the PLN pArg14del variant and added one SNP on each 
side to form a window and counted how many different 
haplotype-alleles were present among carriers. We then 
repeatedly added one SNP to each side. If the addition of 
a SNP to either side resulted in a split of the most frequent 
haplotype of more than a threshold number of samples (a 
split threshold), we stopped adding SNPs to this side and 
continued the other. To identify the longest shared haplo-
type among carriers of the PLN pArg14del variant, we first 
selected SNPs with MAF ≥ 0.01 and set the split threshold at 
3. To include haplotypes that could possibly explain the dif-
ference in symptoms, we selected SNPs with a minor allele 
count ≥ 4 in the group of carriers and set the split threshold 
at 10. We then compared the frequency of the most frequent 

(2)PGSs ∼ age + sex + outcome

haplotypes between symptomatic and asymptomatic carriers 
using a chi-square test only in the main splits (split thresh-
old ≥ 3). We used the Ghap version 2.0 package in R [48] 
for the statistical analyses and counting of the haplotypes.

To assess the potential modifier effect of common vari-
ants, we carried out a genome-wide association scan and 
compared allele-dosages of each variant between asympto-
matic carriers and asymptomatic non-carriers using plink2.0 
(version alpha2-20191006) [49]. For this analysis, we only 
used unrelated samples because currently available software 
that can account for family-based cohorts cannot properly 
analyze such an imbalanced number of cases (asymptomatic 
carriers) and controls (asymptomatic non-carriers). To iden-
tify unrelated samples, we first calculated pairwise kinship 
coefficients using KING [50] v2.2 and removed individuals 
with high kinship (> 0.125) in their respective group. For 
each pair of related individuals, we removed the individual 
of lower age. We also removed individuals in the group of 
controls who were related to individuals in the cases group. 
In all, we investigated the additive effects of 16,478,162 
common variants (after filtering by MAF > 0.1 for asymp-
tomatic carriers and MAF > 0.05 for non-carriers, and INFO 
score > 0.4) with a logistic model that included the first PC, 
age, gender and the dosages of imputed or genotyped genetic 
variants, as in the following model:

To screen for association signals that could be driven by an 
imbalanced allocation of variants in the long haplotype of the 
PLN:c.40_42delAGA variant, and thus not related to the absence 
of symptoms, we assessed the correlation between the strength 
of the association (p value) of SNPs with p value ≤ 5 × 10–4 and 
their linkage disequilibrium (r2) with the PLN:c.40_42delAGA 
variant. SNPs that did not fit on the line of this correlation (by 
visual inspection) were considered suggestive associations and 
further investigated (Supplementary Fig. 9).

To evaluate the effects of rare variants, we carried out 
region-based association tests only on low frequency 
(MAF ≤ 0.05) or rare (MAF ≤ 0.01) variants with INFO 
score > 0.8, using the robust omnibus approach in the 
package SKAT [51]. This approach combines variance 
component tests and variant collapsing tests and corrects 
for case–control imbalance in binary traits [40]. We inter-
rogated the regions ± 50 Kb in and around 80 genes with 
known genetic associations to cardiovascular diseases and 
ECG measurements [52] and regions ± 250 Kb around the 
two variants identified by our GWAS. For these analyses, we 
used the same logistic model and samples as in Eq. 3. We 
confirmed our results using dosages and adjusting for the 
common variant effect. For the significant genes and regions 
(p < 2.5 × 10–6) [53], we further analyzed the subregion level 
by splitting the significant region into ten segments.

(3)logit(outcome) ∼ age + sex + PC1 + SNP_dosage
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Transcriptome‑Wide Association Study

We performed a TWAS using PrediXcan [26, 54, 55]. We 
used the algorithm of PrediXcan to predict individual gene 
expression levels based on their genotypes. The models, 
available from PredictDB (http://​predi​ctdb.​org), are elas-
tic net–based models trained on European populations in the 
GTex version 8 release (elastic_net_eqtl.tar). For four heart-
related tissues (artery aorta, artery tibial, heart atrial append-
age and heart left ventricle), we predicted expression profiles 
for all the individuals included in our study (N = 36,339). 
Specifically, we imputed gene expression for 7589 genes in 
artery aorta, 8,610 genes in artery tibial, 6632 genes in heart 
atrial appendage and 6006 genes in heart left ventricle in all 
Lifelines participants. We then performed logistic regres-
sion to investigate differences in gene expression between 
asymptomatic carriers and asymptomatic non-carriers, with 
age, gender and the first 4 PCs from the genotype data as 
covariates. Specifically, we used the following model:

Furthermore, we adjusted the p values with Bonferroni 
correction (implemented with the Statsmodels Python 
package [56] using the statsmodels.stats.multitest.
multipletests() function, with the method variable being 
“bonferroni”). Similar to our GWAS, we used the same 
model (4) to investigate the differences for the suggestive 
genes in the remaining groups’ comparisons.

Validation in the Additional Lifelines Subset Cohort

We first sought to replicate our results in a second subset 
of 21,771 Lifelines participants for whom the same phe-
notype variables were available. This subset included indi-
viduals who were not genotyped with the Infinium Global 
Screening array but rather with the FinnGen ThermoFisher 
Axiom custom array (see URLs), which also includes the 
PLN:c.40_42delAGA variant. As the dataset had been 
recently genotyped, no imputed data was available. Neither 
of the two genetic variants showing suggestive association 
(SNP rs6768326 on chromosome 3 and SNP rs112525682 
on chromosome 16) were directly genotyped with the Axiom 
array. For analyses, we classified subjects to be asympto-
matic or symptomatic carriers or non-carriers following 
the same definitions we used for our discovery dataset and 
used the same models described above (models 1 and 3, 
with the exception of the PCs as they were unavailable in 
the second subset) to investigate the effect of quantitative 
phenotypes and genetic variants on asymptomatic carriers. 
To properly account for known relationships between the 
discovery Lifelines dataset and this second subset, we also 

(4)
logit(outcome) ∼ age + sex + gene_expression

+PC1 + PC2 + PC3 + PC4

jointly analyzed all Lifelines samples while correcting for 
the pedigree-derived kinship matrix and the subset in addi-
tion to other other covariants.

Validation in the ACM/PLN Patient Registry

We sought to further validate the HR and QRS phenotypes 
as potentially protective factors in 592 PLN:c.40_42delAGA 
carriers from the Netherlands Arrhythmogenic Cardio-
myopathy (ACM) Registry [22], a national observational 
cohort study that includes patients with a definite ACM 
diagnosis and their at-risk relatives. The Registry is coor-
dinated by the Netherlands Heart Institute (NHI, Utrecht, 
The Netherlands) and follows the Code of Conduct and the 
Use of Data in Health Research, and the national inclusion 
of patients is exempt from the Medical Research Involv-
ing Human Subjects Act (WMO) as per judgment of the 
Medical Ethics Committee (METC 18–126/C, Utrecht, The 
Netherlands). The ACM/PLN Registry is registered at the 
Netherlands Trial Registry, project 7097 (which can be con-
sulted at the International Clinical Trial Registry Platform 
(ICTRP),  see URLs).

The registry collects participants’ medical history and 
(non-)invasive test information (e.g., electrocardiograms, 
Holter recordings, imaging and electrophysiological 
studies, pathology reports) at baseline and follow-up visits. 
No genome-wide array data was available in the registry. 
For analyses, we classified subjects as asymptomatic or 
symptomatic carriers or non-carriers according to the 
definition used in our discovery dataset and used the same 
models as described above (models 1 and 3) to investigate 
the effect of quantitative phenotypes on asymptomatic 
carriers. Out of the 947 individuals in the registry, we 
excluded individuals who could not be classified as 
“asymptomatic” or “symptomatic” because of missing 
values, leaving 592 individuals for further analysis. We 
further evaluated if the observed associations remained 
significant and showed consistent effect directions when 
defining the symptomatic and asymptomatic status using 
additional outcome parameters collected in the ACM/PLN 
registry [22], including (non)sustained VA, intracardiac 
defibrillator interventions, atrial arrhythmias, HF symptoms, 
hospitalizations and (cardiac) death (Supplementary 
Table  3B). Additionally, to eliminate possible false 
correlations introduced by age differences, we further 
stratified the participants into younger (≤ 40 years of age) 
and older (> 40 years) groups and repeated the regression 
analysis. For the analyses in the ACM/PLN registry, we did 
not remove individuals from the same family because the 
exact family relationships were not recorded.
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