Skip to main content

Advertisement

Log in

Association Between the Early Serum Lipid Metabolism Profile and Delayed Neurocognitive Recovery After Cardiopulmonary Bypass in Cardiac Surgical Patients: a Pilot Study

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cardiac surgery with extracorporeal circulation is considered to be one of the surgical types with the highest incidence of delayed neurocognitive recovery (DNR), but the mechanism is unclear. Metabolomics technology can be used to understand the early postoperative metabolic profile and find the relationship between serum metabolites and disease. We performed untargeted analyses of postoperative serum metabolites in all surgical groups, as well as serum metabolites in healthy nonsurgical adults, by using liquid chromatography‒mass spectrometry (LC‒MS). DNR after cardiopulmonary bypass surgery occurred in 35% of surgical patients. Sixty-nine metabolites were found to be associated with DNR. Lipids and lipid-like molecules occupy a total of 55 positions. Lipid metabolism occupies an important position in the serum metabolic profile of DNR patients in the early postoperative period. Phosphatidylinositol (PI), sphingomyelin (SM), and phosphatidylglycerol (PG) appear at the highest frequency. Correlation analysis and receiver operator characteristic curve analysis confirmed PI and SM as potential biomarkers for an increased risk of DNR.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Evered L, Silbert B, Knopman DS, Scott DA, Dekosky ST, Rasmussen LS, et al. Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery—2018. Br J Anaesth. 2018;121(5):1005–12. https://doi.org/10.1016/j.bja.2017.11.087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hogue CW, Grafman J. Aligning nomenclature for cognitive changes associated with anaesthesia and surgery with broader diagnostic classifications of non-surgical populations: a needed first step. Br J Anaesth. 2018;121(5):991–3. https://doi.org/10.1016/j.bja.2017.12.029.

    Article  CAS  PubMed  Google Scholar 

  3. Bhamidipati D, Goldhammer JE, Sperling MR, Torjman MC, McCarey MM, Whellan DJ. Cognitive outcomes after coronary artery bypass grafting. J Cardiothorac Vasc Anesth. 2017;31(2):707–18. https://doi.org/10.1053/j.jvca.2016.09.028.

    Article  PubMed  Google Scholar 

  4. Zhang X, Lyu Y, Wang D. S100β as a potential biomarker of incident delirium: a systematic review and meta-analysis. Minerva Anestesiol. 2020;86(8):853–60. https://doi.org/10.23736/s0375-9393.20.14100-2.

    Article  PubMed  Google Scholar 

  5. Subramaniyan S, Terrando N. Neuroinflammation and perioperative neurocognitive disorders. Anesth Analg. 2019;128(4):781–8. https://doi.org/10.1213/ane.0000000000004053.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chi YL, Li ZS, Lin CS, Wang Q, Zhou YK. Evaluation of the postoperative cognitive dysfunction in elderly patients with general anesthesia. Eur Rev Med Pharmacol Sci. 2017;21(6):1346–54.

    PubMed  Google Scholar 

  7. Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA. Untargeted metabolomics strategies-challenges and emerging directions. J Am Soc Mass Spectrom. 2016;27(12):1897–905. https://doi.org/10.1007/s13361-016-1469-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fiehn O. Metabolomics by gas chromatography-mass spectrometry: combined targeted and untargeted profiling. Curr Protoc Mol Biol. 2016;114:30.4.1-4.2. https://doi.org/10.1002/0471142727.mb3004s114.

    Article  PubMed  Google Scholar 

  9. Toledo JB, Arnold M, Kastenmüller G, Chang R, Baillie RA, Han X, et al. Metabolic network failures in Alzheimer’s disease: a biochemical road map. Alzheimers Dement. 2017;13(9):965–84. https://doi.org/10.1016/j.jalz.2017.01.020.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Luan H, Wang X, Cai Z. Mass spectrometry-based metabolomics: targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders. Mass Spectrom Rev. 2019;38(1):22–33. https://doi.org/10.1002/mas.21553.

    Article  CAS  PubMed  Google Scholar 

  11. Shaefi S, Shankar P, Mueller AL, O’Gara BP, Spear K, Khabbaz KR, et al. Intraoperative oxygen concentration and neurocognition after cardiac surgery. Anesthesiology. 2021;134(2):189–201. https://doi.org/10.1097/aln.0000000000003650.

    Article  CAS  PubMed  Google Scholar 

  12. Wang F, Zou ZR, Yuan D, Gong Y, Zhang L, Chen X, et al. Correlation between serum S100β protein levels and cognitive dysfunction in patients with cerebral small vessel disease: a case-control study. Biosci Rep. 2017;37(2). 10.1042/bsr20160446

  13. Zhang Y, Duan B, Wang L, Ye Z, Pan Y, Guo Q, et al. Association between the variability of cerebral oxygen saturation during cardiopulmonary bypass and delayed postoperative neurocognitive recovery in cardiac valve surgical patients: A pilot study. Int J Clin Pract. 2021;75(1):e13651. https://doi.org/10.1111/ijcp.13651.

    Article  CAS  PubMed  Google Scholar 

  14. Hu J, Li CJ, Wang BJ, Li XY, Mu DL, Wang DX. The sensitivity and specificity of statistical rules for diagnosing delayed neurocognitive recovery with Montreal cognitive assessment in elderly surgical patients: a cohort study. Medicine (Baltimore). 2020;99(29):e21193. https://doi.org/10.1097/md.0000000000021193.

    Article  CAS  PubMed  Google Scholar 

  15. Jiang Z, Cai Y, Zhang X, Lv Y, Zhang M, Li S, et al. Predicting delayed neurocognitive recovery after non-cardiac surgery using resting-state brain network patterns combined with machine learning. Front Aging Neurosci. 2021;13:715517. https://doi.org/10.3389/fnagi.2021.715517.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lewis C, Levine A, Balmert LC, Chen L, Sherwani SS, Nemeth AJ, et al. Neurocognitive, quality of life, and behavioral outcomes for patients with covert stroke after cardiac surgery: exploratory analysis of data from a prospectively randomized trial. Anesth Analg. 2021;133(5):1187–96. https://doi.org/10.1213/ane.0000000000005690.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bukauskienė R, Širvinskas E, Lenkutis T, Benetis R, Steponavičiūtė R. Risk factors for delayed neurocognitive recovery according to brain biomarkers and cerebral blood flow velocity. Medicina (Kaunas). 2020;56(6). https://doi.org/10.3390/medicina56060288

  18. Danielson M, Wiklund A, Granath F, Blennow K, Mkrtchian S, Nellgård B, et al. Neuroinflammatory markers associate with cognitive decline after major surgery: findings of an explorative study. Ann Neurol. 2020;87(3):370–82. https://doi.org/10.1002/ana.25678.

    Article  PubMed  Google Scholar 

  19. Szwed K, Słomka A, Pawliszak W, Szwed M, Anisimowicz L, Żekanowska E, et al. Novel markers for predicting type 2 neurologic complications of coronary artery bypass grafting. Ann Thorac Surg. 2020;110(2):599–607. https://doi.org/10.1016/j.athoracsur.2019.10.071.

    Article  PubMed  Google Scholar 

  20. Ibáñez C, Cifuentes A, Simó C. Recent advances and applications of metabolomics to investigate neurodegenerative diseases. Int Rev Neurobiol. 2015;122:95–132. https://doi.org/10.1016/bs.irn.2015.05.015.

    Article  CAS  PubMed  Google Scholar 

  21. An Y, Varma VR, Varma S, Casanova R, Dammer E, Pletnikova O, et al. Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimers Dement. 2018;14(3):318–29. https://doi.org/10.1016/j.jalz.2017.09.011.

    Article  PubMed  Google Scholar 

  22. Zhu B, Shen J, Jiang R, Jin L, Zhan G, Liu J, et al. Abnormalities in gut microbiota and serum metabolites in hemodialysis patients with mild cognitive decline: a single-center observational study. Psychopharmacology. 2020;237(9):2739–52. https://doi.org/10.1007/s00213-020-05569-x.

    Article  CAS  PubMed  Google Scholar 

  23. Johnson LA, Zuloaga KL, Kugelman TL, Mader KS, Morré JT, Zuloaga DG, et al. Amelioration of metabolic syndrome-associated cognitive impairments in mice via a reduction in dietary fat content or infusion of non-diabetic plasma. EBioMedicine. 2016;3:26–42. https://doi.org/10.1016/j.ebiom.2015.12.008.

    Article  PubMed  Google Scholar 

  24. Dall’Armi C, Devereaux KA, Di Paolo G. The role of lipids in the control of autophagy. Curr Biol. 2013;23(1):R33-45. https://doi.org/10.1016/j.cub.2012.10.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huynh K, Lim WLF, Giles C, Jayawardana KS, Salim A, Mellett NA, et al. Concordant peripheral lipidome signatures in two large clinical studies of Alzheimer’s disease. Nat Commun. 2020;11(1):5698. https://doi.org/10.1038/s41467-020-19473-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu X, Zhang A, Zhu Y, He W, Di W, Fang Y, et al. MFG-E8 reverses microglial-induced neurotoxic astrocyte (A1) via NF-κB and PI3K-Akt pathways. J Cell Physiol. 2018;234(1):904–14. https://doi.org/10.1002/jcp.26918.

    Article  CAS  PubMed  Google Scholar 

  27. Olsen ASB, Færgeman NJ. Sphingolipids: membrane microdomains in brain development, function and neurological diseases. Open Biol. 2017;7(5). https://doi.org/10.1098/rsob.170069

  28. Cantuti-Castelvetri L, Bongarzone ER. Synaptic failure: the achilles tendon of sphingolipidoses. J Neurosci Res. 2016;94(11):1031–6. https://doi.org/10.1002/jnr.23753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Savica R, Murray ME, Persson XM, Kantarci K, Parisi JE, Dickson DW, et al. Plasma sphingolipid changes with autopsy-confirmed Lewy Body or Alzheimer’s pathology. Alzheimers Dement (Amst). 2016;3:43–50. https://doi.org/10.1016/j.dadm.2016.02.005.

    Article  PubMed  Google Scholar 

  30. Mielke MM, Bandaru VV, Haughey NJ, Xia J, Fried LP, Yasar S, et al. Serum ceramides increase the risk of Alzheimer disease: the Women’s Health and Aging Study II. Neurology. 2012;79(7):633–41. https://doi.org/10.1212/WNL.0b013e318264e380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Oebiotech (Shanghai, China) for technical assistance in the analysis of the metabolomics data.

Funding

This work was supported by the National Natural Science Foundation of China (81901100), Jiangsu Province Special Program for Young Medical Talent (QNRC2016587) to H.H., and Nanjing Introduction Plan of Leading Technology Entrepreneurship Talents (2014B06011) to Y.C.

Author information

Authors and Affiliations

Authors

Contributions

Jingjing Han and He Huang analyzed the data and wrote the initial manuscript. Zheng Lei and Rui Pan made the tables and figures. Xiaodong Chen revised the manuscript. Yu Chen and Ting Lu supervised and provided critical comments on the manuscript. All authors have approved the final manuscript.

Corresponding authors

Correspondence to Yu Chen or Ting Lu.

Ethics declarations

Ethic Approval

The studies involving human participants were reviewed and approved by the Ethics Committee of the First Affiliated Hospital of Nanjing Medical University.

Consent to Participate

The patients/participants provided written informed consent to participate in this study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Craig M. Stolen oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Huang, H., Lei, Z. et al. Association Between the Early Serum Lipid Metabolism Profile and Delayed Neurocognitive Recovery After Cardiopulmonary Bypass in Cardiac Surgical Patients: a Pilot Study. J. of Cardiovasc. Trans. Res. 16, 662–673 (2023). https://doi.org/10.1007/s12265-022-10332-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10332-y

Keywords

Navigation