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Abstract The mammalian brain is a highly complex net-
work that consists of millions to billions of densely-inter-
connected neurons. Precise dissection of neural circuits at 
the mesoscopic level can provide important structural infor-
mation for understanding the brain. Optical approaches can 
achieve submicron lateral resolution and achieve “optical 
sectioning” by a variety of means, which has the natural 
advantage of allowing the observation of neural circuits at 
the mesoscopic level. Automated whole-brain optical imag-
ing methods based on tissue clearing or histological sec-
tioning surpass the limitation of optical imaging depth in 
biological tissues and can provide delicate structural infor-
mation in a large volume of tissues. Combined with various 
fluorescent labeling techniques, whole-brain optical imaging 
methods have shown great potential in the brain-wide quan-
titative profiling of cells, circuits, and blood vessels. In this 
review, we summarize the principles and implementations 
of various whole-brain optical imaging methods and provide 
some concepts regarding their future development.

Keywords Whole-brain optical imaging · Optical 
sectioning · Micrometer resolution · Brain connectome · 
Neural circuits · Neuron

Introduction

The brain is the evolutionary pinnacle of life, controlling 
all aspects of the lives of humans. Numerous individuals 
have long hoped to decipher the mystery of how the brain 
works, but to date, we have yet to reveal the basic mecha-
nisms underlying memory, thought, and consciousness. The 
current limited understanding of brain structure and function 
has resulted in a lack of effective drugs and treatments for 
brain disorders such as Alzheimer’s disease and Parkinson’s 
disease while hindering the development of brain-inspired 
intelligent technology. Detailed mapping of the anatomical 
architecture of brain cells and their brain-wide connectiv-
ity is an essential condition for elucidating how the brain 
works [1–4]. Efforts to “map the brain” have been ongoing 
for more than a century. In 1906, the Spanish neurobiologist 
Santiago Ramón y Cajal was awarded the Nobel Prize for 
his work on depicting the structure of neurons and their con-
nections, which laid the foundation of modern neuroscience 
[5]. The German anatomist Korbinian Brodmann conducted 
a detailed study of the cortex, observing how its layers, tis-
sues, neurons, and other cells vary in structure and size. 
The result was the definition of the Broadman areas, which 
included 52 cortical areas [6]. Based on serial histological 
sections, the Jülich Research Centre created a 3D proba-
bilistic atlas of the human brain in 2020 [7], which can be 
further integrated with multimodal neuroimaging [8]. All 
these studies have extensively advanced the development 
of brain science.

At the macroscopic level, neuroimaging techniques such 
as magnetic resonance imaging (MRI), functional MRI 
(fMRI), and diffusion tensor imaging (DTI) have vastly 
increased our knowledge of the functional and structural 
organization of the human brain [9–12]. Nevertheless, 
these methods fail to capture fine structural and cellular 
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organization due to their limited spatial resolution. At the 
microscopic level, electron microscopes (EMs) can provide 
information about structure at superresolutions of nanom-
eters [13–15] but are limited by the low scanning speed, 
so 3D neuronal mapping of the whole mouse brain is not 
possible.

At the mesoscopic level, the lateral resolution of optical 
imaging methods can reach the submicron level, allowing 
resolution of the structure of cells, axons, and dendrites, and 
having the natural advantage of allowing the determination 
of neural circuit connectivity. Furthermore, various fluores-
cence labeling strategies [16–20] have greatly expanded the 
range of applications of optical imaging technology. How-
ever, acquiring images deep inside the brain with optical 
methods is challenging, as brain tissue is highly heterogene-
ous and strongly scatters light. In this paper, we review the 
technical routes and the latest progress in various whole-
brain optical imaging methods.

Challenges for Whole‑brain Optical Imaging 
in Neural Circuit Research

The structural organization of the brain is exceptionally 
complex. Depending on the physical scale of interest, the 
brain can be divided into lobes, neural circuits, neurons, syn-
apses, and even molecules [21]. Neurons are the basic build-
ing blocks of neural circuits; for example, the mouse brain, 
weighing only ~0.42 g, consists of ~70 million neurons 
[22–24]. The diameters of neuronal somata, arterioles, and 
venules are approximately tens of microns, while capillaries 
measure approximately several microns in diameter, and the 
diameters of dendrites and axon fibers measure 1 micron and 
below [25, 26]. However, dendrites can cover local areas 
of hundreds of microns, and axons can extend over long 
distances, sometimes spanning the whole brain. As a result, 
to obtain the fine structure of neural circuits, whole-brain 
imaging must be achieved at micron resolution, spanning 
several orders of magnitude [27]. This is similar to drawing 
a world map, which should not only cover the whole world 
but also accurately depict local details such as the grassroots 
road networks of each country.

When performing 3D optical imaging of biological tis-
sue, the resulting dataset comprises a series of 2D images 
obtained by axial step scanning. Each 2D image is obtained 
by imaging the sample at the focal plane of the detection 
objective. Spatial resolution refers to the ultimate minimum 
structural size that a microscope can resolve. In whole-brain 
optical imaging, the spatial resolution includes the lateral 
resolution along the focal plane of the detection objective 
and the axial resolution along the axial direction of the 
detection objective. The lateral resolution is generally deter-
mined by the detection objective, calculated according to 

the Abbe formula r = λ/(2NA) or the Rayleigh criterion r = 
0.61λ/NA [28], where r is the lateral resolution, NA is the 
numerical aperture of the detection objective, and λ is the 
imaging wavelength. The axial resolution depends on how 
the optical sectioning is performed and is generally worse 
than the lateral resolution.

The spatial resolution is usually measured by imaging 
standard samples such as fluorescent microspheres [29] or 
resolution test slides with high sampling rates. However, 
the resolution deteriorates in the actual imaging process due 
to the influence of signal intensity and density, background 
intensity, tissue scattering, and other factors. In addition, 
to fully utilize the system’s spatial resolution, the sampling 
interval must be at most one-half the size of the smallest 
resolvable feature [30]. For actual whole-brain imaging, the 
voxel size should be selected according to factors including 
the size of the research subjects, signal intensity, imaging 
speed, and tissue volume. Table 1 shows the recommended 
voxel sizes and the estimated amount of data for different 
research goals.

Nonhuman primates, as species much closer to humans 
than rodents, are irreplaceable for our understanding of cog-
nitive functions, brain diseases, and therapies [33–36] but 
are also very difficult to handle and expensive, and research 
involving them is time-consuming. By leveraging the spe-
cies’ reproductive biology and genetic engineering, nonhu-
man primate brain studies have become an essential part 
of various international brain projects [37–39]. The Japan 
Brain/MINDS (Brain Mapping by Integrated Neurotech-
nologies for Disease Studies) [40] and the China Brain Sci-
ence Project [41] use marmosets and macaques as the pri-
mary research objects, respectively. As one of the smallest 
anthropoid primates, the marmoset brain weighs ~7.78 g and 
contains ~630 million neurons [23, 24, 42]. The macaque, 
a long-standing primate model for neuroscience research, 
has a brain that weighs ~87.35 g and contains ~6.37 billion 
neurons [23, 42]. Due to their enormous sizes, optical imag-
ing of the whole brains of nonhuman primates is far more 
difficult than that of mouse brains.

Technical Routes for Achieving Whole‑brain 
Optical Imaging

Due to the scattering and absorption of light by biological 
tissues, classical optical methods such as confocal and two-
photon microscopy have limited imaging depth, reaching 
only tens to hundreds of microns into the mouse brain [43, 
44]. To obtain micron-resolution 3D datasets of centimeter-
sized samples, whole-brain optical imaging must solve the 
following two problems. First, the out-of-focus signal must 
be suppressed to obtain a single high-resolution 2D image, 
which can be achieved by various optical sectioning methods 
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such as confocal, two-photon excitation, structured illumi-
nation, and light sheet sectioning [43, 45–48]. The second 
is to surpass the limitation of optical imaging depth to axi-
ally scan large samples. The different existing whole-brain 
optical imaging techniques can be divided into two techni-
cal routes according to the way they overcome the optical 
imaging depth limit: tissue clearing-based techniques and 
histological sectioning-based techniques (Fig. 1).

Tissue clearing, a century-old approach [49], refers to 
a collection of techniques that render biological samples 
transparent by following the simple rule of refractive index 
matching to eliminate scattering [50]. However, in practice, 
the choice of tissue-clearing reagents and design protocols 
requires consideration of many factors, including molecules 
of interest, maintenance of sample structures, endogenous 
fluorescent proteins, and immunolabeling [51]. The tissue-
clearing workflows are too numerous and complicated to 
categorize accurately, but they can be broadly divided into 
the following modules: fixation, pre-treatment, delipidation, 
labeling, and refractive index matching [51]. According to 
the type of reagent used, tissue-clearing approaches can be 
divided into hydrophobic, hydrophilic, and hydrogel-based 
methods [18, 52, 53]. Hydrophobic methods, also called 
solvent-based clearing methods, use organic solvents to 
achieve fast and complete transparency of the intact sam-
ple. However, some hydrophobic techniques can quench 
the signal of a fluorescent protein. Representative hydro-
phobic methods include 3D imaging of solvent-cleared 
organs (3DISCO) [54], immunolabeling-enabled 3DISCO 
(iDISCO) [55], ultimate 3DISCO (uDISCO) [56], DISCO 
with superior fluorescence preserving capability (FDISCO) 
[57], nanobody(VHH)-boosted 3DISCO (vDISCO) [58], 
stabilized 3DISCO (sDISCO) [59], and polyethylene glycol 

(PEG)-associated solvent system (PEGASOS) [60]. Hydro-
philic methods using water-soluble reagents cannot achieve 
complete transparency like hydrophobic methods but have 
better biocompatibility and biosafety with brain tissues. Rep-
resentative hydrophilic tissue-clearing approaches include 
FocusClear [61], Scale [62], ScaleS [63], See Deep Brain 
(SeeDB) [64], See Deep Brain 2 (SeeDB2) [65], rapid 
clearing method based on Triethanolamine and Formamide 
(RTF) [66], FRUIT [67], Urea-Based Amino-sugar Mixture 
(UbasM) [68], Clear, Unobstructed Brain/Body Imaging 
Cocktails and Computational analysis (CUBIC) [69–72] and 
CUBIC-X [73, 74]. Based on the principle of securing bio-
molecules in situ through covalent crosslinking, hydrogel-
based methods convert tissue into synthetic gels using poly-
acrylamide or into reinforced tissue gels using polyepoxide, 
followed by delipidation and refractive index matching. 
Hydrogel-based methods can achieve a good transparency 
effect, but some technologies require a long incubation time, 
and the operation protocols are complicated. Representative 
technologies include CLARITY [75], passive CLARITY 
technique/perfusion-assisted agent release in situ (PACT/
PARS) [76, 77], system-wide control of interaction time and 
kinetics of chemicals (SWITCH) [78], stabilization to harsh 
conditions via intramolecular epoxide linkages to prevent 
degradation (SHIELD) [79], and entangled link-augmented 
stretchable tissue-hydrogel (ELAST) [80].

Once the tissues are rendered transparent, light-sheet 
microscopy is the preferred choice for rapid subcellular-
resolved volumetric imaging of intact samples. Different 
from the conventional microscope, the illumination and 
detection path are separated in a light-sheet microscope 
[48, 81]. A thin light sheet illuminates the sample from the 
side to achieve selective fluorescence excitation. The optical 

Table 1  Recommended voxel sizes and corresponding estimated whole-brain data sizes for different research goals

TB, terabyte; PB, petabyte; GB, gigabyte.

Scales of different structures in 
the brain

Research goal Recommended 
voxel size (μm3)

Total amount of single-channel whole-brain raw data 
(16 bits/voxel)

Mouse [24, 31]
(~ 440  mm3)

Marmoset [24]
(~7240  mm3)

Rhesus macaque 
[32]
(~91,760  mm3)

Axon, dendrite:
~ 1 μm
Capillary:
1 μm–10 μm
Soma, arteriole, venule:
10 μm–100 μm
Dendritic coverage:
100 μm–1 mm
Axonal length:
~1 cm
Brain:
1 cm–10 cm

Fine morphology of neurons (den-
dritic arbors, axon terminals)

0.3 × 0.3 × 1 8.9 TB 146.3 TB 1.8 PB

Morphology of axon projections, den-
drites, somas, and capillary networks

0.5 × 0.5 × 2 1.6 TB 26.3 TB 333.8 TB

Soma distribution and counting, vas-
cular network imaging

2 × 2 × 3 68.3 GB 1.1 TB 13.9 TB



1843T. Jiang et al.: Whole-brain Optical Imaging: Observing the Brain at the Mesoscopic Level

1 3

axis of the detection arm is perpendicular to the light sheet, 
and the focal plane of the objective coincides with the light 
sheet. Except for the time required to move the field of view 
(FOV), the imaging speed of light-sheet microscopy is lim-
ited only by the acquisition rate of the camera. Light-sheet 
illumination effectively reduces photobleaching and photo-
toxic effects. The thickness of the light sheet and the NA of 
the detection objective together determines the axial resolu-
tion of light-sheet microscopy. However, to cover the imag-
ing range of the whole mouse brain, thick illumination light 
sheets and long working-distance, low-NA, large field-of-
view detection objectives are generally needed [50, 51, 82].

Another technical route for whole-brain imaging is 
the combination of block-face imaging with histologi-
cal sectioning: the restriction of optical imaging depth 
is overcome by alternating the imaging and sectioning 
processes. Various optical sectioning methods, including 
confocal, two-photon excitation, structured illumination, 
and inverted setup light-sheet microscopy [48], as well as 

other emerging techniques (chemical sectioning [83], deep 
learning-based optical sectioning [84], and line-illumina-
tion modulation [85]), can be used to obtain images of 
shallow parts of the sample. Moreover, diverse histological 
sectioning techniques have been developed for embedding 
and sectioning the whole mouse brain. For example, resin-
embedded sectioning can achieve submicron accuracy [86, 
87], agarose-embedded vibrating sectioning can preserve 
the morphology of the tissue well [88–90], cryosectioning 
or liquid nitrogen milling can maintain the biochemical 
characteristics of the sample [91, 92], and paraffin-embed-
ded sectioning enables the semithin sectioning of large 
tissues [93, 94]. The imaging quality and speed of such 
whole-brain imaging methods largely depend on the selec-
tion and implementation of the imaging and sectioning 
techniques. Due to the time-consuming nature of the tissue 
sectioning, the imaging speed of such methods is lower 
than that of tissue-clearing-based, whole-brain imaging 
methods. Thankfully, however, the sample preparation is 

Fig. 1  Two technical routes for achieving whole-brain optical imaging. A Schematic of tissue clearing combined with light-sheet microscopy 
for whole-brain optical imaging. B Schematic of block-face imaging combined with mechanical sectioning for whole-brain optical imaging.
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simple with this technical route, and higher resolutions and 
more uniform data quality can be more easily achieved.

Light‑sheet Microscopy for Whole‑brain Optical 
Imaging

The concept of perpendicular illumination was first proposed 
>100 years ago [95] in the observation of colloidal particles. 
In 2004, Huisken et al. developed selective plane illumina-
tion microscopy (SPIM) to generate 3D images of millim-
eter-sized transparent medaka embryos [96], achieving the 
first application of light-sheet microscopy in developmen-
tal biology. In 2007, Dodt et al. proposed ultramicroscopy 
combined with a hydrophobic tissue-clearing solution and 
thus were the first to use light-sheet imaging on artificially 
transparent mouse brains [97]. Over the past several decades, 
various light-sheet microscopy techniques have been pro-
posed and have rapidly been applied in biological imaging 
[48, 81, 98, 99].

The generation of light sheets is a crucial part of imple-
menting light-sheet microscopy. An ideal light sheet has a 
large lateral extent with a uniformly small axial extent to 
achieve uniform and thin light-sheet illumination and flu-
orescence excitation in a wide FOV. However, limited by 
physical principles and optics, this ideal light sheet is dif-
ficult to achieve. Light sheets are typically divided into two 
categories; static light sheets formed by focusing a Gaussian 
beam with a cylindrical lens [96] (Fig. 2A) and dynamic 
light sheets generated by scanning a laser beam across the 
FOV [100] (Fig. 2B). Non-Gaussian beams such as Bes-
sel beams [101, 102], Airy beams [103], and lattice-based 
light sheets [104] can be used in dynamic light-sheet imple-
mentation to improve the axial resolution of high-speed, 

volumetric functional imaging. However, Gaussian beams 
are most commonly used to produce light sheets in practice 
for imaging large, cleared neural tissue. The optical section-
ing resolution of a light-sheet microscope is derived from 
the product of the illumination and detection point spread 
functions (PSFs) [48, 81]. For Gaussian beams, a higher-
NA illumination objective produces a thinner light sheet and 
higher axial resolution but with a shorter Rayleigh range 
and a smaller FOV. In addition, using a high-NA detection 
objective can increase both the lateral and axial resolution. 
However, the detection objective NA is limited by geometric 
and immersion medium constraints and the working distance 
[81, 105]. Additional practical engineering problems include 
the inhomogeneity in the depth of the cleared sample and 
the refractive index mismatch between the sample, solution, 
air, and container. These trade-offs make it challenging to 
achieve high-resolution optical sectioning with a large FOV 
and thus a uniform spatial resolution and image quality over 
an intact sample of centimeter size.

Ultramicroscopy [97] uses a cylindrical lens to generate 
a Gaussian static light sheet and two opposing illumination 
arms to illuminate the sample from both sides. This method 
has been shown to achieve complete imaging of the excised 
hippocampus and whole embryonic mouse brain, with an 
axial resolution of several microns. Saghafi et al. [106] 
achieved a more uniform light sheet with a longer Rayleigh 
range using aspheric optics, further improving the imaging 
quality of ultramicroscopy. Digital scanned laser light-sheet 
fluorescence microscopy (DSLM) [100], developed by Kel-
ler et al. in 2008, was the first technique capable of generat-
ing dynamic light sheets by rapidly scanning a micrometer-
thin laser beam and was used for the in vivo imaging of 
zebrafish embryos. This approach improved illumination 
uniformity, efficiency, and image quality over cylindrical 

Fig. 2  Schematic of the 
principle of different light-sheet 
microscopes. A A static light 
sheet is formed by focusing a 
Gaussian beam with a cylindri-
cal lens. B A dynamic light 
sheet is generated by scanning a 
laser beam. C Virtual confo-
cal line detection is performed 
by synchronizing the rolling 
shutter of an sCMOS (scientific 
complementary metal-oxide-
semiconductor) camera with 
illumination beam scanning. 
D The axial resolution can be 
improved by synchronizing the 
rolling shutter of an sCMOS 
camera with beam waist sweep-
ing. E The axial resolution 
can also be improved by tiling 
smaller and thinner light sheets.
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lens-based light-sheet generation schemes. Mertz et al. used 
an acousto-optic modulator (AOM) to achieve structured 
illumination during beam scanning. They demonstrated the 
ability to suppress out-of-focus backgrounds through par-
tial imaging of a cleared mouse brain [107]. The confocal 
light-sheet microscopy (CLSM) technique [108] proposed 
by Silvestri et al. used confocal detection to reject back-
ground signals but required sophisticated synchronous scan-
ning. Baumgart et al. realized virtual confocal line detection 
conveniently by synchronizing the rolling shutter of a scien-
tific complementary metal-oxide-semiconductor (sCMOS) 
camera with the scanning illumination beam [109] (Fig. 2C). 
The CLARITY-optimized light-sheet microscope (COLM) 
[110] was designed with double-sided beam scanning illu-
mination and virtual confocal line detection. It can acquire 
an entire clarified mouse brain dataset in ~4 h with a 10×, 
0.6-NA detection objective. Spherical-aberration-assisted 
extended depth-of-field (SPED) light sheet microscopy 
[111] extends the field depth by subtly inducing spherical 
aberrations, enabling high-speed volumetric imaging with-
out needing to scan the detection objective. This technique 
is capable of rapid subcellular resolution imaging of 1-mm-
thick CLARITY mouse brain samples and cellular resolution 
 Ca2+ imaging of entire zebrafish nervous systems.

To overcome the disadvantage of the uneven axial 
thickness of Gaussian beam-based light sheets and further 
improve the axial resolution in a large FOV, a higher-NA 
beam waist can be swept along the sheet’s propagation 
direction, as proposed in axially swept light-sheet micros-
copy (ASLM) [112] (Fig. 2D). Synchronizing the sweep-
ing with a rolling shutter allows large-volume imaging 
of cleared tissues with consistently high axial resolution 
[113–116]. However, this method sacrifices some inte-
gration time benefits and the original selective excitation 
advantage of light-sheet illumination. Among these meth-
ods, mesoscale-selective plane-illumination microscopy 
(mesoSPIM) [114] was designed as an open-hardware 
project for building and operating a modular light-sheet 
microscope that utilized an electrically tuneable lens 
(ETL) for excitation beam waist sweeping. Cleared-tissue 
axially swept light-sheet microscopy (ctASLM) [115] 
achieved isotropic high-resolution imaging over large 
FOVs through fast aberration-free remote focusing. This 
technique acquired a millimeter-sized cleared mouse bone 
marrow dataset with an isotropic resolution of ~300 nm. 
Unlike sweeping the illumination beam waist, a higher 
axial resolution within a large FOV can also be achieved 
by tiling a smaller but thinner light sheet [117] (Fig. 2E). 
Tiling light-sheet microscopy (tiling LSM) [118] uses this 
approach to achieve fast imaging of transparent tissues at 
multiple resolution scales. A multi-immersion open-top 
light-sheet microscope [119] uses a configuration with the 

illumination and collection objectives at 45° to the verti-
cal axis, and they are placed below (rather than above) the 
cleared specimen. This approach increases the ease of use 
and throughput and enables simple mounting of multiple 
samples processed with various clearing protocols. The 
further upgraded hybrid open-top light-sheet microscopy 
(hybrid OTLS) [120] can achieve versatile multiscale volu-
metric imaging >12 cm × 7.5 cm × 1 cm by combining 
a unique non-orthogonal dual-objective and conventional 
(orthogonal) open-top light-sheet architecture. This flexible 
system provides an efficient solution for different imag-
ing requirements in terms of resolution, sample size, and 
tissue-clearing protocol. In addition, light-sheet micros-
copy can perform multiview imaging of the same sample 
[121, 122] and achieve improved spatial resolution and 
image contrast by implementing multiview deconvolution 
and other algorithms [123, 124]. The multiangle-resolved 
subvoxel selective plane illumination microscope (Mars-
SPIM) [125] first acquired low-resolution raw datasets of 
the cleared whole mouse brain from 8 views in 30 min with 
a Gaussian static light-sheet microscope and reconstructed 
a digital atlas with ~1 µm3 isotropic voxels. Content-aware 
compressed-sensing (CACS) light-sheet microscopy [126] 
images the cleared mouse brain at a low resolution under 
two opposite views in ~10 min with a dual-side confocally-
scanned Bessel light-sheet microscope and then restores 
the isotropic voxel resolution to 0.5 μm3 and improves the 
signal-to-noise ratio for the two-view fusion 3D image. 
This type of computational method to improve the reso-
lution requires at least several hours of additional post-
computation time. More importantly, the low NA used 
in the acquisition of original low-resolution data enables 
the system to obtain a large field of view and accelerate 
the imaging speed, but also greatly limits the detection of 
fine structures with weak signals. Therefore, the digitally-
reconstructed high-resolution data from the original data 
acquired at a low NA are not comparable to those obtained 
directly from optical imaging with a high NA.

As an increasing number of commercial products (LaV-
ision, Zeiss, Olympus, Leica, Nuohai, Applied Scientific 
Instrumentation, and Bruker) become available, light-sheet 
microscopes are increasingly becoming routine equipment 
in microscope facilities. While light-sheet imaging allows 
for high-throughput volumetric data acquisition, clearing 
methods must make the sample highly transparent to avoid 
excessive residual scattering and absorption for whole-brain 
imaging. Light-sheet microscopy generally enables rapid 
imaging of centimeter-sized cleared mouse brains in hours 
at micron-level resolution and fine imaging of local areas 
at submicron resolution. Consequently, this approach is an 
attractive strategy for quantitative brain-wide cell profiling.
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Whole‑brain Optical Imaging Based on Block‑face 
Imaging and Histological Sectioning

In contrast to tissue-clearing strategies, the optical imaging 
depth can also be extended by combining block-face imag-
ing with histological sectioning. This automated block-face 
whole-brain imaging approach combines top-view optical 
sectioning imaging with integrated tissue sectioning; it can 
be viewed as an automated high-throughput implementa-
tion of the traditional, manual histological procedure [127, 
128]. Although this method results in a prolonged section-
ing time, the sample embedding process is simple, and it is 
easier to achieve uniform high resolution and image qual-
ity for large tissue samples. This advantage is essential for 
observing delicate structures such as axons and dendrites 
that are distributed brain-wide and measure only 1 micron 
or less in diameter. Representative approaches include serial 
two-photon tomography (STP), block-face serial microscopy 
tomography (FAST), and micro-optical sectioning tomogra-
phy (MOST) series of technologies.

Serial Two‑photon Tomography

In 2007, two-photon tissue cytometry was developed by 
Ragan et al. [129], combining two-photon microscopy with 
paraffin-embedded sectioning to enable 3D imaging of intact 
mouse hearts at a voxel size of 0.78 μm × 0.78 μm × 2 μm. In 
2012, an improved STP technique was developed that employs 
a two-photon microscope based on high-speed galvanometric 
scanners and vibrating sectioning of agarose-embedded brains 
with minimal detrimental effects on the fluorescence and sam-
ple morphology [88] (Fig. 3A). The imaging plane is located 
50 μm below the surface to obtain undisturbed optical images, 

and lateral 2D images of the entire brain coronal sections can 
be imaged as a mosaic of FOVs. This technique has high lat-
eral sampling rates (2 μm, 1 μm, and 0.5 μm optional); how-
ever, due to the limited imaging throughput, the axial sam-
pling interval is typically set to 50 μm, making it impossible to 
track continuous signals in 3D. In 2016, Economo et al. [130] 
used a resonant scanning galvanometer and high excitation 
power to further improve the STP technique in high-speed 
volumetric STP tomography. They devised a low viscosity 
clearing solution that enabled reliable vibrating sectioning of 
gelatin-embedded brain samples over many days and allowed 
an imaging depth >200 μm. With this platform, a mouse brain 
dataset with a voxel size of 0.3 μm × 0.3 μm × 1 μm could 
be obtained in 8 days–10 days, enabling the visualization and 
reconstruction of long-range axonal arbors. However, addi-
tional data registration was required due to the inevitable 
tissue deformation introduced by the sectioning of cleared 
samples, and the imaging speed of this point-scan method 
could not be improved further without much difficulty. The 
MouseLight project used this platform to reconstruct >1000 
projection neurons in the motor cortex, thalamus, subiculum, 
and hypothalamus [131].

STP uses two-photon excitation to achieve high-quality 
optical sectioning; however, point-by-point scanning signifi-
cantly limits throughput. Therefore, a more typical applica-
tion of STP is whole-brain imaging with an axial sampling 
interval of 50 μm–100 μm in 6.5 h–21 h. Due to the sim-
ple and deformable-free agarose embedding, STP was used 
at the mesoscale to generate a series of two-dimensional 
images spanning all regions of the brain, enabling brain-
wide quantitative cell profiling [132–134] and region-to-
region connectivity (The Allen Mouse Brain Connectivity 
Atlas) [135].

Fig. 3  Schematic of the serial 
two-photon tomography (STP) 
and block-face serial micros-
copy tomography (FAST) 
systems. PMT, photomultiplier 
tube. The picture is redrawn 
according to the original system 
schematic with permission from 
[88, 136].
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Block‑face Serial Microscopy Tomography

Similar to STP, the FAST technique proposed by Seiriki 
et al. in 2017 also uses vibrating sectioning to achieve 
50 μm–80 μm slicing of agarose-embedded samples. The 
difference is that FAST also uses a spinning disk-based 
confocal microscope to optically section at depths of 
up to 100 μm below the surface and monochromatically 
image a whole mouse brain in 2.4 h with a voxel size of 
0.7 μm × 0.7 μm × 5 μm [136, 137] (Fig. 3B). This method 
employs a Nipkow spinning disk, which projects highly par-
allelized excitation light beams to achieve high imaging rates 
and has optical sectioning capabilities comparable to those 
of traditional confocal microscopy. FAST has also been used 
to image the marmoset brain at subcellular resolution, but 
the low axial sampling rate limits the continuous tracing of 
axons and dendrites.

The sparse imaging and reconstruction tomography 
(SMART) system, proposed by Chen et al. in 2021, also uses 
a spinning-disk confocal system and vibration sectioning 
configuration but is equipped with a high-NA objective to 
achieve a voxel size of 0.3 μm × 0.3 μm × 1 μm and can be 
combined with tissue clearing to increase the imaging depth 
to 250 μm [138]. This technology adopts a sparse imaging 
strategy that combines real-time data analysis with instru-
ment control. Under the assumption that the labeled indi-
vidual neurons are structurally continuous, the strategy first 
acquires a single slice image to determine the area where the 
signal is located, followed by further volume imaging. As 
a result, a whole mouse brain dataset with sparsely labeled 
neurons is acquired in ~20 h. However, this approach inher-
ently possesses a fixed maximum imaging speed, can lead 
to data loss due to the missed detection of signals, and is 
unsuitable for samples with widely distributed signals.

Micro‑optical Sectioning Tomography

In 2010, Li et al. proposed a MOST system based on auto-
matic precision sectioning and line-scanning imaging. 
MOST uses a diamond knife to continuously cut resin-
embedded mouse brain samples into 1-μm thick sections 
and then performs line-scanning imaging at the moment 
of section generation [86] (Fig. 4A). The section thickness 
directly determines the axial resolution of this method. For 
the first time, imaging of a Golgi-stained whole mouse brain 
[139] with a voxel size of 0.33 μm × 0.33 μm × 1 μm was 
achieved in 242 h, with a total of 15,380 coronal sections. 
Using this system to image Nissl-stained samples, the cel-
lular and vascular configurations in the whole mouse brain 
can be visualized at a submicron voxel resolution with high 
image quality [140, 141]. In 2013, fluorescence micro-
optical sectioning tomography (fMOST) was developed, 

improving the imaging part of MOST using an acousto-optic 
deflector (AOD) to achieve long-term stable confocal laser 
scanning imaging [142] (Fig. 4B). Combined with a resin-
embedding method that preserves the fluorescent protein sig-
nal [143], fMOST can image a fluorescence-labeled, whole 
mouse brain with a voxel size of 1.0 μm × 0.8 μm × 1.0 μm 
in 447 h, which demonstrated for the first time the tracking 
results of the uninterrupted long-range axon projection of a 
single neuron across the whole brain [27].

To further improve the imaging speed and system robust-
ness, structured illumination fluorescence micro-optical sec-
tioning tomography (SI-fMOST) was developed by adopt-
ing a high-throughput structured illumination microscope 
[144] to perform block-face imaging of the entire sample 
section in a mosaic manner (Fig. 4C). Due to the submi-
cron precision of resin-embedded sectioning, the system 
can implement real-time counterstaining of the sample 
surface in the whole-brain imaging process. Compared to 
the simultaneous slicing and imaging approach adopted 
by MOST and fMOST, the block face-based SI-fMOST 
decouples the imaging from the sectioning, further enhanc-
ing reliability and reducing distortions and data loss. As a 
result, a colocalized whole-brain dataset of both fluores-
cence-labeled neurons and counterstained cell bodies with 
a voxel size of 0.32 μm × 0.32 μm × 2 μm was acquired in 
3 days [145], significantly facilitating the precise tracing 
of long-range projections and accurate location of nuclei. 
Chemical section fluorescence micro-optical sectioning 
tomography (CS-fMOST) adopts a unique chemical reac-
tivation method [83] to illuminate only the top, submicron-
thick layer of the sample for imaging without background 
fluorescence. This chemical reactivation method is achieved 
by chemically switching the fluorescent state of the labeled 
proteins off and on. Therefore, the imaging module does 
not have to implement the optical sectioning function, dra-
matically reducing the system’s complexity. CS-fMOST 
also employs a high-throughput time-delay integration 
(TDI)-based line-scanning widefield microscope [146], 
allowing multicolor whole-brain imaging with a voxel size 
of 0.23 μm × 0.23 μm × 1 μm within 6 days [147]. High-
definition fluorescence micro-optical sectioning tomogra-
phy (HD-fMOST) implements a line-illumination modu-
lation (LiMo) technique, which uses the natural intensity 
modulation of Gaussian line illumination to achieve high-
throughput line scanning with remarkable background inhi-
bition (Fig. 4D). Benefitting from LiMo, HD-fMOST can 
achieve high-definition whole-brain optical imaging with a 
voxel size of 0.32 μm × 0.32 μm × 1 μm in 111 h [85] and 
perform high-efficiency online data compression and pro-
cessing. HD-fMOST pushes further into the limits of optical 
sectioning and demonstrates the potential to facilitate large-
scale acquisition and analysis of whole-brain high-resolution 
datasets.
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In addition, a variety of MOST techniques based on 
other imaging and sectioning methods have been developed, 
including two-photon fMOST (2p-fMOST), which uses 
two-photon excitation [148], dual-mode MOST (dMOST), 
for the simultaneous acquisition of Golgi-stained neu-
rons and cytoarchitecture [149], rapid whole-brain optical 
tomography, capable of automatic slice collection [89], the 
high-throughput light-sheet tomography platform (HLTP), 
which adopts inverted setup light sheet imaging [150], deep 
learning-based fMOST, which uses a U-net convolutional 
neural network for real-time optical sectioning [84, 151], 
and cryo-MOST [91] and cryo-fMOST [92], for label-free 
frozen state imaging.

In general, the MOST series of technologies combines 
whole-brain sample embedding, automatic precision sec-
tioning, and microscopic optical imaging, providing high-
resolution optical imaging that traverses every voxel at 
the whole-brain scale. The collected datasets have excel-
lent resolution, data quality, and integrity and can be used 
for quantitative analysis of the complete single-neuron 
anatomy, soma distribution, vascular networks, and other 

anatomical structures with colocalized cytoarchitecture 
information.

Whole‑brain Optical Imaging for Non‑human 
Primates

The volume of the marmoset brain is ~16 times that of the 
mouse brain, so imaging of the entire marmoset brain can 
be achieved with a larger voxel size or increased imaging 
time [69, 136]. However, the volume of the macaque brain is 
>200 times that of the mouse brain, further requiring com-
prehensive improvements in tissue clearing, embedding, 
viral tracers, imaging, and image informatics for whole-brain 
profiling.

In 2019, Wang et al. proposed an inverted setup light-
sheet microscope called volumetric imaging with synchro-
nized on-the-fly-scan and readout (VISoR), which adopts 
a dynamic light sheet generated by scanning a Gaussian 
laser beam [152]. Moreover, a pipeline was developed 
for sample sectioning, clearing, imaging, and 3D image 

Fig. 4  Schematic of the 
MOST, fMOST, SI-fMOST, 
and HD-fMOST systems. CCD, 
charge-coupled device. PMT, 
photomultiplier tube. AOD, 
acousto-optic deflector. The 
picture is redrawn according to 
the original system schematic 
with permission from [85, 86, 
142, 145].
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reconstruction. Finally, a complete volumetric dataset of 
~50 300-μm slices of a whole mouse brain with a voxel size 
of ~0.5 μm × 0.5 μm × 3.5 μm was completed in <1.5 h. In 
2021, Xu et al. combined the improved VISoR2 system with 
primate-optimized tissue sectioning and clearing, forming a 
pipeline capable of effective connectome-scale mapping in 
the large macaque brain [153]. A rhesus macaque brain was 
cut into ~250 consecutive 300-μm slices and cleared using 
this pipeline, and finally, all slices were imaged in 100 h with 
a voxel size of 1 μm × 1 μm × 2.5 μm. However, this 3D 
reconstruction of slice imaging data is inevitably hindered by 
data loss, nonlinear deformation, and interslice registration. 
In 2020, Luo et al. modified the resin-embedding process to 
embed large-volume tissues while preserving fluorescence. 
Using SI-fMOST for imaging, the complete cytoarchitec-
tonic information of a macaque brain hemisphere and an 
intact ferret brain embedded with this method were obtained 
with submicron lateral resolution and an axial interval of 
50 μm [154]. However, resin-embedded large-volume tissue 
samples are too rigid to be quickly and precisely sectioned, 
and thus, it is difficult to combine this embedding method 
with block-face imaging to achieve continuous high-resolu-
tion imaging. In 2022, Zhou et al. developed a novel poly-
N-acryloyl glycinamide (PNAGA)-based embedding method 
that is suitable for intact macaque brains and can preserve 
the structure and fluorescence for extended periods, allow-
ing rapid vibrating sectioning without serious deterioration 
of slice quality. By combining this method with a line-scan 
confocal imaging system, the cytoarchitectural information 
of a whole rhesus macaque brain was acquired in 80 days 
with a voxel size of 0.32 μm × 0.32 μm × 10 μm. Moreo-
ver, the projection pattern of the frontal cortex throughout 
the whole rhesus macaque brain hemisphere was obtained 
in 37 days with a voxel size of 0.65 μm × 0.65 μm × 3 μm 
[155]. Overall, whole-brain optical imaging techniques for 
nonhuman primates must be developed further to achieve 
finer and faster data acquisition.

Large‑scale Mesoscopic Whole‑brain Imaging 
with Data Processing and Analysis

The development of whole-brain optical imaging has 
resulted in an unprecedented amount of large-scale ana-
tomical data, contributing to a method-driven renaissance 
in neuroanatomy [156]. These data enable brain-wide quan-
titative profiling of cells, circuits, and brain vascular struc-
tures. Figure 5 shows several typical whole-brain optical 
imaging results. Brain-wide cell analyses involve mapping 
the distributions of genetically defined cell types [73, 74, 
134, 157], cell molecular features [58, 75, 158], and cells 
expressing immediate-early genes (IEGs) [132, 133, 158]. 
These datasets allow the precise dissection of the cellular 

composition of different brain regions and an understanding 
of the principles of mammalian brain organization [159]. 
This type of cell profiling application requires a relatively 
coarse resolution, so light-sheet microscopy is more widely 
used due to its high speed and the variety of available sam-
ple clearing and labeling methods. STP can also be used to 
obtain a high-quality whole-brain interval sampling dataset 
in several hours for cell analyses, but the 3D continuity is 
lost. Brain-wide mesoscopic connectivity data of neural cir-
cuits [135, 160–163] describe the long-range projections of 
specific neural populations in different brain regions, allow-
ing an understanding of how information flows through neu-
ral circuits [164]. The more sophisticated brain-wide micro-
scopic connectivity of single neurons is capable of showing 
the connectivity pathways of different brain regions at the 
cellular level, which is crucial for identifying cell types and 
defining how information is communicated between brain 
areas [131, 165–172]. This brain-wide observation of axons 
and dendritic fibers requires very high resolution and strict 
data quality uniformity, both of which are possible with 
block-face imaging methods. However, only the fMOST 
series of techniques and MouseLight have been realized on 
a large scale, especially for whole-brain, delicate single-neu-
ron morphological tracing. In addition, whole-brain imaging 
can be used to reconstruct the brain-wide vascular network 
at the capillary level [140, 173, 174], providing morphologi-
cal information for the study of the pathogenesis of vascular 
disease [175–177]. Table 2 compares the performance of 
these different types of whole-brain optical imaging methods 
and gives the recommended range of applications.

The quantity and complexity of the data generated by 
the above studies preclude manual analysis, and extracting 
knowledge from these terabyte- and petabyte-scale data is 
likely a bottleneck that requires robust biological image 
analysis solutions for fully exploring the wealth of informa-
tion [178–181]. The first step in parsing such image data 
is to preprocess the large amounts of raw data, consisting 
of many subvolumes of a single FOV. This step generally 
includes denoising, illumination correction, tiling, and qual-
ity control. Another frequently required preprocessing step 
is registration, where the images are accurately aligned to 
a standard reference atlas to allow comparison, fusion, and 
joint analysis between datasets from different samples. The 
next steps are to detect, segment, and track the target struc-
ture in the data, such as the soma or the entire neuron. Seg-
mentation is arguably the most challenging step in biological 
image analysis, involving the detection of the presence of 
various structures and the grouping of pixels into targets 
of interest or backgrounds. Once segmentation and track-
ing are completed, further quantitative calculations can be 
performed to recognize the characteristics and patterns in 
the dataset and draw statistical conclusions. Manual involve-
ment is often required in the above steps to inspect, correct, 
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and annotate the results, which requires visualization of 
various high-dimensional images. Complete image analysis 
solutions require not only various powerful image analysis 
algorithms, data management tools, and computational tools 
[52, 182–188] but also powerful computing clusters for stor-
ing, computing and sharing large amounts of data. In short, 
hardware, software, and numerous processing steps are all 
required to form a systematic data analysis framework and 
pipeline.

Prospects

In summary, we have provided a general overview of the 
technological pathways and evolution of whole-brain opti-
cal imaging, which has become an essential set of tools in 

neuroscience for resolving the anatomy of the brain at the 
mesoscopic level. However, whole-brain imaging of non-
human primates remains a considerable challenge. Since 
the largest cross-section of the macaque brain has an area 
of >40  cm2, intact tissue clearing is challenging. In addi-
tion, standard light-sheet microscopy based on orthogo-
nal illumination-detection optics is unable to reach such 
large lateral dimensions [113], and the working distance 
of the available objectives limits the axial imaging depth. 
Moreover, the large brain volume poses a severe challenge 
for the continuous and stable sectioning of large cross-
sections over long periods. Therefore, whole-brain imag-
ing of the macaque brain requires a systematic integration 
of chemical, mechanical, imaging, and computational 
tools to form a practical technology platform. Combining 
high-throughput block-face imaging methods such as line 

Fig. 5  Presentation of different types of whole-brain imaging data. A 
Horizontal view of 3D rendering of whole-brain monosynaptic input 
neurons to secondary motor cortex (MOs)PlxnD1+ neurons. For retro-
grade monosynaptic labeling, adeno-associated helper virus (AAV 
helper) and modified rabies virus expressing GFP were injected into 
the MOs in the PlxnD1-2A-CreER mouse. This dataset was acquired 
by SI-fMOST. B, C Horizontal and sagittal views of the morphologi-
cal reconstructions of 6 AAV-GFP-labeled neurons in the prelimbic 
area, showing the extent of axon projections across the brain and 
the variability of ipsilateral and contralateral projections. This data-

set was acquired by HD-fMOST. D Minimum intensity projections 
of 100-μm thick coronal images of the whole-brain vasculature. The 
image pixel values are inverted. The mouse brain vascular system 
was labeled by intravenous injection of lectin-DyLight 488 followed 
by transcardiac perfusion of FITC-fluorescein gelatin solution and 
imaged by HD-fMOST. E 3D visualization of segmentation results of 
vessels in the hippocampus. F 3D visualization of the local 400-μm 
thick section of the hippocampus, as shown in the box in F. The ves-
sels are color-coded by diameters for clarity in E and F.
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scanning or inverted setup light-sheet microscopy with tis-
sue transformation [189] and physical sectioning may be 
a promising strategy.

Ultimately, however, the maximum throughput of all 
imaging techniques is limited by the properties of the cam-
era. Using the latest ~1.1 gigapixel/s sCMOS camera, at 
least ~257 h are needed to acquire the data of a macaque 
brain with a voxel size of 0.3 μm × 0.3 μm × 1 μm, regard-
less of the movement and cutting times. Larger through-
put cameras and higher numerical aperture objectives 
with a larger FOV will essentially increase the speed of 
whole-brain imaging. In addition, existing solutions for 
biological-image analysis are complex and rely more on 
computing clusters than individual workstations. The 
solutions also require researchers to identify the neces-
sary processing steps, select the appropriate computing 
algorithms for each step, and tune their parameters. In the 
future, some data processing and analysis can be moved 
into the data acquisition process to enable intelligent imag-
ing, reducing the amount of invalid data from the source 
of data generation and speeding up the imaging and data 
analysis processes. Moreover, with further developments 
in artificial intelligence technology and cloud services, 
researchers will be able to use their personal computers 
locally to automatically process the data. In addition, to 
facilitate the sharing and reusing of data, there is a need 
to develop relevant standardization and protocols to deal 
with the large amounts of data obtained by various whole-
brain optical imaging methods, similar to medical imaging 
studies such as MRI [190, 191].

The seamless integration of labeling, whole-brain opti-
cal imaging, and informatics tools has begun to yield sta-
tistically robust conclusions and transform our understand-
ing of the structural organization of the neural circuits in 
the mouse. With improvements in hardware performance 
and the advent of hybrid methods, the rapid and detailed 
analysis of the whole brain of nonhuman primates is 
within reach. The continued development of whole-brain 
optical imaging methods will further expand the possibili-
ties for dissecting the neuronal network, providing criti-
cal information for deciphering structure-function rela-
tionships and understanding complex brain functions and 
human brain disorders.
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