Skip to main content

Advertisement

Log in

Histamine Deficiency Promotes Myofibroblasts Transformation from HDC-Expressing CD11b+ Myeloid Cells in Injured Hearts Post Myocardial Infarction

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Myocardial infarction (MI) is a significant contributor to the development of heart failure. Histidine decarboxylase (HDC), the unique enzyme that converts l-histidine to histamine, is highly expressed in CD11b+ immature myeloid cells. However, the relationship between HDC-expressing macrophages and cardiac myofibroblasts remains to be explained. Here, we demonstrate that the GFP (green fluorescent protein)-labeled HDC+CD11b+ myeloid precursors and their descendants could differentiate into fibroblast-like cells in myocardial interstitium. Furthermore, we prove that CD11b+Ly6C+ monocytes/macrophages, but not CD11b+Ly6G+ granulocytes, are identified as the main cellular source for bone marrow-derived myofibroblast transformation, which could be regulated via histamine H1 and H2 receptor-dependent signaling pathways. Using HDC knockout mice, we find that histamine deficiency promotes myofibroblast transformation from Ly6C+ macrophages and cardiac fibrosis partly through upregulating the expression of Krüppel-like factor 5 (KLF5). Taken together, our data uncover a central role of HDC in regulating bone marrow-derived macrophage-to-myofibroblast transformation but also identify a histamine receptor (HR)-KLF5 related signaling pathway that mediates myocardial fibrosis post-MI.

Graphical abstract

CD11b+Ly6C+ monocytes/macrophages are the main cellular source for bone marrow-derived myofibroblast transformation. Histamine inhibits myofibroblasts transformation via H1R and H2R-dependent signaling pathways, and ameliorates cardiac fibrosis partly through upregulating KLF5 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

α-SMA:

Alpha smooth muscle actin

GFP:

Green fluorescent protein

HA:

Histamine

HDC:

Histidine decarboxylase

H1R:

Histamine type 1 receptor

H2R:

Histamine type 2 receptor

IL-13:

Interleukin-13

KLF4:

Krüppel-like factor 4

KLF5:

Krüppel-like factor 5

M-CSF:

Macrophage colony stimulating factor

MI:

Myocardial infarction

References

  1. Samak, M., & Hinkel, R. (2019). Stem cells in cardiovascular medicine: historical overview and future prospects. Cells, 8(12), 1530. https://doi.org/10.3390/cells8121530

    Article  CAS  PubMed Central  Google Scholar 

  2. Chistiakov, D. A., Orekhov, A. N., & Bobryshev, Y. V. (2016). The role of cardiac fibroblasts in post-myocardial heart tissue repair. Experimental and Molecular Pathology, 101(2), 231–240. https://doi.org/10.1016/j.yexmp.2016.09.002

    Article  CAS  PubMed  Google Scholar 

  3. Talman, V., & Ruskoaho, H. (2016). Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell and Tissue Research, 365(3), 563–581. https://doi.org/10.1007/s00441-016-2431-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Epelman, S., Lavine, K. J., Beaudin, A. E., Sojka, D. K., Carrero, J. A., Calderon, B., et al. (2014). Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity, 40(1), 91–104. https://doi.org/10.1016/j.immuni.2013.11.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, S., Ma, Y., Yan, Y., Yan, M., Wang, X., Gong, W., et al. (2021). Phosphodiesterase-5a knock-out suppresses inflammation by down-regulating adhesion molecules in cardiac rupture following myocardial infarction. Journal of Cardiovascular Translational Research. https://doi.org/10.1007/s12265-021-10102-2

    Article  PubMed  PubMed Central  Google Scholar 

  6. Simoes, F. C., Cahill, T. J., Kenyon, A., Gavriouchkina, D., Vieira, J. M., Sun, X., et al. (2020). Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nature Communications, 11(1), 600. https://doi.org/10.1038/s41467-019-14263-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheng, Y., & Rong, J. (2018). Macrophage polarization as a therapeutic target in myocardial infarction. Current Drug Targets, 19(6), 651–662. https://doi.org/10.2174/1389450118666171031115025

    Article  CAS  PubMed  Google Scholar 

  8. Deng, L., Hong, T., Lin, J., Ding, S., Huang, Z., Chen, J., et al. (2015). Histamine deficiency exacerbates myocardial injury in acute myocardial infarction through impaired macrophage infiltration and increased cardiomyocyte apoptosis. Science and Reports, 5, 13131. https://doi.org/10.1038/srep13131

    Article  CAS  Google Scholar 

  9. Chen, J., Hong, T., Ding, S., Deng, L., Abudupataer, M., Zhang, W., et al. (2017). Aggravated myocardial infarction-induced cardiac remodeling and heart failure in histamine-deficient mice. Science and Reports, 7, 44007. https://doi.org/10.1038/srep44007

    Article  Google Scholar 

  10. Wang, Y. Y., Jiang, H., Pan, J., Huang, X. R., Wang, Y. C., Huang, H. F., et al. (2017). Macrophage-to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury. Journal of the American Society of Nephrology, 28(7), 2053–2067. https://doi.org/10.1681/ASN.2016050573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He, L., Li, Y., Li, Y., Pu, W., Huang, X., Tian, X., et al. (2017). Enhancing the precision of genetic lineage tracing using dual recombinases. Nature Medicine, 23(12), 1488–1498. https://doi.org/10.1038/nm.4437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tian, X., Hu, T., Zhang, H., He, L., Huang, X., Liu, Q., et al. (2014). Vessel formation. De novo formation of a distinct coronary vascular population in neonatal heart. Science, 345(6192), 90–4. https://doi.org/10.1126/science.1251487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Takeda, N., Manabe, I., Uchino, Y., Eguchi, K., Matsumoto, S., Nishimura, S., et al. (2010). Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. The Journal of Clinical Investigation, 120(1), 254–265. https://doi.org/10.1172/JCI40295

    Article  CAS  PubMed  Google Scholar 

  14. Yang, X. D., Ai, W., Asfaha, S., Bhagat, G., Friedman, R. A., Jin, G., et al. (2011). Histamine deficiency promotes inflammation-associated carcinogenesis through reduced myeloid maturation and accumulation of CD11b+Ly6G+ immature myeloid cells. Nature Medicine, 17(1), 87–95. https://doi.org/10.1038/nm.2278

    Article  CAS  PubMed  Google Scholar 

  15. Chen, X., Deng, H., Churchill, M. J., Luchsinger, L. L., Du, X., Chu, T. H., et al. (2017). Bone marrow myeloid cells regulate myeloid-biased hematopoietic stem cells via a histamine-dependent feedback loop. Cell Stem Cell, 21(6), 747–60 e7. https://doi.org/10.1016/j.stem.2017.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu, L., Cheng, D., Huang, Z., Ding, S., Zhang, W., Tan, H., et al. (2017). Histamine promotes the differentiation of macrophages from CD11b(+) myeloid cells and formation of foam cells through a Stat6-dependent pathway. Atherosclerosis, 263, 42–52. https://doi.org/10.1016/j.atherosclerosis.2017.05.024

    Article  CAS  PubMed  Google Scholar 

  17. Saito, A., Okazaki, H., Sugawara, I., Yamamoto, K., & Takizawa, H. (2003). Potential action of IL-4 and IL-13 as fibrogenic factors on lung fibroblasts in vitro. International Archives of Allergy and Immunology, 132(2), 168–176. https://doi.org/10.1159/000073718

    Article  CAS  PubMed  Google Scholar 

  18. Ai, W., Liu, Y., Langlois, M., & Wang, T. C. (2004). Kruppel-like factor 4 (KLF4) represses histidine decarboxylase gene expression through an upstream Sp1 site and downstream gastrin responsive elements. Journal of Biological Chemistry, 279(10), 8684–8693. https://doi.org/10.1074/jbc.M308278200

    Article  CAS  PubMed  Google Scholar 

  19. Gao, L., Yang, X., Li, Y., Wang, Z., Wang, S., Tan, S., et al. (2021). Curcumol inhibits KLF5-dependent angiogenesis by blocking the ROS/ERK signaling in liver sinusoidal endothelial cells. Life Sciences, 264, 118696. https://doi.org/10.1016/j.lfs.2020.118696

    Article  CAS  PubMed  Google Scholar 

  20. Jaquenod De Giusti, C., Ure, A. E., Rivadeneyra, L., Schattner, M., & Gomez, R. M. (2015). Macrophages and galectin 3 play critical roles in CVB3-induced murine acute myocarditis and chronic fibrosis. J Mol Cell Cardiol, 85, 58–70. https://doi.org/10.1016/j.yjmcc.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  21. Ben-Mordechai, T., Palevski, D., Glucksam-Galnoy, Y., Elron-Gross, I., Margalit, R., & Leor, J. (2015). Targeting macrophage subsets for infarct repair. Journal of Cardiovascular Pharmacology and Therapeutics, 20(1), 36–51. https://doi.org/10.1177/1074248414534916

    Article  PubMed  Google Scholar 

  22. Panizzi, P., Swirski, F. K., Figueiredo, J. L., Waterman, P., Sosnovik, D. E., Aikawa, E., et al. (2010). Impaired infarct healing in atherosclerotic mice with Ly-6C(hi) monocytosis. Journal of the American College of Cardiology, 55(15), 1629–1638. https://doi.org/10.1016/j.jacc.2009.08.089

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nahrendorf, M., Swirski, F. K., Aikawa, E., Stangenberg, L., Wurdinger, T., Figueiredo, J. L., et al. (2007). The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. Journal of Experimental Medicine, 204(12), 3037–3047. https://doi.org/10.1084/jem.20070885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lighthouse, J. K., & Small, E. M. (2016). Transcriptional control of cardiac fibroblast plasticity. Journal of Molecular and Cellular Cardiology, 91, 52–60. https://doi.org/10.1016/j.yjmcc.2015.12.016

    Article  CAS  PubMed  Google Scholar 

  25. Kanisicak, O., Khalil, H., Ivey, M. J., Karch, J., Maliken, B. D., Correll, R. N., et al. (2016). Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nature Communications, 7, 12260. https://doi.org/10.1038/ncomms12260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van Amerongen, M. J., Bou-Gharios, G., Popa, E., van Ark, J., Petersen, A. H., van Dam, G. M., et al. (2008). Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. The Journal of Pathology, 214(3), 377–386. https://doi.org/10.1002/path.2281

    Article  PubMed  Google Scholar 

  27. Li, H., Tang, C., Zhu, X., Zhang, W., Abudupataer, M., Ding, S., et al. (2020). Histamine deficiency facilitates coronary microthrombosis after myocardial infarction by increasing neutrophil-platelet interactions. Journal of Cellular and Molecular Medicine, 24(6), 3504–3520. https://doi.org/10.1111/jcmm.15037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, L., Murota, H., Serada, S., Fujimoto, M., Kudo, A., Naka, T., et al. (2014). Histamine contributes to tissue remodeling via periostin expression. The Journal of Investigative Dermatology, 134(8), 2105–2113. https://doi.org/10.1038/jid.2014.120

    Article  CAS  PubMed  Google Scholar 

  29. Zhou, K., Xie, G., Wen, J., Wang, J., Pan, W., Zhou, Y., et al. (2016). Histamine is correlated with liver fibrosis in biliary atresia. Digestive and Liver Disease, 48(8), 921–926. https://doi.org/10.1016/j.dld.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  30. Ai, W., Zheng, H., Yang, X., Liu, Y., & Wang, T. C. (2007). Tip60 functions as a potential corepressor of KLF4 in regulation of HDC promoter activity. Nucleic Acids Research, 35(18), 6137–6149. https://doi.org/10.1093/nar/gkm656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma, D., Zheng, B., Suzuki, T., Zhang, R., Jiang, C., Bai, D., et al. (2017). Inhibition of KLF5-Myo9b-RhoA pathway-mediated podosome formation in macrophages ameliorates abdominal aortic aneurysm. Circulation Research, 120(5), 799–815. https://doi.org/10.1161/CIRCRESAHA.116.310367

    Article  CAS  PubMed  Google Scholar 

  32. Fujiu, K., Manabe, I., & Nagai, R. (2011). Renal collecting duct epithelial cells regulate inflammation in tubulointerstitial damage in mice. The Journal of Clinical Investigation, 121(9), 3425–3441. https://doi.org/10.1172/JCI57582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, W. C., Lin, H. H., & Tang, M. J. (2015). Matrix-stiffness-regulated inverse expression of Kruppel-like factor 5 and Kruppel-like factor 4 in the pathogenesis of renal fibrosis. American Journal of Pathology, 185(9), 2468–2481. https://doi.org/10.1016/j.ajpath.2015.05.019

    Article  CAS  PubMed  Google Scholar 

  34. Nagai, R., Suzuki, T., Aizawa, K., Shindo, T., & Manabe, I. (2005). Significance of the transcription factor KLF5 in cardiovascular remodeling. Journal of Thrombosis and Haemostasis, 3(8), 1569–1576. https://doi.org/10.1111/j.1538-7836.2005.01366.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Long Deng, Jinmiao Chen, Hui Li, Zheliang Zhou, Zhiwei Zhang, Jianguo Jia, Bingyu Li, and Sanli Qian for their excellent technical assistance and kind suggestions.

Funding

This work was supported by the National Key Research and Development Plan (2016YFC1101102), the National Natural Science Foundation of China (81521001, 82170258), the Basic Research Project of Shanghai Committee of Science and Technology (19JC1411400), and the Laboratory Animal Science Foundation of Shanghai Committee of Science and Technology (19140902000, 201409005000).

Author information

Authors and Affiliations

Authors

Contributions

XY and JW played leading roles in the study design and manuscript draft. BZ, XZ, and XW performed the experiments and wrote the manuscript. SD and WZ analyzed the data and helped the experimental implementation. YZ and JG contributed to the design of the study and the revision of the manuscript. All authors reviewed, discussed, and approved the final manuscript.

Corresponding authors

Correspondence to Jian Wu or Xiangdong Yang.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants performed by any of the authors. All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Associate Editor Junjie Xiao oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Zhu, X., Wang, X. et al. Histamine Deficiency Promotes Myofibroblasts Transformation from HDC-Expressing CD11b+ Myeloid Cells in Injured Hearts Post Myocardial Infarction. J. of Cardiovasc. Trans. Res. 15, 621–634 (2022). https://doi.org/10.1007/s12265-021-10172-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-021-10172-2

Keywords

Navigation