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Abstract  Autophagy involves the sequestration and deliv-
ery of cytoplasmic materials to lysosomes, where proteins, 
lipids, and organelles are degraded and recycled. Accord-
ing to the way the cytoplasmic components are engulfed, 
autophagy can be divided into macroautophagy, microau-
tophagy, and chaperone-mediated autophagy. Recently, 
many studies have found that autophagy plays an important 
role in neurological diseases, including Alzheimer’s dis-
ease, Parkinson’s disease, Huntington’s disease, neuronal 
excitotoxicity, and cerebral ischemia. Autophagy maintains 
cell homeostasis in the nervous system via degradation of 
misfolded proteins, elimination of damaged organelles, and 
regulation of apoptosis and inflammation. AMPK-mTOR, 
Beclin 1, TP53, endoplasmic reticulum stress, and other sig-
nal pathways are involved in the regulation of autophagy and 
can be used as potential therapeutic targets for neurological 
diseases. Here, we discuss the role, functions, and signal 
pathways of autophagy in neurological diseases, which will 
shed light on the pathogenic mechanisms of neurological 
diseases and suggest novel targets for therapies.
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Introduction

Autophagy involves the isolation and delivery of cytoplas-
mic materials to lysosomes, where lipids, proteins, and orga-
nelles are degraded and recycled [1]. Typically, autophagy 
is classified as microautophagy, macroautophagy, and chap-
erone-mediated autophagy (CMA) [2]. Autophagy also par-
ticipates in numerous essential cellular activities and affects 
many intracellular regulatory pathways involved in diverse 
processes [3], including development, immunity, longevity, 
organelle turnover, and apoptosis. Since the 1990s, autophagy 
research has gradually expanded and developed into one of 
the most important topics in cell biology. The discovery of the 
autophagy mechanism earned Dr. Osumi the Nobel Prize in 
Physiology or Medicine. Researchers have developed molecu-
lar tools and drugs that target genes and pathways associated 
with autophagy, which have advanced the field [4–6].

In recent years, autophagy has developed into an important 
study area, especially in nervous system diseases. Neurons 
in the nervous system are susceptible to a variety of internal 
and external injuries, including ischemia/reperfusion (I/R), 
neurodegeneration, inflammation, energy crisis, metabolic 
disorders, neurotoxicity et al. [7]. Under these stress condi-
tions, autophagy can be activated to varying degrees. Moder-
ate autophagy can maintain neuronal homeostasis and clear 
protein aggregates or damaged organelles; autophagy also 
maintains energy balance by recycling the fatty acids, amino 
acids, and nucleic acids [8]. Therefore, mild to moderate 
autophagy is a survival mechanism of neurons and can main-
tain the homeostasis of the central nervous system (CNS). 
However, continuous or excessive autophagy may contribute 
to increased cytoplasmic accumulation of autophagosomes 
and degradation of essential components [9], and even result 
in autophagic cell death or the implementation of other cell 
death mechanisms [10, 11]. Here, we review the effect of 
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autophagy in regulating cell metabolism and cell survival in 
CNS diseases, including neuronal excitotoxicity, neurodegen-
erative diseases, cerebral ischemia, and ischemic precondi-
tioning. Especially, autophagy is involved in excitotoxicity, 
degradation of misfolded proteins, and apoptosis in neuro-
logical diseases (Fig. 1). These studies shed light on some 
of the pathogenic mechanisms of neurological diseases and 
proposed novel therapeutic targets.

Effects of Autophagy in Neurological Disorders

Autophagy in Neurodegenerative Diseases

Neurodegenerative disease is a progressive age-related dis-
order. Since neurons are post-mitotic cells with age-related 

decline in autophagy, misfolded proteins, and damaged orga-
nelles tend to accumulate in neurons, and neurodegenerative 
diseases are characterized by the accumulation of misfolded 
proteins [12, 13]. Autophagy is thus considered a cytopro-
tective mechanism in a variety of neurodegenerative diseases 
that can mitigate the onset and progression of neurodegener-
ative lesions [14, 15]. In 2003, Rubinsztein’s lab proved that 
autophagy and proteasomal pathways are associated with 
the degradation of α-synuclein in PD. Later, Rubinsztein’s 
lab [16] and our lab showed that autophagy participates in 
the degradation of the mutant Huntington protein (aggre-
gated HTT) in HD. Rapamycin, which suppresses mTOR 
to trigger autophagy, increased the degradation of HTT and 
improved the neurodegenerative symptoms in mouse and 
drosophila chorea models [17]. Later studies manifested that 
activation of autophagy exerts beneficial effects in almost all 

Fig. 1   Autophagy in Neurological Diseases. Autophagy plays an 
important role in the pathogenesis of neurodegenerative disorders, 
including AD, PD, ALS and FTD, cerebral ischemia, excitotoxic-
ity, and other neurological diseases by eliminating damaged orga-
nelles, degrading misfolded proteins, regulating inflammation and 
apoptosis. The multifunctional nature of autophagy can be attributed 
to its ability to interact with various key components in the AMPK-
mTOR, Beclin 1, TP53, DRAM1, and ER stress signaling pathways. 
AMPK suppresses mTOR and subsequently triggers the downstream 
ULK1 complex, which in turn activates Beclin 1, thereby promoting 
autophagy initiation; activation of this pathway confers protection 
against AD, PD, and stroke. The AKT/FOXO3 signaling pathway is 
implicated in cerebral ischemia-induced autophagy. Aβ, tau protein, 
and α-synuclein hinder autophagy at various stages to promote the 
progression of AD and PD. The PINK1/parkin pathway facilitates 
mitophagy for neuroprotection in both diseases. BNIP3L mediates 
mitophagy in the ischemic brain to prevent injury, while mitophagy 

also suppresses inflammasome activation to safeguard neurons. AD, 
Alzheimer’s disease; PD, Parkinson’s disease; HD, Huntington’s 
disease; ALS, Amyotrophic Lateral Sclerosis; FTD, Frontotemporal 
Dementia; Aβ, amyloid β-protein; tau, microtubule-associated protein 
tau; AMPK, Adenosine 5’-monophosphate (AMP)-activated protein 
kinase; mTOR, mammalian target of rapamycin; ULK1, Unc-51-like 
kinase; TSC, tuberous sclerosis complex; PI3K, Phosphoinositide-
3-kinase; AKT, a serine/threonine kinase; p53, a tumor suppressor 
protein, and transcription factor; DRAM, DNA damage regulated 
autophagy modulator; Beclin 1, key regulator of autophagy; mHTT, 
mutant huntingtin; FOXO3, forkhead box O3; PINK1, PTEN-induced 
putative kinase 1; Parkin, Parkin RBR E3 ubiquitin-protein ligase; 
BNIP3L/NIX, Bcl2 interacting protein 3 (BNIP3) and BNIP3-like; 
ER stress, endoplasmic reticulum stress; PERK, Protein kinase RNA 
(PKR)-like ER kinase; eIF2α, eukaryotic initiation factor-2α; ATF4, 
Activating transcription factor 4; HIF-1α, Hypoxia-inducible factor 1
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neurodegenerative diseases, primarily through the removal 
of cytoplasmic aggregates, such as the α-synuclein in PD, 
amyloid-β (Aβ) [18] and Tau protein [19] in AD, and the 
TAR DNA binding protein 43 (TDP-43) aggregates in amyo-
trophic lateral sclerosis (ALS) [20], mutations in autosomal 
dominant lateral temporal epilepsy (ADLTE) and Machado-
Joseph disease (MJD) [21]or ataxin-3 mutants accumulated 
in spinocerebellar ataxia type 3 (SCA3) [22, 23].

When the autophagy-associated proteins ATG5 
(autophagy-related 5) or ATG7 were specifically knocked 
out in mouse neurons, basal autophagy level in the brain was 
markedly decreased, while ubiquitinated proteins, p62, and 
non-degradable protein aggregates accumulated [24]. Many 
neurons were lost in the brain and cerebellar cortex of Atg7 
deficient mice [25, 26]. In the absence of Atg5, mice devel-
oped progressive motor dysfunction [27]. The above stud-
ies emphasize the importance of autophagy in preventing 
neurodegeneration. Similarly, during aging or AD, neuronal 
autophagy activity in the hippocampus or ventral tegmen-
tal area (VTA) decreases and Aβ accumulates. Restoring 
autophagy effectively reduced Aβ levels and reversed neu-
ronal degeneration and memory deficits [28, 29]. Interest-
ingly, early enhancement of autophagy produces an initial 
neuroprotective response to cellular stress in AD, whereas 
AD-associated impairment of lysosomal function results in 
inadequate substrate clearance and blocked autophagy flux. 
For gradually declining substrate lysosomal clearance, sus-
tained induction of autophagy clarifies the unusually strong 
autophagic pathology and neuritic dystrophy associated 
with the pathogenesis of AD [30]. These findings show that 
autophagy can regulate the renewal of soluble cytoplasmic 
proteins, decrease the accumulation of abnormal proteins, 
and prevent neurodegeneration.

Autophagy in Neuronal Excitotoxicity

Neuronal damage caused by overactivation of excitatory 
amino acid receptors is called excitotoxicity, which is 
deemed to play a critical role in the pathogenesis of many 
neurological disorders, including AD, PD, and HD [31, 32]. 
Apoptosis is involved in excitotoxic neuronal death, as we 
and other laboratories have discovered in the early 1990s 
[33–35]. Excitatory amino acid receptor agonists were found 
to induce autophagy in animal models [36]. Autophagy 
was activated by N-methyl-D-aspartate (NMDA) receptor 
agonist quinolinic acid (QA) and kainic acid (KA) recep-
tor agonist KA, which was then accompanied by decreased 
expression of Bcl-2, and increased expression of Bax, tumor 
suppressor gene that encodes for the transcription factor 
p53 (TP53), and TP53-upregulated modulator of apopto-
sis (PUMA). Autophagy activation and the mitochondria-
mediated apoptotic pathway were markedly inhibited by 
autophagy inhibitors and cathepsin inhibitors, indicating 

that the autophagy-lysosomal pathway plays a significant 
part in excitotoxic neuronal injury [37, 38].

Autophagy in Cerebral Ischemia and Ischemic 
Preconditioning

Globally, stroke is a major cause of death, more than 80% of 
which are ischemic stroke [39]. Preconditioning is usually a 
sub-threshold injury applied to an organ, activating specific 
endogenous protective pathways to buffer the damage from 
subsequent severe ischemic attack. It has been found that 
ischemic preconditioning (IPC) can protect against ischemic 
stroke [40, 41]. Autophagy is activated after ischemic stroke 
or preconditioning, but whether autophagy contributes to 
cell death or survival remains controversial [42].

Controversy Over the Role of Autophagy in Stroke

According to many studies, cerebral ischemia induces 
autophagy and results in neuronal death [43, 44]. Our 
study suggests for the first time that the ischemia-induced 
autophagy-lysosome pathway leads to neuronal death [45]. 
Later, autophagic cell death has also been reported to exist 
in adult and neonatal focal cerebral ischemia mouse mod-
els and in in vitro OGD models involving neurons [46] and 
vascular endothelial cells [47]. Knockdown of Atg5 or Atg7 
to inhibit autophagy in different types of cells prevents neu-
ronal death in vivo and in vitro [46]. Similarly, thrombolysis 
with PLAT/tPA can increase serum-free IGF1 and mediate 
neuroprotection by modulating the PI3K-AKT-mTOR path-
way to reduce deleterious autophagy after cerebral ischemia 
[48]. Neferine, the main alkaloid in lotus seeds, was also 
able to significantly protect against cerebral ischemia by 
attenuating harmful autophagy in pMCAO models [49]. 
Asialo-rhuEPOP, purified from transgenic plant leaves, 
inhibits excessive mitophagy and autophagy induced by 
ischemia/reperfusion to reduce neuronal apoptosis and 
facilitate neuronal survival [50].

However, some studies support autophagy may have a 
protective effect on cerebral ischemia. Autophagy activa-
tion may represent a protective mechanism during the early 
stages of cerebral ischemia. A significant increase in Beclin 
1 was observed in neurons in the hippocampus and cortex 
shortly after neonatal hypoxia-ischemia (HI). Autophagy 
inhibitors induced neuronal necrosis, whereas Rapamycin 
reduced both apoptosis and necrosis by promoting autophagy 
[51]. Further research suggests that autophagy is triggered 
during cerebral ischemia and reperfusion but produces dif-
ferent effects. Autophagy exerts a deleterious effect in per-
manent ischemia, whereas mitophagy activated during cere-
bral ischemia-reperfusion may produce a protective effect on 
neurons. Ischemia-reperfusion brain injury is aggravated by 
the inhibition of autophagy during reperfusion [52]. Recent 
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studies provide further evidence for the protective effect of 
promoting autophagy initiation or mitophagy and accelerat-
ing the fusion of autophagosomes and lysosomes in cerebral 
ischemia-reperfusion [53, 54], hypertensive stroke [55], and 
subarachnoid hemorrhage (SAH) [56].

Autophagy Contributes to Ischemic Tolerance Induced 
by Preconditioning

One of the most effective methods to prevent an ischemic 
stroke is IPC [57]. Numerous studies, including our own, 
have shown that IPC also activates autophagy, and inhib-
iting autophagy abolishes IPC’s neuroprotective effects 
[58–60]. Autophagy has also been shown to be concerned 
with the neuroprotection induced by hyperbaric oxygen pre-
conditioning [61, 62], isoflurane preconditioning [63], or 
sevoflurane preconditioning [64, 65]. Although both fatal 
cerebral ischemia and IPC activate autophagy, the degree 
of this activation varies. Autophagy is excessively activated 
during permanent cerebral ischemia, while IPC moderately 
activates autophagy, and this activation extends to the subse-
quent ischemic event [42, 58]. Endoplasmic reticulum stress 
(ER stress) might be involved in the contradictory effects 
of autophagy during ischemia and preconditioning [59, 
66]. IPC can upregulate molecular chaperones and activate 
autophagy, thereby reducing excessive ER stress-dependent 
apoptosis during lethal ischemia. The ER chaperone GRP78 
might be an important regulator meditating autophagy acti-
vation during preconditioning [67]. Studies on ER stress and 
autophagy provide a strong basis for the use of IPC in the 
treatment of cerebral ischemia [58].

Interestingly, known pharmacological activation of 
autophagy can trigger autophagy to produce a protective 
effect against stroke (pharmacological preconditioning), 
including polyphenolic antioxidant resveratrol [68], visfatin 
[69] or nicotinamide [55] that mediate NAD+ biosynthesis, 
AMPK activator metformin [70] and trehalose [71]. The 
ischemic tolerance produced by these agents can be elimi-
nated by inhibition of autophagy.

Additional Neural Physiological and Pathological 
Conditions of Autophagy

Maintaining physical fitness and muscle mass in mam-
mals necessitates consistent endurance activity. In mature 
and elderly animals, regular long-term exercise increases 
autophagy activity [72]. Interestingly, exercise also miti-
gates age-related cognitive decline by preserving mito-
chondrial quality control in the aged hippocampus through 
the autophagy-lysosomal pathway [73]. Exercise reju-
venates mitochondria and reduces oxidative stress in the 
aged hippocampus, as evidenced by increased activation of 
autophagy/mitophagy and mitochondrial biogenesis in aged 

hippocampal neurons. Additionally, exercise can enhance 
lysosomal function by promoting TFEB nuclear translo-
cation and upregulating transcription of TFEB regulatory 
genes [74]. Chloroquine, a lysosomal inhibitor, partially dis-
rupted the protective effects of exercise on mitochondrial 
quality control, oxidative stress, autophagy/mitophagy, and 
cognitive function in aged rats. These findings collectively 
suggest that age-related cognitive decline may be slowed 
down by exercise training or pharmacological modulation 
of lysosomal degradation and mitochondrial quality control 
[75].

During Traumatic brain injury (TBI), autophagy and 
lysosomal proteases in neurons are activated. Inhibition of 
the autophagy-lysosomal axis to relieve TBI and promote 
functional recovery is a viable approach [76]. However, 
contrary evidence suggests that TBI impairs autophagy flux 
and impedes Nrf2 signaling, a main regulator of antioxidant 
response, resulting in excessive oxidative stress. Calcitriol, 
the active form of vitamin D, reduces TBI-induced oxida-
tive damage by facilitating autophagy and activating Nrf2 
signaling [77].

Proteins and organelles quality control is necessary for 
normal synaptic function, and loss of autophagy may affect 
neuronal development [78, 79]. It has been proposed that 
synaptic activity can modulate the synaptic proteome by 
locally controlling autophagic vacuole (AVs) dynamics 
and function within dendrites. Stimulating synaptic activity 
inhibits AV movement in dendrites, thereby enhancing their 
degradability, whereas silencing synaptic activity has the 
opposite effect on AV function. This effect is localized and 
reversible and occurs in dendrites rather than axons, with 
compartmental specificity [80].

Function of Autophagy in Neurological Disorders

Autophagy Maintains Cell Homeostasis in the Nervous 
System

Neurons are terminally differentiated cells, and most of their 
synapses remain unchanged throughout the life cycle. Dur-
ing aging, the proteostasis network in neurons is disrupted 
and protein quality control is impaired, resulting in neurode-
generation. Neurons rely on autophagic machinery to clear 
damaged organelles and proteins to sustain synaptic neuro-
transmission and prevent neurodegeneration. Autophagy in 
neurons includes constitutive and stress-induced autophagy, 
which are involved in the renewal of damaged or aging 
endoplasmic reticulum, mitochondria, other organelles, and 
aggregate proteins [81, 82]. Under physiological conditions, 
neuronal soma contains populations of autophagosomes 
from different compartments with different mature states. 
Autophagosomes produced by axons enter the soma and are 
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restricted to the somatodendritic domain, facilitating fusion 
with lysosomes within soma to promote cargo degradation. 
The autophagosomes produced in the soma are less mobile 
and tend to aggregate [83]. Moreover, in healthy neurons, 
autophagy regulates axonal endoplasmic reticulum calcium 
storage to modulate neurotransmission in the brain [84]. 
Protein aggregates disrupt neuronal homeostasis, leading 
to toxicity associated with neurodegeneration. Endogenous 
TAX1BP1 is an autophagy receptor protein that mediates 
the removal of a number of cytotoxic proteins. Overexpres-
sion of TAX1BP1 can facilitate autophagy and accelerate 
the removal of neuronal protein aggregates [85]. CMA 
plays a critical part in neuronal proteostasis, as CMA selec-
tively degrades neurodegeneration-related proteins. Loss of 
neuronal CMA results in a senescent phenotype including 
reduced neuronal function, changes in neuronal metasta-
ble proteomes, and proteotoxicity, aggravating neuronal 
damage and accelerating disease progression in AD mice. 
Conversely, enhancement of CMA improves pathology in 
AD mice. Therefore, functional CMA is important for the 
maintenance of neuronal proteostasis and the reduction of 
misfolded proteins [86].

Adult neurogenesis is the process by which neural pro-
genitor cells (NPCs) in the human brain continuously pro-
duce new functional neurons. Nevertheless, adult neurogene-
sis decreases with age, which is linked to neurodegeneration. 
The expression of autophagy-related genes and autophagy 
activity was significantly decreased in the cultured NPCs 
and middle-adult subventricular/subgranular zone (SVZ/
SGZ) homogenates. In addition to restoring the vitality of 
middle-aged NPCs, activation of autophagy also stimulated 
neurogenesis in middle-aged SVZ, and improved neurologi-
cal function and cognitive abilities in middle-aged animals. 
Conversely, the knockdown of autophagy-associated genes 
led to impaired NPC proliferation and differentiation. Thus, 
impaired autophagy is related to a decline in adult neuro-
genesis, while activation of autophagy can reverse this phe-
notype [87].

Misfolded Protein Metabolism Involves Autophagy.

A variety of neurodegenerative disorders are characterized 
by the accumulation and aggregation of misfolded proteins, 
such as α-synuclein in PD, Huntington protein (HTT) in HD, 
and Aβ and tau protein in AD. Autophagy and the ubiquitin-
proteasome system (UPS) represent the two primary mech-
anisms for degrading misfolded proteins that accumulate 
under pathological conditions. In various neurodegenerative 
diseases and cerebral ischemia, when the UPS is overloaded 
or damaged, the nervous system relies on autophagy to clear 
excessive misfolded proteins [88, 89].

The abnormal expansion of the polyglutamine (polyQ) 
tract in HTT protein causes HD [90]. Cortical pyramidal 

neurons and striatal projection neurons specifically degener-
ate in HD brains due to the aggregation of the N-terminal 
mutant HTT and the development of intranuclear inclusion 
[91, 92]. Many studies, including our own, indicate that 
lysosomal cathepsins and autophagy play essential parts 
in the degradation of N-terminal HTT [93–95]. Enhanced 
autophagy/lysosomal activity can significantly facilitate 
the degradation of mHTT and prevent the accumulation 
of mHTT aggregates [96]. Additionally, we also fully elu-
cidated for the first time how macroautophagy [97] and 
CMA [98] degrade HTT fragments. Lysosome-associated 
protein 2A (LAMP2A) and heat shock protein cognate 70 
(Hsc70) are CMA elements that are crucial for the clear-
ance of HTT [98]. HTT is able to block the degradation 
of Beclin 1 and thus achieve autophagy. This is related 
to the polyQ domain in HTT-mediated interaction of the 
deubiquitinase ataxin 3 with Beclin 1. The longer polyQ 
mutations in the HTT protein competitively eliminate this 
function and inhibit autophagy [99]. K506 binding protein 
5 (FKBP5) was markedly decreased in HD R6/2 and zQ175 
rodent models. Genetic knockdown or pharmacological inhi-
bition of FKBP5 can reduce the interaction between FKBP5 
and HTT, resulting in mHTT being cleared by autophagy, 
accompanied by increased LC3-II and autophagy flux. The 
above suggests that the autophagic mechanism regulated 
by FKBP5 contributes to the neuronal clearance of mHTT 
[100]. In the adult brain, the specific and selective turnover 
of aggregated proteins is closely related to autophagy-linked 
FYVE protein (Alfy)/Wdfy3. In the HD mouse model, Alfy 
depletion and reduced autophagy level accelerate aggre-
gated mutant huntingtin accumulation and promote behav-
ioral deficits [101]. The miR-302 clusters were significantly 
downregulated in neuronal cells overexpressing mHTT-Q74. 
By restoring insulin sensitivity and autophagy, miR-302 
reduces cytotoxicity induced by mutant huntingtin [102]. 
Phosphorylation of HTT proteins at S13 and S16 is essen-
tial for controlling their toxicity, aggregation, and removal. 
TBK1 overexpression increases mutant HTT’s S13 phospho-
rylation, which prevents it from aggregating and encourages 
autophagic clearance of HTT aggregates [103]. The above 
results demonstrate that impaired autophagy contributes to 
the progression of HD, and enhancing autophagy to clear 
HTT aggregates may provide an efficient therapeutic strat-
egy for HD.

The main pathogenic characteristics of AD are hyper-
phosphorylated tau protein and deposition of Aβ gener-
ated from amyloid precursor protein (APP). Blockade of 
autophagic clearance and lysosomal proteolysis have a close 
relation with neurodegeneration of AD [104–106]. In the 
AD models, the progression of macroautophagy requires 
the participation of the AD-associated protein presenilin-1 
(PS1). Autolysosome acidification and cathepsin activa-
tion are impaired in PS1-depleted blastocysts. Impaired 
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lysosomal clearance may be responsible for the PS1 dele-
tion-mediated increase in Aβ [107]. In addition, there is an 
accumulation of large numbers of lysosomal-like organelles 
at amyloid plaques in AD mice, most of which are located 
within swollen axons in contact with amyloid deposits. Lys-
osomal precursors’ retrograde axonal transport is hampered 
by extracellular Aβ deposits, resulting in their accumulation 
and preventing them from further maturing [108]. TFEB is 
an important lysosomal pathway regulator. In elderly mice, 
amyloid plaque load and total Aβ levels were reduced in the 
hippocampus transfected with TFEB. TFEB stimulates lyso-
somal biosynthesis, reduces steady-state levels of APP and 
α- and β-CTF, and attenuates Aβ production by accelerat-
ing the endosome-lysosomal pathway [109]. Microglia were 
found to be able to clear abnormally aggregated Aβ proteins 
through LC3-associated endocytosis [110] and autophagy 
[111]. However, in the microglia of adult AD mice, Aβ can-
not be degraded and the expression level of the autophagy 
cargo receptor NBR is low. Inhibition of elevated miR-17 
in microglia of AD mice increases NBR1, which in turn 
promotes autophagy and Aβ degradation [112]. In AD mice, 
miR-9-5p and miR-331-3p are downregulated in the initial 
stage, whereas upregulated in an advanced stage. Inhibition 
of miR-9-5p and miR-331-3p promotes autophagy degrada-
tion of Aβ and prevents AD progression [113]. Therefore, 
a sensible approach to treating neurotoxic Aβ may involve 
the upregulation of autophagy. Rapamycin [114], resveratrol 
[115], oxyresveratrol (OxyR) [116], and crocetin [117] can 
promote the degradation of Aβ, reduce neuroinflammation, 
and improve memory function by inducing autophagy, and 
thus may have therapeutic effects on AD mice. Similarly, 
PPARA/PPARα (peroxisome proliferation activated recep-
tor α) agonists gemfibrozil and Wy14643 can promote the 
recruitment of astrocytes and microglia near Aβ plaques, 
and then induce autophagy in glia. Hence, in APP-PSEN1E9 
mice, gemfibrozil and Wy14643 reduced soluble and insolu-
ble Aβ levels alleviated amyloid pathology, and reversed 
anxiety symptoms and memory deficits [118].

The autophagy-lysosome pathway may also be essential 
for tau degradation. Most neuronal tau may be degraded 
by CMA. CMA dysfunction in the brains of patients with 
tauopathies alters tau protein homeostasis and may exac-
erbate disease progression. Acetylated tau inhibits CMA 
and leads to its extracellular release. In the mouse model of 
tauopathy, blocking CMA accelerated the spread of patho-
genic tau proteins among cells [119]. The miR-9 target gene 
UBE4B, together with STUB1, enhances autophagy-medi-
ated degradation of tau in the mouse model of Tau-BiFC, 
which may become an innovative AD treatment [120]. In a 
tau transgenic mice model, increased lysine acetyltransferase 
(p300/CBP) activity is connected with abnormal accumula-
tion of autophagy lysosomal pathway markers. In neurons, 

overactivation of p300/CBP blocks autophagy flux and pro-
motes tau secretion. On the contrary, in fibril-induced tau 
spreading models in vivo and in vitro, suppression of p300/
CBP increased autophagic flux, and decreased tau secretion 
and spread, thereby blocking the progression of tauopathy 
disease in fibril-induced tau spreading models in vivo and 
in vitro [121]. These investigations showed that enhanced 
autophagy makes it easier to clear the aggregated proteins 
as Aβ and tau, thus preventing AD progression.

The pathological characteristic of PD is neuronal inclu-
sions termed Lewy bodies, which consist of the misfolded 
protein α-synuclein. Autophagy plays a critical part in the 
clearance of α-synuclein [122]. Impaired autophagic flux 
in PD leads to lysosomal dysfunction and aggregation of 
α-synuclein proteins within dopamine neurons [123]. This 
results from α-Syn-mediated disruption of autophagosome-
lysosome fusion, leading to reduced formation of autophago-
lysosomes. Mechanically, protein v-SNARE SNAP29 is a 
component of the SNARE complex, which facilitates the 
fusion of autophagosomes. By blocking SNAP29-mediated 
autophagosome-lysosome fusion, α-Syn inhibits autophagy 
and exacerbates the pathological damage in PD [124]. In 
addition, PD-like neurodegeneration caused by excess 
α-synuclein is also accompanied by a decrease in lysoso-
mal function. Mitochondrial-derived reactive oxygen spe-
cies (ROS) trigger abnormal permeabilization of lysosomal 
membranes, resulting in defects in lysosomal clearance, 
and ectopic release of lysosomal proteases into the cyto-
plasm contributes to neurodegeneration [125]. The PD 
pathology is also accompanied by cytoplasmic retention 
of TFEB, the main transcription factor of the autophagy-
lysosomal pathway. Overexpression of TFEB can reverse 
lysosomal dysfunction in the brains of PD patients, thereby 
facilitating α-synuclein degradation for neuroprotective 
effects. Suppression of the mammalian target of rapamy-
cin (mTOR) encourages TFEB nuclear translocation and 
blocks α-syn-induced neurodegeneration [126]. In addi-
tion, the CMA pathway can be used to specifically trans-
port wild-type α-syn into lysosomes for degradation [127]. 
LAMP2A, a CMA receptor, is essential for the degradation 
of α-synuclein. Endosome-to-Golgi retrieval of LAMP2A is 
impaired in VPS35-deficient dopaminergic neurons, which 
affects the autophagic degradation of α-synuclein and accel-
erates the progression of PD [128]. Interestingly, microglia 
play an important role in clearing α-synuclein released by 
neurons. Microglia are activated by neuronal α-synuclein 
and subsequently engulf α-synuclein into autophagosomes 
and degrade them by selective autophagy called synucle-
inphagy. Synucleinphagy relies on the microglia Toll-like 
receptor 4 (TLR4). TLR4 improves the transcription of p62/
SQSTM1 via the NF-κB signaling, mediating synuclein-
phagy to remove α-synuclein and produce neuroprotective 
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effects [129]. Impairment of synucleinphagy leads to the 
accumulation of misfolded α-synuclein and loss of dopamin-
ergic neurons [130]. Based on the above studies, enhance-
ment of autophagy to promote the removal of α-synuclein 
may become an effective treatment for PD. Sestrin2 acti-
vates autophagy via AMPK and enhances the degradation 
of α-Synuclein, thereby protecting neurons from rotenone-
induced dopaminergic neuronal damage [131]. Telomerase 
reverse transcriptase (TERT) reduces α-synuclein by acti-
vating autophagy or preventing disruption of the degrada-
tion machinery during disease progression [132]. C-Abl, a 
tyrosine kinase, is activated by cellular stress. In a TgA53T 
mouse model (human mutant A53Tα-Syn overexpressing 
transgenic mice), nilotinib inhibits c-Abl activity, increases 
autophagy flux via AMP-activated kinase (AMPK)/
mTORC1/ULK1 signaling in neurons, thereby reducing 
the accumulation of α-synuclein and delaying the onset of 
the disease [133]. LRRK2 (leucine-rich repetitive kinase 2) 
mutations are thought to be a common cause of familial 
sporadic PD. Mutant LRRK2 disrupts CMA and impairs 
α-synuclein degradation [134]. Aged LRRK2 mutant 
striatum exhibits lysosomal aggregation, accumulation of 
LAMP2A and HSC70, and elevated GAPDH (CMA sub-
strate). In mouse embryonic fibroblasts, the CMA-specific 
activator AR7 stimulates the transcription of LAMP2A and 
increases the activity of lysosomal. Besides, AR7 attenu-
ates α-synuclein accumulation in cortical neurons with the 
LRRK2 mutation (DIV21) [135]. Therefore, enhancement of 
autophagy pathways to decrease the accumulation of patho-
genic α-synuclein linked to aging may alleviate the progres-
sion of PD disease.

In the brains of patients with frontotemporal dementia 
(FTD) and ALS, brain inclusions consisting of misfolded 
and aggregated TDP-43 are a common pathological hall-
mark of ALS-FTD. Amplification of GGG​GCC​ repeats in 
the C9orf72 gene is the most frequent genetic cause of ALS-
FTD [136], and polyglutamine-amplified Ataxin-2 (Ataxin-2 
Q30x) is a genetic modifier of the ALS-FTD. C90ORF72 
promotes TDP-43 clearance by enhancing autophagy, while 
depletion of C90ORF72 damages autophagy and leads to the 
accumulation of TDP-43 and p62 protein aggregates. Deple-
tion of C90ORF72 works synergistically with Ataxin-2 
Q30x to trigger motor neuron dysfunction and neuronal 
cell death [137]. Nuclear depletion of the TARDBP gene 
(encoding TDP-43) leads to neurodegeneration. Motor neu-
rons lacking TARDBP/TBPH (the Drosophila homolog of 
TARDBP) in mouse/Drosophila models exhibit motor defi-
cits and age-dependent neurodegeneration, reduced ATG7, 
and accumulation of SQSTM1/p62 inclusions. In TBPH-
deficient flies, enhancement of autophagy improves motor 
function and survival [138]. In patient and cell models of 
ALS-FTD, TARDBP is cleaved to release a 25 kDa neuro-
toxic fragment (TARDBP-25/TDP-25) [139], and trehalose 

is able to induce removal of the aggregated TARDBP-25. 
Mechanistically, trehalose may trigger lysosomal membrane 
permeabilization (LMP) through lysosomal osmotic stress 
to release lysosomal Ca2+, thereby activating calcineu-
rin and inducing TFEB dephosphorylation, which in turn 
clears misfolded proteins by enhanced autophagy [140]. In 
ALS, endogenous TDP-43 aggregates lose splicing regula-
tion function. Thioridazine clears TDP-43 aggregates and 
restores TDP-43 function, thereby significantly ameliorating 
motion deficits in the ALS model [20]. Thus, the autophagy 
pathway can be used as a target for ALS-FTD and other 
related diseases presenting TARDBP pathology.

Autophagy in the Elimination of Damaged Organelles

Elimination of damaged organelles and misfolded proteins 
depends on autophagy. Since neurons after mitosis are 
unable to reduce the level of misfolded proteins and dam-
aged organelles by cell division, neurons highly depend on 
autophagy compared to other cells. Based on the selectivity 
of the engulfed component, autophagy can be divided into 
selective autophagy and non-selective autophagy. Selective 
autophagy is primarily responsible for the degradation of 
damaged organelles [141], including mitophagy, ER-phagy, 
or pexophagy.

Accumulation of damaged mitochondria tends to be pre-
sent in aging and age-related neurodegeneration, including 
certain types of PD [142] and AD [143, 144] among others. 
Mitophagy is essential for the selective removal of dam-
aged mitochondria to preserve mitochondrial homeostasis, 
ATP generation, and neuronal survival [145]. α-synuclein 
is related to the development of PD. Interestingly, the accu-
mulation of α-synuclein impairs the induction of mitophagy 
and increases neuronal susceptibility to stress, leading to 
dopaminergic neurodegeneration and motor dysfunction 
[146]. The mitochondrial matrix proteins NIPSNAP1 (nip-
snap homolog 1) and NIPSNAP2 (nipsnap homolog 2) are 
identified as "autophagy" signals for impaired mitochon-
dria (Fig. 1). Following mitochondrial depolarization, NIP-
SNAP1 and NIPSNAP2 accumulate on the mitochondrial 
outer membrane and then promote autophagy by recruiting 
human Atg8 family proteins, other autophagy receptors and 
adapters. Zebrafish deficient in Nipsnap1 exhibit decreased 
mitophagy, increased ROS generation, dopaminergic neu-
ronal loss in the brain, and decreased motility [147]. Simi-
larly, in AD, mitochondrial disruption and metabolic dys-
function are early features before histopathological and 
clinical features, and mitochondrial dysfunction is also asso-
ciated with synaptic defects in early AD. Enhanced lysoso-
mal function in AD neurons promotes the clearance of dam-
aged mitochondria, protects AD mouse brains from synaptic 
damage and restores impaired metabolic function [148]. 
Induced pluripotent stem cell-derived human AD neurons 
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and the hippocampus of AD patients both exhibit impaired 
mitophagy. Aβ and phosphorylated tau inhibit mitophagy 
(Fig. 2). Mechanistically, mitophagy reduces insoluble Aβ1-
40 and Aβ1-42 and prevents cognitive disorder in the APP/
PS1 mouse model via suppression of neuroinflammation 
and microglial phagocytosis of extracellular Aβ plaques. 
Besides, enhanced mitophagy abolished AD-associated tau 
hyperphosphorylation in neurons and improved memory 
deficits in mice and transgenic tau nematodes [18].

Mutations in two PD-related genes, PARK2 (encoding 
Parkin, an E3 ubiquitin ligase) and PARK6(encoding PINK1, 
PTEN-induced kinase 1, a ubiquitin kinase) can lead to 
early-onset PD. Patients with PD are usually accompanied 
by mitochondrial dysfunction [149, 150]. Parkin and PINK1 
selectively identify damaged or depolarized mitochondria 
to mediate mitophagy and prevent an increase in cytosolic 

and circulating mitochondrial DNA, thereby reducing neu-
roinflammation and neurodegeneration in PD [151, 152]. 
PINK1 expression on individual mitochondria is regulated 
by voltage-dependent proteolysis, which is important for 
maintaining low levels of PINK1 in normal mitochondria. 
However, PINK1 rapidly accumulates on damaged mito-
chondria and recruits Parkin to mitochondria. PINK1 and 
Parkin then induce mitochondrial ubiquitination, resulting 
in phagocytosis of damaged mitochondria [153]. Loss of 
Parkin activity causes the dysfunctional mitochondria to 
accumulate [154], resulting in the loss of neurons in PD 
[155]. In AD, parkin and PINK1 can also mediate mitophagy 
to selectively remove damaged mitochondria [154]. MFN2, 
a mitochondrial-ER tethering protein, regulates mitophagy 
through PINK1 and Parkin. Parkin-mediated MFN2 
ubiquitination coupled with PINK1-catalyzed MFN2 

Fig. 2   The role of mitophagy in neurodegenerative diseases and cer-
ebral ischemia. Mitochondrial function is compromised during peri-
ods of stress. The process of mitophagy involves the identification 
of damaged mitochondria by double-membrane structures within the 
cytoplasm, followed by their encapsulation as mitophagosomes and 
subsequent degradation upon fusion with lysosomes. PINK1 and Par-
kin are two proteins located in mitochondria that play a crucial role 
in facilitating mitophagy. Specifically, PINK1 rapidly accumulates 
on damaged mitochondria and subsequently recruits Parkin to these 
organelles to promote phagocytosis. MFN2 is a mitochondrial-ER 
tethered protein. The ubiquitination of MFN2 by parkin, coupled with 
its phosphorylation by PINK1, triggers the disassembly of MFN2 
complexes from the outer mitochondrial membrane. This process 
dissociates mitochondria from the ER and promotes their self-reg-

ulation. Inactivation of parkin can lead to defects in mitophagy, and 
accumulation of damaged mitochondria, and contribute to the devel-
opment of PD and AD. BNIP3L/Nix and FUNDC1 are mitochon-
drial outer membrane proteins containing the LC3-interacting region 
(LIR) that mediate hypoxia-induced mitophagy. Amyloid β-protein 
(Aβ) and tau aggregation are two signature pathological hallmarks in 
AD. Mitophagy induction reduces Aβinhibits several common p-tau 
sites and improves memory impairment in AD mice. α-synuclein is 
involved in the development of PD. α-synuclein accumulation impairs 
the induction of mitophagy, increases the neuronal susceptibility to 
stress, and leads to dopaminergic neurodegeneration. NIPSNAP1 
and NIPSNAP2, Mitochondrial matrix proteins, "autophagy" signals 
for damaged mitochondria; MFN2, mitofusin-2; FUNDC1, FUN14 
domain-containing protein 1
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phosphorylation triggers the disassembly of the P97-depend-
ent MFN2 complex from the mitochondrial outer membrane, 
thereby disconnecting mitochondria from ER and facilitating 
mitophagy (Fig. 2) [156]. Therefore, PINK1/Parkin plays a 
critical part in regulating mitophagy and mitochondrial qual-
ity control [157]. Mitophagy inducers (NAD+, actinonin, 
and urolithin A) restore memory impairment through the 
PINK1/Parkin-dependent pathway [18, 158]. Consistently, 
in a motoneuronal death model, GRP78 overexpression pro-
motes PINK1 translocation to induce mitophagy and restores 
mitochondrial function in cells upon ER stress [159]. Thus, 
the impaired clearance of dysfunctional mitochondria is a 
major contributor to the pathogenesis of neurodegenerative 
disorders, and mitophagy is considered as a viable thera-
peutic strategy.

Mitophagy is also able to alleviate cerebral ischemia-
induced neuronal injury by selectively eliminating dys-
functional mitochondria [160]. Interestingly, except for the 
PINK1/Parkin pathway, mitophagy may not be dependent 
on the PINK1 pathway in some tissues with high metabolic 
demand [161]. The mitophagy receptors BNIP3L/Nix [162] 
and FUNDC1 [163] are both mitochondrial outer membrane 
proteins containing the LC3 interaction region (LIR) that 
have been shown to mediate hypoxia-induced mitophagy 
and play important roles in mitophagy-induced by cerebral 
ischemia (Fig. 2). It has been found that mitophagy acti-
vated by cerebral ischemia-reperfusion may rely on the 
PINK1/Parkin pathway at the early stage. Parkin-mediated 
mitophagy induced by acidic postconditioning (APC) [164] 
or hypoxia postconditioning (HPC) [165] prolongs the rep-
erfusion time window and exerts neuroprotective effects in 
stroke. However, cerebral ischemia-induced mitophagy at 
the later stage may depend on the BNIP3L/Nix pathway. 
BNIP3L deficiency inhibited mitophagy and exacerbated 
cerebral ischemic injury in mice, while overexpression 
of BNIP3L can reverse these effects. Phosphorylation of 
BNIP3L S81A plays a critical role in BNIP3L-mediated 
mitophagy [166]. BNIP3L/NIX can be degraded by protea-
somes, resulting in defective mitophagy in ischemic neurons. 
The proteasome inhibitor carfilzomib reverses BNIP3L deg-
radation and restores mitophagy, thus preventing ischemic 
brain injury [167]. Interestingly, in neurons exposed to 
ischemia-reperfusion, axonal mitochondria are retrogradely 
transported into neuronal soma and preferentially eliminated 
by mitophagy. Anchoring of syntaphilin to axonal mitochon-
dria blocks neuronal mitophagy and aggravates damage. 
Conversely, induction of mitochondrial retrograde trans-
port enhances mitophagy, prevents mitochondrial dysfunc-
tion, and alleviates neuronal damage [168]. During an acute 
ischemic stroke, PPAR coactivator-1α (PGC-1α), the major 
regulator of mitochondrial biogenesis, is rapidly elevated 
in microglia. PGC-1α facilitates mitophagy and autophagy 
through ULK1, thereby inhibiting NLRP3 activation and 

attenuating neurological deficits after ischemic injury [169]. 
Tissue plasminogen activator (tPA) promotes mitophagy 
by regulating FUNDC1. tPA thus improves mitochondrial 
function and inhibits apoptosis in neurons to protect against 
ischemic reperfusion injury [170].

Selective autophagy degradation of endoplasmic reticu-
lum (ER) fragments under normal or stress stimuli is termed 
ER-phagy or reticulophagy. ER-phagy is a crucial mecha-
nism for preventing ER stress-related ER expansion and 
offers an alternative disposal pathway for misfolded proteins 
[171, 172]. Atg39 and Atg40 [173], two autophagy-related 
proteins identified in yeast, are located in the perinuclear ER 
and cytoplasmic ER to mediate nucleophagy and ER-phagy, 
respectively. The mammalian homolog of Atg40, FAM134B, 
belongs to the reticulon protein family. FAM134B was found 
to bind to LC3 and GABARAP and mediate ER-phagy. 
FAM134B deficiency results in impaired ER turnover, 
increased cell sensitivity to stress-induced apoptotic death, 
and degeneration of sensory neurons [174]. VPS13, a con-
served phospholipid transporter, is found at the contact sites 
between ER and different organelles. VPS13A is located at 
the ER-mitochondrial contact site, while VPS13C is located 
at the ER-late endosome contact site. Loss of VPS13C func-
tion increases the vulnerability of mitochondrial to stress and 
triggers excessive mitophagy, which may be a key issue in 
autosomal-recessive early-onset parkinsonism [175]. Inter-
estingly, the impaired ER-phagy triggered by VPS13 dele-
tion may further explain the importance of VPS13C in early-
onset Parkinson’s. When VPS13 is absent, ER accumulation 
in late endosomes and ER transport into autophagosomes 
are decreased, suggesting a role for VPS13 in sequestering 
ER from late endosomes to autophagosomes [176]. Thus, 
ER-phagy is essential for maintaining the homeostasis of 
mammalian cells, and its dysfunction may be closely linked 
to the development of neurodegenerative disorders.

Autophagy in Regulation of Apoptosis

Autophagy plays a crucial role in maintaining cellular 
homeostasis, degrading misfolded proteins, and eliminating 
damaged organelles, thereby promoting cell survival under 
stress conditions. However, the role of autophagy in cell sur-
vival and death is highly intricate. While autophagy deter-
mines the fate of organelles, apoptosis decides the destiny 
of entire cells. Autophagy can induce "type II programmed 
cell death" by bulk degradation of intracellular organelles 
and cytosol, which distinguishes it from apoptosis (type I 
programmed cell death). Studies have demonstrated that 
autophagy and apoptosis coexist in neurological diseases, 
with autophagy potentially promoting apoptosis. Bcl-2 is a 
known anti-apoptotic protein that has been found to inter-
act with the autophagy protein Beclin 1, resulting in the 
inhibition of autophagy. Mutations in Beclin 1 that prevent 
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binding to Bcl-2 induce stronger autophagy and promote cell 
death compared to wild-type Beclin 1 [177]. Serum depri-
vation-induced autophagy activation was accompanied by 
upregulation of Bcl-2. Downregulation of Bcl-2 expression 
or pharmacological inhibition of Bcl-2 function enhanced 
autophagy activation and led to apoptosis, while overexpres-
sion of Bcl-2 hindered autophagy activation and inhibited 
cell death caused by serum deprivation [178]. These stud-
ies have provided important information on the classical 
role of autophagy on apoptosis in nutritional stress. In KA 
and NMDA receptor agonist QA-induced apoptosis, the 
autophagy inhibitor 3-methyladenine (3-MA) blocked the 
down-regulation of pro-survival protein Bcl-2, thus inhibit-
ing apoptosis [37]. The neuronal death induced by mito-
chondrial inhibitor 3-nitro propionic acid (3-NP) involves 
both apoptosis and autophagy. 3-NP upregulates TP53 and 
its downstream genes BAX, PUMA, and DRAM1. Notice-
ably, neuronal damage caused by 3-NP was inhibited by 
the autophagy inhibitor 3-MA, the TP53 specific inhibi-
tor pifithrin-α, and by knock-down of DRAM1, suggest-
ing that TP53 and DRAM1 play important roles in 3-NP-
induced autophagy and apoptosis [38]. DRAM1 regulates 
autophagy by enhancing the acidification of lysosomes, 
fusion of autophagosomes with lysosomes, and removal of 
autophagosomes [179]. DRAM1 also regulates the crosstalk 
between autophagy and apoptosis by interacting with BAX. 
DRAM1-mediated activation of autophagy upregulates BAX 
and recruits it into lysosomes. BAX initiates apoptosis via 
lysosomal protease cathepsin B-mediated Bid cleavage, 
cytochrome c release, and caspase 3 activation. These find-
ings imply that DRAM1 regulates apoptosis and autophagy 
in cells by inhibiting BAX degradation [180].

However, contrary evidence points to the inhibition of 
apoptosis caused by the activation of autophagy, which 
may be connected to the removal of damaged mitochon-
dria. Rapamycin facilitates translocation of p62 and parkin 
to impaired mitochondria to activate mitophagy and reduces 
cytochrome c release by inhibiting spinal cord ischemia-
reperfusion injury (SCIRI)-induced Bax translocation to 
mitochondria, thereby inhibiting apoptosis and protect-
ing neurons [181]. Necroptosis, a programmed necrosis, 
is activated in AD and may be associated with impaired 
autophagy. UVRAG is downregulated in AD, resulting 
in impaired autophagy flux and p62 accumulation. Accu-
mulated p62 then recruits RIPK1 and triggers its self-oli-
gomerization, which ultimately leads to neuronal necroptosis 
through the RIPK1/RIPK3/MLKL cascade [182]. Thus, the 
complicated relationship between autophagy and apoptosis 
may be attributed to different regulatory signals in different 
disease processes.

Autophagy and Neuroinflammation

In neurodegenerative diseases like AD and PD, neuroinflam-
mation plays a significant role [183, 184]. Anti-inflamma-
tory therapy thus has been recognized as a viable therapeutic 
approach. Autophagy may affect neurodegenerative diseases 
by regulating microglia-mediated neuroinflammation. Mice 
with structural abnormalities of the autophagy protein 
Atg16L exhibited reactive microgliosis, Aβ deposition, tau 
hyperphosphorylation, pervasive neurodegeneration, and 
severe memory and behavioral deficits. Pharmacological 
inhibition of neuroinflammation alleviated memory impair-
ment and pathology in this AD model [185]. In AD, toxic 
Aβ oligomers (AβOs) impair autophagy in microglia and 
induce neuroinflammation. Achyranthes bidentate polypep-
tide fraction k (ABPPk) can restore autophagy in AβOs-
injured microglia to restrain the M1 phenotype and facilitate 
the M2 phenotype, leading to anti-inflammatory activity. 
ABPPk thus significantly improves locomotor activity and 
alleviates memory deficits in AD [186].

In addition, the loss of microglia Atg5 leads to PD-like 
symptoms in mice, manifested as impaired cognitive learning 
and motor coordination, tyrosine hydroxylase (TH) neuronal 
loss, enhanced neuroinflammation, and decreased dopamine in 
the striatum. When autophagy was suppressed, NLRP3 inflam-
masome in microglia was activated, accompanied by sustained 
upregulation of downstream IL-1β and increased expression 
of the pro-inflammatory cytokine MIF (macrophage migra-
tion inhibitory factor). NLRP3-specific inhibitor MCC950 can 
prevent the formation of NLRP3 inflammasome, reduce MIF 
expression and neuroinflammatory response, and rescue TH 
neuronal loss in the substantial nigra (SN) [187]. In type 2 
diabetic mice, metabolic inflammation accelerates the degra-
dation of dopaminergic neurons. Metformin inhibits neuro-
inflammation induced by hyperactivation of microglia in the 
substania nigra compacta in mice with PD, thereby alleviating 
the degeneration of dopaminergic neurons [188].

Neuroinflammation and neurodegeneration are the main 
causes of progressive disability in patients with Multiple 
sclerosis (MS). In the MS mouse model, the recovery of 
CNS inflammation depends on the ability of microglia to 
remove tissue fragments. Loss of Atg7 in microglia results in 
the accumulation of phagocytic myelin and progressive MS-
like lesions. Therefore, inducing autophagy in elderly mice 
promotes the clearance of functional myelin and alleviates 
the disease. Trehalose enhances the autophagy of microglia 
and promotes the removal of tissue debris, thereby inhibiting 
inflammation and relieving MS [189].

According to the aforementioned findings, regulat-
ing autophagy may offer a potential new therapeutic 
strategy for neurodegenerative diseases associated with 
neuroinflammation.



373Y.-Y. Li et al.: Autophagy in Neural Function and Diseases

1 3

Signaling to Regulate Autophagy in Neurological 
Diseases

AMPK‑ mTOR‑dependent Pathway

mTOR, a serine/threonine protein kinase, regulates cell 
growth, reproduction, and protein synthesis by integrat-
ing intracellular and extracellular signals [190]. 5’-AMP-
activated protein kinase (AMPK) is an upstream of mTOR 
and can sense the energy state of cells. In the case of 
energy stress or low energy, AMPK is activated, inhibits 
mTOR [191] then enhances autophagy. The key mediator 
of autophagy, ULK1-ATG13-ATG101-FIP200, is primar-
ily regulated by AMPK-mTOR. Under normal circum-
stances, activated mTOR can phosphorylate the ser757 site 
of ULK1, interfering with the interaction between AMPK 
and ULK1, thus preventing AMPK from activating ULK1 
and autophagy. Under cellular stress, activated AMPK can 
inhibit mTORC1 to alleviate ULK1 Ser 757 phosphoryla-
tion. Conversely, AMPK phosphorylates Ser777 and Ser 317 
on ULK1 to activate ULK1 kinase, which ultimately induces 
autophagy [192, 193].

The AMPK-mTOR pathway has an important effect on 
the pathogenesis of many neurodegenerative diseases. Acti-
vation of mTOR mediates AD progression by inhibiting 
autophagy and reducing the clearance of Aβ [194]. Activat-
ing AMPK inhibits mTOR activity, enhances autophagy, and 
facilitates Aβ degradation [195]. However, researchers have 
found that mTOR signaling is indispensable for synaptic 
plasticity and memory formation in the hippocampus, and 
restraint of mTOR disrupts memory consolidation [196]. 
In APP/PS1 transgenic mice, transient receptor potential 
mucolipin-1 (TRPML1) was downregulated, accompanied 
by activation of AMPK signaling, and inhibition of mTOR 
signaling. Overexpression of TRPML1, or treatment with 
AMPK inhibitors and mTOR activators can downregulate 
ALR-associated proteins, improve recognition and memory 
impairment, and alleviate neuronal apoptosis, suggesting 
that TRPML1 participates in the pathogenesis of AD by 
modulating autophagy through AMPK-mTOR signaling 
[197].

The AMPK-mTOR pathway also mediates the activa-
tion of autophagy and produces a protective effect during 
ischemia or preconditioning. Metformin and resveratrol can 
activate AMPK, induce autophagy or mitophagy, and pro-
vide protection against subsequent cerebral ischemia [68, 
70]. Metformin preconditioning and autophagy activation 
are hindered by the AMPK inhibitor Compound C or the 
autophagy inhibitor 3-MA. Rapamycin specifically inhibits 
mTORC1 to induce autophagy, which has been proved to 
be related to the protective effect of rapamycin on cerebral/
myocardial ischemia [198, 199]. Hippocampal CA3 neurons 
are stimulated by ischemia to produce hamartin, which is a 

product of the tuberous sclerosis complex 1 gene (TSC1). 
Inhibition of the expression of hamartin increases the vulner-
ability of neurons to cell death after ischemia, whereas over-
expression of hamartin protects neuronal against ischemia 
injury through mTORC1-dependent mechanism that induces 
autophagy [60]. These data suggest that agents acting on 
the AMPK-mTOR pathway to induce autophagy may have 
the potential to treat neurodegenerative diseases or ischemic 
cardiovascular diseases.

Beclin 1 and autophagy

Beclin 1, a mammalian homolog of yeast Atg6, is an 
autophagy-related tumor suppressor gene [200]. Bcl-2 or 
Bcl-XL binds to the BH3 domain of Beclin 1 to inhibit Bec-
lin 1. In addition, BH3-only protein or pharmacological BH3 
mimics can trigger autophagy by competitively interfering 
with the interaction between Bcl-2 or Bcl-XL and Beclin 1 
[201].

Beclin 1-mediated autophagy may mediate neuropro-
tection in brain preconditioning. By triggering autophagy 
via the HIF-1α/Beclin 1 pathway, hypoxic preconditioning 
(HPC) reduces OGD/R-induced damage to SH-SY5Y cells 
[202]. TOM7 is an important part of the protein translo-
case of the outer mitochondrial membrane (TOM) complex. 
TOM7 can modulate autophagy through the PINK1/Beclin 1 
signaling after cerebral ischemia, and silencing TOM7 inhib-
its autophagy via the PINK1/Beclin 1 pathway to aggravate 
cerebral ischemia [203]. Sphingosine kinase 2 (SPK2) leads 
to autophagy activation induced by isoflurane or hypoxia 
preconditioning in neurons and participates in the neuro-
protection of cerebral preconditioning [204]. Interestingly, 
SPK2-mediated autophagy and protection is independent of 
its catalytic activity but displaces Beclin 1 from the Bcl-2/
Beclin 1 complex through its BH3 domain, thus releasing 
free Beclin 1 to induce autophagy [63, 205]. The Tat-SPK2 
peptide designed according to the BH3 domain of SPK2 
can protect neurons against ischemic injury by activating 
autophagy or mitophagy [206].

Beclin 1-mediated autophagy has also been linked to 
some neurodegenerative diseases. In PC12 cells, Beclin 1 
may exert an effect on the autophagic degradation of the 
mutant HTT552. Blockade of Beclin 1 nuclear output or 
reduction of Beclin 1 expression induced the formation of 
mHTT552 aggregates [97]. In addition, Aβ can stimulate 
the production of inflammatory cytokines, thereby inhibit-
ing the Beclin 1-mediated autophagy and the capacity of 
microglia to phagocytosis Aβ [207, 208]. Beclin 1-depend-
ent autophagy can not only affect AD pathology by regulat-
ing the microglial phagocytosis of Aβ but may also affect the 
production and release of cytokines leading to progressive 
neuroinflammation [209].
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TP53 and TP53 Target Genes (DRAM, TIGAR​) 
and Autophagy

TP53 is a key tumor suppressor gene product that is essen-
tial in apoptosis, DNA repair, and cell cycle regulation. In 
addition to its important role in carcinogenesis, a growing 
amount of research has found that TP53 and its target gene 
(TIGAR, DRAM1) play important roles in neurological dis-
eases by regulating autophagy [210, 211].

TP53 and DRAM1 in particular may be critical factors 
mediating autophagic activation and mitochondrial dys-
function in neuronal excitotoxicity. Inhibition of TP53 
suppresses autophagy activation, mitochondrial dysfunc-
tion, and excitatory neuronal damage [212]. DRAM1 
may affect the autophagy machinery at multiple levels. 
DRAM1 can enhance lysosomal acidification, and lysoso-
mal fusion with autophagosomes, and promote autophagy 
flux. Knockdown of DRAM1 exerts an inhibitory effect 
on autophagy by disrupting autophagosome-lysosomal 
fusion, thereby exacerbating OGD/R-induced cell dam-
age in neuro-2a [213]. DRAM1 also induces autophagy 
by inhibiting the PI3K-AKT-mTOR-S6k pathway [214]. 
DRAM1 is not only required for TP53-mediated apop-
tosis but also regulates the crosstalk between autophagy 
and apoptosis through interacting with BAX, as previously 
described [180].

TP53-induced glycolysis and apoptosis regulator 
(TIGAR) is capable of inhibiting glycolysis through fruc-
tose-2, 6-diphosphatase activity to facilitate the pentose 
phosphate pathway, increasing intracellular NADPH and 
decreasing ROS. TIGAR thus inhibits autophagy activation 
by inhibiting ROS [215, 216]. TIGAR shows neuroprotec-
tion in monkey and rodent models of cerebral ischemia. 
Mechanistically, TIGAR partially inhibits autophagy by 
decreasing ROS and activating the mTOR-S6K pathway, 
thereby preventing cerebral ischemia-induced neuronal 
injury [217]. Moreover, TIGAR defends the tight junc-
tion of brain microvascular endothelial cells by preserving 
NADPH production and preventing autophagy [218]. How-
ever, other findings suggest the role of TIGAR in inducing 
autophagy. In high-glucose-stimulated neuronal cells and the 
hippocampus of streptozotocin (STZ)-induced diabetic mice, 
overexpression of TIGAR rescued the impaired autophagy 
induced by high-glucose and reduced neuronal apoptosis 
[219]. Interestingly, TIGAR’s neuroprotection in long-term 
cerebral ischemia by alleviating oxidative stress was inde-
pendent of the pentose phosphate pathway triggered by its 
phosphatase activity. In the brain with chronic ischemia, 
TIGAR induced autophagy, thereby activating Nrf2 and 
producing a sustained antioxidant effect [220]. The above 
results suggest that TIGAR can inhibit or induce autophagy 
through phosphatase activity or non-phosphatase activity 
under different pathological conditions.

ER Stress and Autophagy

During ER stress, active transcription factor 6 (ATF6), 
inositol-dependent enzyme 1 (IRE1), and protein kinase 
R-like endoplasmic reticulum kinase (PERK) dissociate 
from GRP78 and are activated to initiate unfolded protein 
response (UPR). Subsequently, the expression of UPR-
related genes including molecular chaperones is increased, 
while the overall protein translation levels are downregulated 
to restore ER homeostasis [221, 222]. ER stress at the early 
stage can prevent protein aggregation by inhibiting protein 
synthesis and upregulating ER chaperone protein expression 
(such as GRP78, GRP94, HSPs, etc.) to facilitate the proper 
folding of proteins, thus promoting the restoration of ER 
function and protecting cells. However, persistent ER stress 
may lead to the activation of CHOP and caspase-12, thus 
triggering ER stress-dependent apoptosis [223].

ER stress is associated with the differential effects of 
autophagy during ischemia and preconditioning [59, 66]. 
ER stress has been demonstrated to play a dual role in lethal 
ischemia and preconditioning [58, 59]. ER stress induced 
by lethal ischemia leads to activation of CHOP and cas-
pase-12 [224, 225]. However, preconditioning may increase 
the levels of heat shock proteins (HSPs) or ER chaperones 
to alleviate the intense ER stress that occurs during lethal 
ischemia [226, 227]. Preactivation of autophagy by IPC 
can reduce excessive ER stress-dependent apoptosis during 
fatal ischemia, accompanied by upregulation of chaperones 
HSP60, HSP70, and GRP78 and downregulation of CHOP 
and caspase-12 [60]. Interestingly, the neuroprotective effect 
of IPC can be eliminated by the inhibition of endoplasmic 
reticulum stress, accompanied by autophagy inhibition [66]. 
Endoplasmic reticulum stress inducers tunicamycin (TM) 
or thapsigargin (TG) can also effectively alleviate fatal cer-
ebral ischemia injury by inducing autophagy [228]. The ER 
chaperone GRP78 may be a critical mediator of autophagy 
activation in preconditioning [67]. Similarly, mild autophagy 
induced by STX17 prevents ER stress-dependent apoptosis 
in fatal ischemia [53]. In subarachnoid hemorrhage (SAH), 
the autophagy protein NRBF2 reduces neuroinflammation 
and oxidative stress associated with ER stress by interact-
ing with Rab7 to promote autophagosome maturation [56]. 
These studies collectively provide good evidence for the idea 
that preconditioning can induce mild ER stress to upregulate 
molecular chaperones, contributing to autophagy activation, 
and thereby preventing ER stress-dependent apoptosis in 
fatal cerebral ischemia (Fig. 3).

In addition, PD is affected by ER stress-mediated 
autophagy. In response to ER stress, the transcription factor 
XBP1 is unconventionally spliced and activated by ERN1/
IREα. XBP1 then activates PINK1 in neurons and trig-
gers mitophagy that relies on endogenous PINK1. PINK1 
kinase can control the transcriptional activity of XBP1s 
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by its phosphorylation. The translocation of XBP1s to the 
nucleus is facilitated by PINK1-mediated phosphorylation, 
favoring its transcriptional activity and enhancing the tran-
scription of PINK1 itself. However, the XBP1-PINK1 circuit 
that controls mitophagy may be disrupted in PD, leading to 
ER stress and mitochondrial dysfunction, thereby promoting 
the development of PD [229].

FOXO and Autophagy

FOXO, a transcription factor, regulates a variety of cellular 
functions such as cell differentiation, metabolism, prolifera-
tion, and survival. Moreover, FOXO is involved in the regu-
lation of autophagy [230]. FOXO1 may induce the expres-
sion of BNIP3, which then replaces Beclin 1 in the Beclin 
1/Bcl-XL complex to initiate autophagy [231]. The ACE2/

Ang(1-7)/MasR axis induces FOXO1 and autophagy flux and 
inhibits the transition of microglia polarization from M1 to 
M2 phenotype, thereby suppressing inflammation and mediat-
ing neuroprotection [232]. FKBP5 is upregulated in cerebral 
ischemia-reperfusion injury and is connected with the severity 
of neuronal injury. FKBP5 activates autophagy by prevent-
ing the phosphorylation of AKT and FOXO3 and exacerbates 
neuronal injury, while FKBP5 knockdown alleviates ischemic 
neuronal damage [233]. This suggests that FOXO1/3-mediated 
autophagy is involved in microglia-mediated neuroimmu-
nomodulation and neuronal survival.

Fig. 3   Endoplasmic reticulum stress and autophagy in cerebral 
ischemia and ischemic preconditioning. In the case of insufficient 
energy supply or nutrient deficiency, misfolded or unfolded proteins 
accumulate in the ER lumen, triggering ER stress through signals of 
unfolded protein-responsive receptors IRE1, PERK, and ATF6. Cer-
ebral ischemic preconditioning induces mild ER stress and upregu-
lates ER chaperone GRP78 to activate mild autophagy through 
the AMPK/mTOR pathway, producing a neuroprotective effect. 
However, permanent cerebral ischemia leads to severe ER stress, 

increased CHOP expression, cleavage of caspase 12, and apoptosis. 
Mild autophagy induced by STX17 also prevents ER stress-depend-
ent apoptosis in fatal ischemia. GRP78, glucose-regulated protein 
of molecular mass 78; IRE1α, Inositol-requiring transmembrane 
kinase endoribonuclease-1α; ATF6, Activating Transcription Factor 
6; XBP1, a master regulator of the unfolded protein response; JNK, 
c-Jun N-terminal kinase; STX17, Syntaxin 17; CHOP, C/EBP homol-
ogous protein; cas3, Caspase3; cas12, Caspase12
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Conclusion and Perspective

In general, autophagy plays diverse roles in neuronal excito-
toxicity, neurodegenerative diseases, ischemic precondition-
ing, and cerebral ischemia. Mild autophagy eliminates dam-
aged organelles and harmful protein aggregates from cells, 
thereby limiting the spread of detrimental signals. However, 
excessive autophagy leads to permanent organelles damage, 
triggering cell death. Autophagy is involved in maintain-
ing cellular homeostasis by coordinating with other cellular 
activities, including mitochondrial function, endoplasmic 
reticulum stress, and apoptosis. The interplay of autophagy 
with different essential elements in various signaling path-
ways involving AMPK-mTOR, Beclin 1, TP53, and DRAM1 
may explain its multifunctional role.

Although much research has been done on the role of 
autophagy in neurological diseases, there are still some 
issues that need to be addressed. First, mild to moderate 
autophagy may be a pro-survival mechanism for neurons to 
maintain CNS homeostasis. However, sustained or exces-
sive autophagy may result in autophagic cell death. There-
fore, how to activate moderate autophagy to exert the ben-
efit effect of autophagy and prevent its harmful effects is a 
critical issue that needs to be addressed urgently in clinical 
application. Second, what is particularly interesting is the 
differential role of autophagy in ischemic stroke. Contra-
dictory evidence has shown that activation or inhibition 
of autophagy may produce neuroprotection in ischemic 
stroke, which may be associated with the different stages in 
ischemia or reperfusion and different signaling that mediate 
autophagy. Therefore, investigating the differential role of 
autophagy in different stages of ischemia and its regulatory 
signals will enable precise regulation of autophagy to pre-
vent neuronal injury in the future. Third, neurodegenerative 
diseases and stroke are more common in the elderly, and the 
research on the effect of autophagy on neurological diseases 
is mostly based on experiments on cells and young animals. 
Therefore, the existing research has the problem of large dif-
ferences in age and species and there is still a long distance 
from clinical translations. In addition, for central nervous 
system drugs, how to penetrate the blood-brain barrier and 
target the nervous system is a key issue to improve drug effi-
cacy and reduce side effects. Therefore, how to improve the 
value of autophagy in the clinical application of neurologi-
cal diseases is a main direction for future research. A better 
understanding of autophagy and its regulatory mechanisms 
will provide useful information for insight into the pathogen-
esis of central nervous system diseases and the development 
of new therapeutic approaches.
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