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Abstract
Obstructive arterial disease is a major cause of morbidity and mortality in the developed world. Venous bypass graft surgery is
one of the most frequently used revascularization strategies despite its considerable short and long time failure rate. Due to vessel
wall remodeling, inflammation, intimal hyperplasia, and accelerated atherosclerosis, vein grafts may (ultimately) fail to
revascularize tissues downstream to occlusive atherosclerotic lesions. In the past decades, little has changed in the prevention
of vein graft failure (VGF) although new insights in the role of innate and adaptive immunity in VGF have emerged. In this
review, we discuss the pathophysiological mechanisms underlying the development of VGF, emphasizing the role of immune
response and associated factors related to VG remodeling and failure. Moreover, we discuss potential therapeutic options that can
improve patency based on data from both preclinical studies and the latest clinical trials. This review contributes to the insights in
the role of immunomodulation in vein graft failure in humans. We describe the effects of immune cells and related factors in early
(thrombosis), intermediate (inward remodeling and intimal hyperplasia), and late (intimal hyperplasia and accelerated athero-
sclerosis) failure based on both preclinical (mouse) models and clinical data.
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Introduction

The first saphenous vein graft (VG) implantation in humans
was performed by Garrett et al. in 1967, and together with the
pioneering work of Favaloro et al., VG surgery became part of
the standard revascularization strategies for patients with cor-

onary and peripheral artery diseases [1, 2]. This major ad-
vance markedly improved survival and symptoms in selected
patients, but vein graft failure (VGF) may occur and this has
been associated with poor outcomes, and improvements have
been limited over the past decades [3, 4].

Adaptation of VGs to their new arterial environment is
characterized by structural vessel wall remodeling. Moderate
intimal hyperplasia (IH) and adequate outward remodeling are
necessary for proper arterialization and long-term graft paten-
cy. It is well known that inflammatory processes are involved
in all these phases [5]. Despite the fact that some grafts stop
remodeling after arterialization, other grafts progress to a clin-
ical stenosis and may develop advanced atherosclerosis le-
sions. The rate of vein graft failure is highest in the first
months after graft placement. Although activation of pro-
thrombotic pathways is involved, technical/anatomic issues
probably dominate these failure events. This results in de-
creased patency rates of 10% due to acute thrombosis within
the first month after surgery. Next to these early technical
problems, the rate of graft failure is highest in the 3–18-month
timeframe, after which the hyperplastic response and/or in-
ward remodeling seems to become less active. After 1 year,
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approximately 15% of VG are occluded. After several years,
there seems to be a divergence in the pathobiology of coronary
versus lower extremity vein graft failure. While coronary vein
graft atherosclerosis is described as the likely failure mecha-
nism in several large series [5], the importance of atheroscle-
rosis in lower extremity vein graft failure is not well
established. By 10 years after surgery, only 60% of VG are
still patent and only 50% of patent VG are free of significant
stenosis, pointing out that VGF is a serious clinical problem
[6–8]. Therefore, VGF limits the clinical success of coronary
bypass grafting in terms of symptoms and mortality.

In this review, we discuss the pathophysiological mecha-
nisms underlying the development of VGF, emphasizing the
role of immune response and associated factors related to VG
remodeling and failure. Moreover, we discuss potential ther-
apeutic options that can improve patency based on data from
both preclinical studies and the latest clinical trials.

Mechanisms of Vein Graft Failure

VGF results from complex pathophysiological processes that
lead to a partial or complete occlusion of the graft. The pro-
gression of the VGF over time involves several distinct phases
and vessel wall remodeling and inflammation are central pro-
cesses throughout all of them.

Early Vascular Damage

Pre-existing quality of the venous conduit (i.e., medial hyper-
trophy and IH), surgical handling during harvesting, and
grafting of the venous segment are all factors involved in the
first stages of vessel wall remodeling [9].

Harvesting of the venous segment damages the vasa
vasorum and adventitia, compromises blood supply, and thus
promotes ischemia and hypoxia in the vessel wall [10]. This
hypoxic state can lead to the formation of reactive oxygen
radicals that damage endothelial cells (ECs) and vascular
smooth muscle cells (VSMCs) [11, 12].

Usually, a high-pressure technique is used to check for
leakage of ligated side-branches and reverse spams, leading
to distension of the vessel and further damage of the endothe-
lium [12, 13]. Grafting of the venous segment into an arterial
environment immediately exposes the vein to an intense arte-
rial stretch force, which further enhances the distension injury
and decreases wall shear stress [14, 15]. This change in shear
stress declines the production of growth inhibitors that protect
the vascular wall from vasoactive substances derived from
platelets—promoting thrombosis [16]. Moreover, reduced
shear stress increases the production of different mitogens that
promote VSMC proliferation—leading to IH [17]. Distension
of the graft upregulates the expression of endothelial adhesion
molecules (ICAM-1, VCAM-1, PECAM, P-Selectin) and

inflammatory markers (interleukin (IL)-1, MCP-1, and
TNFα via the activation of the NF-κB pathway), triggering
the influx of immune cells—ultimately promoting atheroscle-
rosis [18, 19].

Thrombosis

Early VGF, usually defined as within hours to 1 month after
grafting, is mostly due to acute thrombosis, secondary to en-
dothelial injury and activation during VG surgery [20].
Damage of the endothelium exposes the subendothelial matrix
and decreases the production of growth-inhibiting factors such
as NO, heparan sulfate, and prostacyclin, creating an attractive
environment for the adherence and aggregation of platelets
[21]. Activated platelets secrete several pro-thrombotic sub-
stances such as tissue factor, platelet-derived growth factor
(PDGF), thrombin, and plasminogen activator inhibitor-1,
which initiate the coagulation cascade and fibrin deposition
[22]. These processes are tightly regulated by the
thrombogenic and fibrinolytic pathways, which also have im-
portant roles in the onset of IH [23]. Moreover, platelets also
secrete pro-inflammatory cytokines such as MCP-1, IL-1, and
IL-6, promoting leukocyte adhesion and vascular wall infiltra-
tion [24]. These interactions between activated endothelial
cells and circulating platelets and leukocytes initiate an in-
flammatory and thrombotic cascade that can ultimately lead
to thrombus formation and acute graft thrombosis [25].

Intimal Hyperplasia

Intermediate VGF, usually defined as the period from 1 to
12 months post-surgery, is mainly caused by inward remod-
eling and IH [26].

Distension under arterial pressure increases the vein diam-
eter, compensating for the pathological lumen loss (Fig. 1).
However, instead of outward remodeling, pathological IH and
lumen loss can lead to inward remodeling [27].

IH starts as an adaptive response to the local arterial blood
pressure and results from migration and proliferation of
VSMCs from the media into the intima layer. Distension of
the venous segment and endothelium damage promote an en-
vironment rich in growth factors such as TGF-β, VEGF,
βFGF, and PDGF that not only activate proteases (MMPs,
plasmin, cathepsins) that degrade the ECM but also stimulate
uncontrolled proliferation and migration of VSMCs [28–30].
As VSMCs migrate from the media to the intima, they change
their phenotype from a quiescent contractile to a proliferative
synthetic state [26]. Also, adventitial fibroblasts can contribute
to IH formation [31]. Veins do not contain substantial elastic
laminae, and consequently, these highly proliferative fibro-
blasts can easily migrate to the intima. MMPs degrade com-
ponents of the ECM (such as collagen) and their inhibition is
associated with decreased intimal thickening [32, 33].
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Overexpression of tissue inhibitor of MMPs (TIMP) inhibits
MMP activity, thereby reducing VSMC migration and prolif-
eration [34–36]. Abrogation of TGFβ signaling, which is
known to enhance ECM deposition, was shown to decrease
IH and increase MMP expression [37]. Plasmin, which is
formed from plasminogen by plasminogen activators, can also
cleave components of the ECM like laminin and fibronectin,
further enhancing VSMC migration, matrix remodeling, and
fibrinolysis [38]. In fact, hybrid proteins containing the
amino-terminal fragment of urokinase plasminogen activator
linked to a trypsin inhibitor (potent inhibitor of MMP and
plasmin activity) and/or linked to TIMP decrease IH in human
saphenous vein cultures and decrease IH in murine VG
[39–41]. Moreover, ECM degradation products can act as
endogenous ligands for TLRs, which trigger the NF-κB path-
way inducing both innate and adaptive immune responses,
accelerating intimal thickening and VGF [42, 43]. Vein graft
remodeling is a multifactorial process in which different fac-
tors are involved. Especially microRNAs can play an interest-
ing role in this process. MicroRNAs (miRNAs) target a mul-
titude of genes including those that regulate gene expression
in EC and VSMCs involving cell growth, differentiation, and
metabolism. ECs that were mechanically stretched displayed
an increase in miR-551b-5p expression [44]. The inhibition of
miRNA-551b-5p reduced proliferation via inhibiting early
growth response-1 (EGR-1) mRNA [45]. Mice deficient in
EGR-1 showed an increased VG lumen diameter with a re-
duced expression of ICAM-1 [44]. miRNA-21 is upregulated
in the vascular wall after injury and is able to regulate VSMC
proliferation and phenotype transformation [46]. Adenovirus-
mediated miR-21 sponge gene therapy not only reduced vein

graft IH and suppressed VSMC proliferation but also reduced
systemic effects in rats [47, 48].

In patients, miRNAs present in exosomes increased in the
plasma early after coronary bypass grafting, These cardiac-
derived miRNA laden exosomes could act as reporters of the
myocardial injury after CABG because these miRNAs corre-
late with cardiac troponin-I [49].

Extensive regulation of miRNAs is observed in the vascu-
lature as well as vein graft remodeling but needs further de-
tailed investigation on their mechanism on VGF [50].

Atherosclerosis and Plaque Rupture

Accelerated atherosclerosis and subsequent plaque rupture
are the main causes of late VGF, and atheromatous
plaques can be seen as early as 1 year after surgery
[51]. The formation of atheromatous lesions is promoted
by atherosclerosis predisposing factors (such as age,
smoking, hypercholesterolemia, hypertension, and hyper-
glycemia), by vessel damage and remodeling. Pro-
inflammatory cytokines contribute to vessel remodeling
by stimulating VSMC proliferation and by mediating
monocyte recruitment to the intima (increasing macro-
phage content in the VG wall) [52]. Excessive uptake of
LDL induces foam cell formation and increases cholester-
ol deposition and necrotic core formation [53]. These ac-
celerated atherosclerotic lesions represent an end stage in
VGF and are frequently observed from 2 years onwards
VG surgery [53].

VG aged more than 5 years often show necrotic core
expansion through hemorrhagic events that arise from

Fig. 1 Vascular remodeling over
time. Ultrasound visualization
and 3D reconstruction of vein
grafts (VG) in mice were obtained
at 7, 14, 21, and 28 days after en-
graftment (A). The lumen shown
in green and the VG wall in gray.
An increase in VGwall volume in
mm3 was observed (B) while the
lumen volume remained compa-
rable over time (C)
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leaky neoangiogenic vessels, as shown in Fig. 2 [7, 53].
Due to the growth of the intimal layer and to the increased
amount of metabolically active inflammatory cells in ad-
vance lesions, oxygen is consumed at a very high rate. ECs
proliferate and migrate from the adventitia into the lesion
to form neovessel-like structures and overcome the oxygen
demand in the plaque. However, these neovessels are fre-
quently immature and highly susceptible to leakage, con-
stituting the main entrance for inflammatory cells, erythro-
cytes, and plasma lipids [54]. This invasion leads to a re-
active, inflammatory, and apoptotic environment that pro-
foundly affects the stability of the lesions. Neutrophils and
mast cells release their granular content digesting elastin,
collagen, laminin, and fibronectin, and this high proteolyt-
ic activity ultimately ends in weakening of the VG lesions
including plaque erosion [55]. Furthermore, the influx and
the lysis of erythrocytes drive a higher request of macro-
phage activity [56]. Macrophages also show a defective
ability for efferocytosis. This malfunctioning increases
the inflammation state and reduces cholesterol efflux con-
tributing to necrotic core expansion and, ultimately, to
plaque rupture [56].

Immune Cells and Regulating Factors

Toll-like Receptors and Downstream Signaling

Toll-like receptors (TLRs) are important signaling receptors
within the innate as well as the adaptive immune system and
are part of the primary detection system. Damaged EC as well
as activated VSMC releases danger-associated molecular pat-
terns (DAMPs) such as heat shock proteins [57]. These
DAMPS are capable of activating TLRs expressed on EC,
VSMC, and macrophages, although with a different pattern
[43]. Upon TLR4 ligation, a downstream NF-κB-mediated
pro-inflammatory response is triggered. Local application of
the TLR4 ligand LPS on the VG resulted in a strong inflam-
matory response and an increased IH [58]. Targeting TLR4 in
the murine VG model by either genetic deletion or gene si-
lencing reduced outward remodeling and IH [57].
Interestingly, TLR2 deficiency did not result in changes in
VGs [43]. Deficiency of TLR3 in the murine VG model re-
sulted in an increase in IH, suggesting a protective role of
TLR3 in VGF. Not only was the number of macrophages
increased in the VG TLR3-deficient mice but also type-1

Fig. 2 Contribution of different
cells to VGF. Murine vein graft
lesion (Masson’s trichrome) and
(A) macrophages, MAC3 (green);
(B) VSMCs, αSMA (white); (C)
T cells, CD3 (pink); (D) endothe-
lium, CD31 (yellow); (E)
intraplaque angiogenesis/
neovessels, CD31 (yellow); (F)
intraplaque hemorrhage/erythro-
cytes, Ter119 (red)
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interferon expression was increased [43]. Deficiency of the
TLR3 downstream factors interferon regulatory factors 3
(IRF3) or interferon regulatory factors 7 (IRF7) resulted in
increased macrophage content, as well as increased IH [42].
This highlights that type-1 interferons have protective func-
tions in VGD.

Complement System

Beside TLR signaling, the complement system is also part of
the early inflammation response/detection system in VGD.
The complement system consists of a cascade of rapidly acti-
vated proteins targeting the cellular membrane in order to
clear damaged cel ls and promote inf lammation.
Complement factors (C) are prominent in the human circula-
tion and therefore present during VG surgery [59]. Inhibition
of the classical complement pathway, which is initiated by C1,
resulted in a reduced EC apoptosis and subsequently VG IH
[60]. Exposure of the vein to the arterial pressure resulted in a
transient upregulation in the C4-binding protein (C4bp) by
ECs [61]. C4bp acts as a binding protein for C3a and apoptotic
cells after injury, in order to reduce vascular inflammation.
Also, inhibition of C3 cleavage resulted in a reduction in che-
motaxis and IH in murine VGs [59]. C5a is a potent chemo-
taxis inducer of mast cells and monocytes. Local application
of C5a on the VG resulted in an increase in mast cell presence
and IH, but also and more importantly, lesion destabilization
[62, 63]. Strategies in order to modulate the VG remodeling
response via complement may have therapeutic benefits since
mortality in CABG patients was reduced after targeting C5 by
pexelizumab [64].

Granulocytes

The VG in early remodeling is targeted by an acute inflam-
matory response involving granular cells such as mast cells
and neutrophils. Mast cells release their histamine- and
tryptase-containing granules upon activation by C5a, TNFα,
IL-1, or IgE [63]. VG in mice deficient in mast cells not only
showed a reduction in IH but also a general reduction in vas-
cular inflammation [63, 65]. Neutrophils are short-lived cells
and are considered early-responding cells. Neutrophils are re-
cruited to the site of injury following signals such as C5a, IL-
8, and leukotrienes. Early EC activation and damage, e.g.,
after the distention of the vein during graft handling and sur-
gery, resulted in an increase in L-selectin expression and ad-
hesion of neutrophils to ECs [66]. The involvement of neutro-
phils in the inflammatory response during early VG remodel-
ing is highlighted by reduced neutrophil transmigration and
reduced IH in VG in mice that received a protein-restricted
diet [67].

Monocytes

Beside granulocytes, monocytes are one of the first cells that
arrive at sites of vascular injury and attach to the VG endothe-
lium [68, 69]. Variability in the local inflammatory state could
be a critical modulating factor determining the patency of
VGs. Transcriptome analysis of circulating monocytes isolat-
ed from 48 patients that underwent infrainguinal venous by-
pass grafting resulted in three differentially expressed gene
clusters. The expression of STAT3 orMYD88 predicted a clin-
ically significant stenosis or thrombosis of the VG within the
following year [70]. In these clusters of genes, DICER1 (a
regulator gene of RNA silencing via miRNAs) was also iden-
tified [70]. Regulation of miRNAs is observed in remodeling
and VGF, but needs further detailed investigation [50].

Macrophages represent a vast majority of vascular in-
flammatory cells contributing to VGF [71]. The expres-
sion of NOTCH delta-like ligand-4 (DII4) was abundant
in failed human saphenous VGs, while control veins
contained little expression of DlI4 [72]. Activation of
NOTCH signaling in macrophages present in IH by DII4
contributed to the development of VGF via IL-1β, TNFα,
PDGF, and impediment of immunosuppressive macro-
phage differentiation [73, 74]. Targeting macrophages
via blockade of NOTCH and DIl4 interaction or siRNA-
NOTCH present in nanoparticles resulted in reduced IH
and macrophage presence [75]. Delivery of siRNA via
lipid nanoparticles to target NOTCH signaling in macro-
phages could become an approach to reduce VG lesion
development via reducing the NOTCH signaling pathway.

T Cells

Part of the adaptive immune system are lymphocytes such
as CD4+ and CD8+ T cells. CD8+ T cells mediate cytotoxic
effects while CD4+ T cells modulate the immune response
[76]. CD4+ and CD8+ T cells are both present and activated
in VGs. Interestingly, an increased amount of CD8+ T cells
compared with CD4+ T cells was observed [71, 77]. An
increase in occlusions of VGs was observed when CD8+ T
cells were depleted in vivo [71]. This highlights the pro-
tective role of CD8+ T cells against VGF. However, T cells
are diverse and differ in effector functions that are dictated
by the T cell surrounding tissue [76]. Both anti-atherogenic
and pro-atherogenic effects have been demonstrated due to
the diversity in effector functions within different T cell
subsets. The anti-atherogenic CD8+ T cells were found in
close proximity to caspase-3 positive cells, suggesting a
cytotoxic role to control VSMC presence and function
[77]. Not only T cells were involved in VG remodeling
but also B cells, NK cells, and NKT cells were identified
in the vascular wall of VG [71, 78].
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Antigen-Presenting Cells

Antigen-presenting cells bridge between the innate and adap-
tive immune system. Dendritic cells (DCs) are key antigen-
presenting cells and have been shown to locate in the vessel
wall. Saphenous VG contained more DCs compared with
control saphenous veins [79]. These DC sense cellular debris
modified metabolites and microbial infections via TLRs. The
costimulatory molecule CD28 is predominantly expressed by
naïve T cells and engages with CD80/86 presented by DC.
This costimulatory interaction lowers the threshold for activa-
tion while the co-inhibitory molecule CTLA-4 increases the
threshold for T cell activation in vascular remodeling [80]. VG
from mice deficient in the costimulatory molecule CD70,
CD80/86, or both showed comparable VG lumen sizes com-
pared with control mice VG [71]. This indicated that the pro-
tective effect of CD8+ T cells is independent of the
costimulatory molecule expression. Beside DC, ECs and
VSMC are also able to activate CD4+ T cells and CD8+ T
cells [81].

Cytokines

Vascular damage during the early phase after grafting induces
the release of cytokines (including chemokines, interleukins)
that propagate the inflammatory response. Treatment of vein-
grafted mice with the glucocorticoid dexamethasone resulted
in reduced VG lesion area, as a result of reduced TNFα and,
MCP-1 expression [82]. Interestingly short-term exposure to
dexamethasone resulted in comparable effects as observed in
long-term exposure [82].

Activation of NF-κB-mediated genes in the damaged ves-
sel wall results in increased expression of pro-inflammatory
cytokines, i.e., IL-1, MCP-1, TNFα, and TGF-β. IL-1 is in-
volved in the initiation of adhesion molecule expression,
growth factor, and cytokine release by EC and VSMC, which
alters vascular function in VG remodeling [83].

In vitro, TNFα stimulates VSMC migration, prolifera-
tion, and the upregulation of adhesion molecules by EC.
The response to TNFα is mediated through two receptors,
P55 and P75. Both receptors are co-expressed but are
differentially regulated [84, 85]. Targeting TNFα to re-
duce VGF showed opposing effects involving IH, wall
remodeling, and influx of immune cells depending on
the activated TNFα receptor.

MCP-1 (CCL2) release mediates the influx of immune
cells in the VG, especially monocytes. MCP-1 recruits mono-
cytes, memory T cells, and DC to the vascular wall via bind-
ing to the MCP-1 receptor CCR2 [86]. In vitro, gene transfer
blockade of CCR2 resulted in a reduced proliferation of
VSMC, and subsequently a reduction of IH in vivo without
affecting cellular composition of the lesions [87, 88].

Treatment and Therapeutic Approaches
in VGF

Treatment strategies for VGF consists of thrombectomy, re-
peated bypass graft surgery, balloon angioplasty with or with-
out stenting, and/or pharmacological therapies [89, 90]. The
most appropriate treatment depends on the severity of symp-
toms, the presence and extent of ischemia, and the relative
benefits and risks involved (patient’s general condition and
presence of patent arterial grafts).

Antiplatelet therapy is recommended by the current guide-
lines, either pre- or pro-operatively, for patients undergoing
VG surgery, directly aiming to address early VGF owing to
acute thrombosis. A study with 25,728 patients undergoing
CABG surgery showed a significant reduction in (early) VG
occlusion with the use of dual antiplatelet therapy [91].
Additionally, in the DACAB trial, patients who received dual
antiplatelet therapy showed a significant higher VG patency
compared with patients who received mono antiplatelet ther-
apy [92]. However, the observed higher incidence of major
bleeding episodes indicates a need for risk−benefit assessment
before prescription.

Statins are another mainstay as a lipid-lowering therapy in
VGD patients [93]. Elevated levels of LDL are associatedwith
IH and atherosclerotic plaque formation. High-intensity statin
therapy is recommended to be administered to all patients
undergoing VG surgery both before and early after surgery
[93]. Non-lipid-related “pleiotropic” properties of statins
might contribute to their beneficial effects that include im-
proving EC function, increasing eNOS, and antioxidant activ-
ity [93].

Although numerous experimental studies have study gene
therapy in the development of VGF, so far, only edifoligide
has been assessed in the context of CABG surgery in the
PREVENT series of randomized clinical trials [94].
Edifoligide is an oligonucleotide decoy that binds to and in-
hibits E2F transcription factors and, therefore, might prevent
IH and VGF. In the PREVENT I, edifoligide treatment not
only was shown to be safe and feasible but also functional
[95]. Despite these initial promising results, the phase III
PREVENT III and IV studies showed no differences in VGF
prevention after CABG surgery between placebo and
edifoligide group [96, 97]. Another promising gene therapy
is the adenoviral (Ad) delivery of TIMP-1, TIMP-2, or TIMP-
3 prior to grafting. Initial studies showed that ex vivo admin-
istration of Ad-TIMP-1 or Ad-TIMP-2 or Ad-TIMP-3 to hu-
man saphenous veins results in a significant inhibition of IH
[34, 35]. Moreover, in short- and long-term studies, Ad-
TIMP-3 delivery showed to induce VSMC apoptosis and at-
tenuate intimal thickening in pig saphenous VGs, underlining
a promise as a therapeutic approach [34, 35]. Currently, a
phase-I clinical trial using an Ad-TIMP-3 ex vivo is planned
at Glasgow Cardiovascular Research Center [98].
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Pexelizumab, an antibody against the C5 complement, has
been tested in patients undergoing VG surgery in the PRIMO-
CABG trials [64]. While the PRIMO-CABG I-trial showed a
reduction in death 30 days after surgery, the PRIMO-CABG
II-trial was not that promising [99]. However, combined anal-
ysis of the PRIMO-CABG I and II trials showed a significant-
ly reduction (by 2.4%) in mortality. Moreover, this observa-
tion persisted throughout the 180-day follow-up period (3.3%)
[64].

A new target to prevent VG failure is phosphorylcholine
(PC). PC is one of the main epitopes of oxLDL and plays a
central role on its atherogenic and pro-inflammatory effects.
PC epitopes can be cleared by natural IgM antibodies pro-
duced by B cells, controlling oxidative stress and inflamma-
tion. In a large human cohort, low levels of these natural
antibodies were associated with a significantly increased risk
of stroke, myocardial infarction, and VGF [100]. Passive im-
munization with anti-PC antibodies has shown to prevent VG
atherosclerosis in a hypercholesterolemic murine model
[101].

Alternatives for Vein Grafting: Tissue-Engineered
Grafts

Bypass surgery can be performed with different vessels, both
of arterial and venous origin [5], in which the saphenous vein
is most commonly used as conduit. Alternatively, grafts from
prosthetic materials such as PTFE or Dacron can be used for
engraftment. Despite the fact that the prosthetic engraftment
of large vessels proves to be effective, the use of smaller
diameter vessels is complicated by thrombotic occlusions
[102]. An interesting new alternative could be the use of
tissue-engineered blood vessels (TEBV) as grafts. Several
variants of TEBV are described, usually based on the use of
a scaffold to which vascular (precursor) cells are attracted to or
seeded on [103–105].

Nanofiber vascular grafts have the potential for functional
remodeling and long-term patency favoring pediatric patients.
The nanofiber scaffold degrades over time allowing the induc-
tion of vascular neotissue to form vascular tissuewith growing
potential to form functional vessels [105]. The degradation
rate orchestrates the cell infiltration and subsequently remod-
eling. This delicate balance between nanofiber degradation
and neovessel tissue is different between species and requires
optimization for the enhancement of translational capacity
[103]. An alternative can be the in situ TEBV, where fibro-
blast and progenitor vascular cells form a vascular-like tube
around a solid scaffold that can be used as a conduit for
(arterio) venous grafting [104]. Together, this highlights that
TEBVs may serve as arterial bypass grafts and represent a
potential solution for future vascular surgery but still require
optimization before large-scale clinical application is to be
expected.

Limitations

One essential limitation of the current review is that most of
the pathophysiological studies are based on experimental data
obtained from mouse VD studies. VGD in patients develops
over years whereas the timeframe of murine VGD develop-
ment is weeks. The morphological and pathological composi-
tions of human and murine VG show similarities in the pres-
ence of calcifications, neovessels, and foam cells followed by
necrotic core development. Especially the angiogenic
neovessels, intraplaque hemorrhage, and necrotic cores are
linked to late-phase human VGD. However, the sheer size
differences between murine and human grafts may have some
impact on the pathophysiology. When working with hyper-
cholesterolemic mice, the situation observed in patient with
hypercholesterolemia can be mimicked.

But the major limitation of a review on the pathophysiolo-
gy of vein graft failure and the role of immunomodulation in
this process is that, although not yet described, the quality of
the surgical intervention is of eminent importance and can
vary a lot, with all the consequences on long-term vein graft
patency.

Conclusions and Perspectives

Preclinical studies have demonstrated the role of the immune
system in VG remodeling and IH and in unstable atheroscle-
rotic lesions in VG, the main causes of VGF. Therefore, ther-
apeutic modulation of the immune system may represent a
step forward in the prevention of VGF but further research is
needed.
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Clinical Relevance

This review contr ibutes to the insights in the role of
immunomodulation in vein graft failure in humans. We describe the
effects of immune cells and related factors in early (thrombosis),
intermediate (inward remodeling and intimal hyperplasia), and late
(intimal hyperplasia and accelerated atherosclerosis) failure based on
both preclinical (mouse) models and clinical data.
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