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Abstract Pancreatic ductal adenocarcinoma (PDAC) is a 
highly aggressive lethal malignancy, characterized by late 
diagnosis, aggressive growth, and therapy resistance, leading 
to a poor overall prognosis. Emerging evidence shows that 
the peripheral nerve is an important non-tumor component 
in the tumor microenvironment that regulates tumor growth 
and immune escape. The crosstalk between the neuronal 
system and PDAC has become a hot research topic that may 
provide novel mechanisms underlying tumor progression 
and further uncover promising therapeutic targets. In this 
review, we highlight the mechanisms of perineural invasion 
and the role of various types of tumor innervation in the 
progression of PDAC, summarize the potential signaling 
pathways modulating the neuronal-cancer interaction, and 
discuss the current and future therapeutic possibilities for 
this condition.

Keywords PDAC · Cancer-neuroscience · Peripheral 
innervation · Pain

Introduction

The tumor microenvironment (TME) is a complex acidic 
environment consisting of tumor and non-tumor cell types 
[1, 2], which plays a crucial role in the development and 
progression of tumors [3]. As an important part of the non-
tumor element in the TME, the role and mechanism of tumor 
innervation have been increasingly investigated in various 
tumors including lung cancer [4, 5], melanoma [6–12], thy-
roid cancer [13–15], prostate cancer [16–21], breast cancer 
[22–25], ovarian carcinoma [26–28], head and neck can-
cer [29–33], gastric cancer [34–43], and pancreatic cancer 
[44–47], among others (Table 1). The crosstalk between the 
nervous system and cancer has favored the establishment of 
an interdisciplinary field—cancer neuroscience—and may 
provide additional potential therapeutic strategies.

Pancreatic ductal adenocarcinoma (PDAC) accounts for 
90% of pancreatic cancers and is a highly malignant solid 
tumor characterized by an insidious onset, strong invasive-
ness, and a high recurrence or metastasis rate [48]. The 
standard treatment for PDAC involves a combination of sur-
gery, chemotherapy, and radiation therapy, with the choice of 
therapy dependent on the stage and location of the cancer, as 
well as the overall health of the patient. Immune checkpoint 
inhibitors, such as nivolumab and pembrolizumab, have 
been shown to increase overall survival in some patients 
with advanced-stage disease [49]. However, due to a lack 
of effective screening methods, 80% of patients with PDAC 
are at an advanced stage when diagnosed, losing the chance 
of receiving resectable surgery. Resistance to chemotherapy 
and radiation therapy remains a great challenge to the treat-
ment of PDAC. These factors contribute to the poor prog-
nosis of PDAC patients, with an overall 5-year survival rate 
of only around 10% in 2021 [48]. Therefore, novel targets 
and therapies are required to enhance the outcome of PDAC.
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Perineural invasion (PNI) is a typical characteristic of 
PDAC, defined as a tumor near the nerve where the tumor 
cells are located in at least 33% of the nerve circumference 
or any of the three layers of the nerve sheath [50]. PNI has 
been reported in about 80%–100% of patients with PDAC 
and is associated with postoperative recurrence and metas-
tasis [51–54]. Meanwhile, tumor cells can produce and 
release neurotrophic factors like nerve growth factor (NGF) 
or brain-derived neurotrophic factor to promote tumor inner-
vation [1, 55–57]. In the LSL-KrasG12D/+, LSL-Trp53R172H/+, 
Pdx-1-Cre (KPC) mouse model of PDAC, the number of 
sympathetic nerve fibers is tripled, and the number and 
density of calcitonin gene-related peptide (CGRP)-positive 
sensory nerves is increased by five times [58]. Analysis of 
clinical samples from patients with PDAC also illustrates a 
negative correlation between the density of nerve fibers in 
the tumor and survival [59]. Deep exploration of the interac-
tion between nerve and tumor cells could lead to the identifi-
cation of novel strategies for the treatment of PDAC.

In this review, we exhibit the mechanisms of PNI in 
PDAC and the role of different types of nerves innervat-
ing PDAC in tumor progression, summarize the potential 
mechanisms underlying the neuronal-cancer interaction, and 
discuss the current and potential therapeutic possibilities for 
PDAC.

Innervation of Normal Pancreas and Pancreatitis

The pancreas receives both autonomic and sensory innerva-
tion. The autonomic innervation consists of sympathetic and 
parasympathetic nerves. The sympathetic nerves permeate 
the pancreatic ganglion, vascular system, endocrine islets, 
ducts, and lymph nodes [60]. On the other hand, activation 
of the parasympathetic nervous system promotes the release 
of digestive enzymes and reduces glucose-triggered insulin 
secretion. In terms of sensory nerves, substance P (SP) and 
CGRP-positive nerve fibers are distributed throughout the 

exocrine tissues and most islets [61]. Myelinated sensory 
fibers along with thinly-myelinated and unmyelinated pep-
tidergic sensory fibers are present in the parenchyma of the 
head, body, and tail of the pancreas. The relative density 
of these sensory fibers is highest in the head and decreases 
towards the tail. In contrast, the post-ganglionic sympathetic 
fibers are relatively evenly distributed throughout the paren-
chyma of the pancreas [62]. The presence of autonomic and 
sensory nerves in the pancreas is crucial for maintaining 
its normal functions. The sympathetic and parasympathetic 
nerves work in tandem to regulate digestive processes and 
insulin secretion. The sensory nerves play a role in detecting 
changes in the environment and transmitting information 
about the state of the pancreas to the central nervous system.

The phenomenon of increased number and diameter of 
pancreatic nerve fibers was first discovered in individuals 
with chronic pancreatitis (CP) [63]. CP is considered to be 
a high-risk factor for PDAC and has been shown to play a 
crucial role in the progression of this disease [64] (Fig. 1). 
In studies conducted on adult mice with PDAC, researchers 
found that expression of the K-Ras (G12V) mutation did 
not result in a tumor unless the mice also had CP [65]. This 
highlights the importance of considering CP as a risk factor 
for PDAC. In addition, research has shown that the expres-
sion of NGF and its receptor tropomyosin receptor kinase 
A (TrkA) is significantly higher in individuals with CP than 
in those with a normal pancreas. The increased expression 
of NGF is higher in metaplastic ductal cells and acinar cells 
that have dedifferentiated into tubular structures [66]. Fur-
ther reports demonstrated that actively growing nerves in CP 
are associated with an activated NGF/TrkA pathway and a 
pain syndrome [66, 67]. As the normal pancreas with CP and 
intraepithelial neoplasia progresses into PDAC, pancreatic 
innervation is constantly remodeled and plays a crucial role 
in the worsening of the malignancy. The size (nerve hyper-
trophy) and number (nerve density) of pancreatic nerves 
are increased, the proportion of autonomic nerve fibers and 
sensory nerve fibers is altered (nerve remodeling), and there 

Fig. 1  Timeline for major findings leading to the identification of crosstalk between peripheral innervation and PDAC. Abbreviations: PDAC, 
pancreatic ductal adenocarcinoma; PNI, perineural invasion
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is infiltration of inflammatory cells around the nerve (pan-
creatic neuritis) or by PDAC cells (PNI) [51, 63, 68–73].

Perineural Invasion (PNI) in PDAC

General Background

PNI is a process in which cancer cells invade and spread 
along peripheral nerves. This histological characteristic has 
been found in a variety of tumors, including cancers of the 
head and neck, prostate, tongue, and pancreas. PNI involves 
a complex interplay between nerves and various cell types 
present in the TME, including Schwann cells, macrophages, 
and cancer-associated fibroblasts [74, 75]. Tumor cells inter-
act closely with nerve components by releasing neurotrophic 
factors or exosomes and produce perineural niches, which 
provide a favorable environment for their survival and inva-
sion and in turn, trigger the growth of nerves and stimulate 
the development of neural progenitor cells [76]. The under-
lying molecular mechanisms of PNI are governed by vari-
ous factors such as NGF, glial cell line-derived neurotrophic 
factor (GDNF), and their corresponding receptors [77]. The 
cancer cells can cause damage to the neuronal sheath, acti-
vating nociceptive nerve fibers as a result of cancer-secreted 
mediators or stimuli from the extracellular matrix. This 
leads to the release of pro-inflammatory neuropeptides from 
peripheral nerve endings, further enhancing the spread of the 
tumor and causing pain. PNI has been demonstrated to be an 
independent predictor of poor prognosis among patients with 
oral squamous cell carcinomas, and nerve-tumor distance 
is a sensitive criterion to reclassify PNI [78]. A meta-anal-
ysis has shown that the presence of PNI is associated with 
a higher risk of biochemical recurrence of prostate cancer 
after radical prostatectomy or radiotherapy [79]. PNI is also 
an independent risk factor affecting the poor prognosis of 
patients with gastric cancer and colorectal cancer [80, 81].

Mechanisms of PNI in PDAC

Pancreatic cancer cells can reach the peripheral nerve at 
a short distance, which is the anatomical basis for why 
pancreatic cancer is prone to PNI. PDAC has a distinctive 
chronic inflammatory microenvironment that triggers the 
abnormal growth and malignant transformation of pan-
creatic cells. Chemokines, significant components of this 
environment, are known to contribute to both local inva-
sion and distant metastasis of tumor cells [82]. Among 
them, CX3CL1 is a transmembrane chemokine highly 
expressed by numerous neurons, and it mediates the adhe-
sion of endothelial cells to peripheral nerves. The overex-
pression of its receptor CX3CR1 in PDAC is associated 
with PNI and early postoperative recurrence [83]. PDAC 

cells can migrate to nerves that express CX3CL1 ligands 
by activating Gi protein and adhesion molecules [84]. The 
CXCL12/CXCR4 axis, another widespread chemokine 
signaling pathway, also plays a critical role in the tumor-
matrix interaction and the neural infiltration of PDAC 
[85]. Aside from chemokines, Semaphorin 3D (SEMA3D) 
from tumor cells activates Plexin D1 (PLXND1) on dorsal 
root ganglion (DRG) neurons to increase the migration 
and invasion activity of pancreatic cancer cells. Increased 
expression levels of SEMA3D and PLXND1 have been 
confirmed in human PDAC specimens associated with PNI 
[86]. Nerve-derived glutamate also upregulates hexoki-
nase 2 expression through mRNA m6A modification via 
N-methyl-d-aspartate receptor subunit 2B and the down-
stream  Ca2+ pathway and ultimately promotes PNI [87] 
(Fig. 2A).

Schwann cells interacting with PDAC cells engage in 
the occurrence and development of PNI. The paracrine 
NGF of tumor cells activates Schwann cell autophagy, 
enhances the chemical attraction to tumor cells, and 
accelerates the removal and phagocytosis of myelin 
debris to promote early axonal and myelin regeneration 
[88, 89]. CCL7 secreted by Schwann cells enhances the 
migration, invasion, and tissue inhibitor of metallopro-
teinases 1 (TIMP1) expression of PDAC cells through 
the CCR1/STAT2 pathway, and TIMP1 further promotes 
Schwann cell proliferation and migration through CD63/
PI3K/AKT signaling [90]. In addition, high expression 
of matrix metalloproteinase (MMP)1 in PDAC promotes 
the epithelial-mesenchymal transition and Schwann cell 
differentiation by stimulating the NT-3/TrkC signaling 
pathway [91]. CCL2 released by Schwann cells drives 
CCR2-expressing inflammatory monocytes (IM), pref-
erentially recruiting them to the PNI site, where they 
differentiate into macrophages and enhance neural inva-
sion through cathepsin B (CTSB)-mediated processes 
[92] (Fig. 2B).

Other cell types overexpressing NGF and GDNF like 
stromal pancreatic stellate cells (PSCs) or acinar cells in 
the TME also contribute to the PNI. The tumor-derived 
exosome miR-21-5p stimulated by NGF from PSCs 
activates the Warburg effect in neurons, upregulates the 
expression of nociceptor genes, and promotes the PNI 
[93]. Hepatocyte growth factor (HGF) produced by PSCs 
binds to the receptor c-Met on PDAC cells and endothelial 
cells [94] and activates the mTOR/NGF axis to boost PNI 
[95]. The up-regulation of CD74 enhances the migration 
and invasion of PDAC cells and promotes the production 
of GDNF through the AKT/EGR-1/GDNF axis to promote 
neural plasticity [96]. Moreover, the inflammatory acinar 
cells within the pancreas contribute to PNI through the 
production of pancreatitis-associated protein (pancreati-
tis-associated protein/regenerating islet-derived protein 
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3 alpha) (PAP/REG3A), which activates the JAK/STAT 
signaling pathway in cancer cells [86] (Fig. 2C).

Clinical Significance

The occurrence of PNI in PDAC ranges from 70% to 
95%, making it one of the most common features of these 
patients [51]. In patients with resectable PDAC, PNI 

represents a major determinant of tumor recurrence and 
post-operative survival, particularly in the early stages, 
where the invasion of nerves by cancer cells plays a driv-
ing role in disease progression [53]. In the setting of pre-
operative gemcitabine-based chemoradiation therapy, PNI 
in resected PDAC specimens is significantly associated 
with disease-free survival and predicts the pattern of 
recurrence [97]. A meta-analysis of fourteen studies con-
cluded that pre-operative PNI is also a promising marker 

Fig. 2  PNI in PDAC. A Direct interaction between PDAC cells and 
neurons in PNI. The neurogenic chemokines CXCL12 and CX3CL1 
promote tumor cell invasion of nerves through their respective recep-
tors CXCR4 and CX3CR1. Glutamate from neurons up-regulates 
HK2 expression through NMDAR2B and mRNA m6A modification 
of downstream  Ca2+-dependent CaMKII/ERK-MAPK pathways, 
enhances glycolysis in nerve cells, and ultimately promotes PNI. 
Tumor cell-derived SEMA3D activates PLXND1 on DRG neurons to 
increase the migration and invasive activity of PDAC. The upregula-
tion of CD74 on PDAC enhances its invasive capability and GDNF 
secretion via the AKT/EGR-1 pathway, thereby enhancing PNI. B 
Communication between PDAC cells and Schwann cells in PNI. The 
chemokine CCL7 produced by Schwann cells enhances the migration, 
invasion, and TIMP1 expression of PDAC cells through the CCR1/
STAT2 pathway, and TIMP1 further stimulates the proliferation and 
migration of Schwann cells via the CD63/PI3K/AKT signal. CCL2 
from Schwann cells drives CCR2-expressing IMs to differentiate into 
macrophages and enhance neural invasion through CTSB-mediated 
processes. In addition, high expression of MMP1 in PDAC promotes 

Schwann cell differentiation by stimulating the NT-3/TrkC signaling 
pathway. C Role of PSCs and acinar cells in PNI. PSCs induce PDAC 
cells to produce miR-21-5P exosomes through the NGF-TrkA axis, 
which further augments the Warburg effect of neurons and promotes 
PNI. HGF from PSCs activates the mTOR-NGF pathway through the 
c-Met receptor on PDAC cells, which boosts PNI. The pancreatitis-
associated protein (PAP/REG3A) produced by inflammatory acinar 
cells in the microenvironment around the tumor promotes PNI by 
activating the JAK/STAT signaling pathway in PDAC. Abbreviations: 
PDAC, pancreatic ductal adenocarcinoma; NGF, nerve growth factor; 
Trk, tropomyosin receptor kinase; HK2, hexokinase 2; NMDAR2B, 
N-methyl-d-aspartate receptor subunit 2B; HGF, hepatocyte growth 
factor; IM, inflammatory monocytes; CTSB, cathepsin B; MMP, 
matrix metalloproteinase; PLXND1, Plexin D1; SEMA3D, Sema-
phorin 3D; GDNF, glial cell line-derived neurotrophic factor; PNI, 
perineural invasion; TIMP1, tissue inhibitor of metalloproteinases 1; 
PSC, pancreatic stellate cells; PAP, pancreatitis-associated protein; 
REG3A, regenerating islet-derived protein 3 alpha
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for the prognosis of PDAC patients who undergo cura-
tive resection without neoadjuvant treatment [98]. Taken 
together, PNI in PDAC is an important prognostic factor, 
and early detection and management of PNI may help to 
improve clinical outcomes and survival in these patients.

Sympathetic Innervation in PDAC

General Background

The role of sympathetic innervation in various cancer 
types has been extensively investigated. Sympathetic acti-
vation increases the growth of primary tumors and elic-
its relevant symptoms, and tumor cells spread to normal 
adjacent tissues through adrenergic signaling pathways 
[46, 99, 100]. All β1, β2, and β3 adrenergic receptors are 
expressed in peripheral blood monocytes, activated T 
cells, monocytes, and monocyte-induced dendritic cells, 
and combinatorial sympathetic and cytotoxic T-lympho-
cyte-associated protein 4 (CTLA-4) blockade can inhibit 
the growth of murine melanoma [101]. Analysis of tumor 
samples from mice and patients shows an increase in the 
density of infiltrating autonomic nerve fibers [102], and 
that the autonomic innervation in the prostate regulates 
the development and spread of prostate cancer [17]. Spe-
cifically, sympathetic nerve fiber density is significantly 
higher in prostate tumors than in normal para-tumor tis-
sue [102], and activation of sympathetic adrenalin signals 
is necessary for the early stages of prostate cancer and 
the initiation of the angiogenic switch. Angiogenesis is 
inhibited when the loss of β-adrenergic receptor signal-
ing increases the oxidative phosphorylation of endothe-
lial cells by increasing the expression of mitochondrial 
cytochrome c oxidase assembly factor 6 [20]. In addition, 
the adrenergic signal is closely associated with the malig-
nant invasion of the tumor [102]. The adrenergic signal 
up-regulates the expression of CCL2 in lung stromal cells 
before metastasis, increases the infiltration of monocytes 
and macrophages into lung tissue, and promotes the colo-
nization of tumor cells through lung metastasis [23].

Mechanisms in PDAC

The pancreas is innervated by sympathetic nerve fibers 
that release both adrenergic and neurotrophic factors which 
drive the cancer-nerve feedforward loop [100]. Tumor-
derived neurotrophic factors bind to corresponding recep-
tors like TrkA on sympathetic nerves, induce neurogenesis 
and axonogenesis [103, 104], and thus increase cancerous 
innervation [51, 57, 100]. The secretion of neurotrophic 
factors or induction of tumor cell-derived exosomes by 

PSCs also potentiates nerve proliferation and increases 
tumor innervation [104–106] (Fig. 3A). Catecholamines 
like norepinephrine (NE) from sympathetic nerves act on 
ADRB2 from PDAC cells and promotes their PNI, inva-
sion, and metastasis via the activation of the ADRB2/PKA/
STAT3 signaling pathway, which increases the production 
of NGF and MMP2/9 [107]. Meanwhile, the ADRB2-Akt 
pathway in PDAC activated by 4-(methylnitrosamino)-1-
(3-pyridyl)-1-butanone (NNK) mediates smoking-induced 
tumor stemness and gemcitabine resistance by increasing 
octamer-binding transcription factor-4 (OCT-4), SRY-Box 
transcription factor 2 (SOX-2), and Nanog in pancreatic can-
cer cells [108] (Fig.3B). The orthotopic mouse model of 

Fig. 3  Sympathetic innervation and signaling pathways between NE 
and PDAC cells. A PDAC cells and pancreatic stellate cells release 
NGF to act on the TrkA receptors on the sympathetic nerve and pro-
mote the sympathetic innervation of the tumor. On the contrary, the 
neurotransmitter NE released by the sympathetic nerve promotes the 
proliferation of tumor cells through the ADRB2 receptors on tumor 
cells and endothelial cells and inhibits immune function by binding to 
receptors on immune cells to promote tumor progression. B The com-
bination of NE and ADRB2 activates the downstream PKA-STAT3 
signaling pathway, increases the phosphorylation level of STAT3, and 
promotes the release of NGF, MMP2, and MMP9 from tumor cells. 
Activation of ADRB2 by NNK triggers the downstream Akt path-
way which in turn increases the expression of ADRB2. The levels of 
OCT-4, SOX-2, and Nanog are also up-regulated and thus promote 
the tumor stemness and chemoresistance of PDAC. Abbreviations: 
PDAC, pancreatic ductal adenocarcinoma; NE, norepinephrine; NGF, 
nerve growth factor; TrkA, tropomyosin receptor kinase A; ADRB, 
β-adrenergic receptor; MMP, matrix metalloproteinase; NNK, 
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone; OCT-4, octamer-
binding transcription factor-4; SOX-2, SRY-Box transcription factor 2
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breast cancer shows negligible effects of circulating epineph-
rine on β2-adrenergic signaling [109]. In addition to acting 
directly on cancer cells, sympathetic nerves have also been 
shown to regulate the immune function of tumor-infiltrating 
lymphocytes through ADRB2 on  CD8+T cells in melanoma 
[101]. The density of PD-L1+ tumor-associated nerves is 
inversely correlated with that of  CD8+ tumor-associated 
lymphocytes and predicts higher biochemical recurrence 
[110].

Therapeutic Implications

Since sympathetic activation in TME leads to the progres-
sion of PDAC, blocking the adrenergic signaling pathway 
may be a potential therapeutic strategy. Pharmacological 
ablation of sympathetic nerves by 6-hydroxydopamine [5, 
23] results in an increased proportion of neutrophils in the 
spleen of infected and uninfected mice, suggesting that sym-
pathetic nerves may also be involved in the inhibition of 
neutrophil infiltration during infection [111]. In addition, the 
application of adrenaline-signaling pathway blockers [112, 
113] such as propranolol [23, 114] can reverse the effect 
of chronic stress on the progression of PDAC [46]. When 
combined with gemcitabine, it reduces NGF expression and 
nerve density and improves the survival rate of KPC mice 
[100]. Combined sympathetic and CTLA-4 blockade inhibits 
murine melanoma growth by targeting infiltrating T cells 
[101]. Other drugs that target adrenergic signals including 
antipsychotics and tricyclic antidepressants have been shown 
to reduce the risk of colorectal cancer and glioma and are 
associated with increased survival [115–120].

Parasympathetic Innervation in PDAC

General Background

In many solid tumors, parasympathetic input is provided by 
the vagus nerve, which has been shown to modulate tumor 
growth in an organ-specific way. The stomach is innervated 
predominantly by the parasympathetic nervous system, 
where choline can stimulate the gastric epithelium to overex-
press NGF, which leads to further enlargement of the enteric 
nerve and promotes canceration [39]. Acetylcholine can also 
promote the self-renewal and immune escape of  CD133+ 
thyroid cancer cells through activation of the CD133/PI3K/
Akt pathway [14]. In human prostate cancer cell lines and 
mouse models of prostate cancer, cholinergic signals are 
transduced in the tumor stroma through the muscarinic 
cholinergic receptor 1 (CHRM1) to promote tumor inva-
sion [121]. The ability of muscarinic agonists to stimulate 
growth and muscarinic receptor antagonists to inhibit tumor 

growth has also been demonstrated for breast, melanoma, 
lung, colon, ovarian, and brain cancer [122].

Mechanisms in PDAC

In PDAC, over-expressed parasympathetic and cholinergic 
receptors have been detected in tumor tissue from patient 
and mouse models [123, 124]. Patients with PDAC and high 
parasympathetic density showed higher tumor budding and 
earlier recurrence rates than patients with low parasympa-
thetic density [123]. The cholinergic signal enhances tumor 
growth by inhibiting the T cell response in the orthotopic 
PDAC model. When the parasympathetic nerve is stimu-
lated, acetylcholine is released from the postganglionic fib-
ers. Acetylcholine inhibits the recruitment of  CD8+ T cell 
infiltration to PDAC through histone deacetylase 1-medi-
ated CCL1, and directly inhibits  CD8+ T-cell production 
of IFNγ in a concentration-dependent manner, reducing the 
Th1/Th2 ratio in the TME. In contrast, in tumor-bearing 
mice, vagotomy blockade not only reduces PNI but also 
increases  CD8+ T cell infiltration and mouse survival [125] 
(Fig. 4A). Nicotine also promotes the metastasis of pancre-
atic cancer via the activation of the nicotinic acetylcholine 
receptor/JAK2 /STAT3 downstream signaling cascade and 
the upregulation of MUC4 expression [126] (Fig. 4B). How-
ever, Renz and colleagues showed that subdiaphragmatic 
vagotomy accelerates tumorigenesis and a muscarinic ago-
nist suppresses tumorigenesis via MAPK and PI3K/AKT 
signaling [127] (Fig. 4C), suggesting that parasympathetic 
innervation may play distinct roles during the initiative and 
progressive stages of PDAC.

Therapeutic Implications

Blocking parasympathetic innervation with bilateral subdia-
phragmatic vagotomy improves the survival of PDAC mice 
[47]. Similarly, abrogation of cholinergic input by vagotomy 
or chemical denervation inhibits the growth of gastric cancer 
by blocking the M3 receptor-mediated Wnt pathway [39]. It 
also enhances the therapeutic effect of systemic chemother-
apy and prolongs survival. The inhibitory effect induced by 
denervation is related to the inhibition of Wnt signaling and 
stem cell expansion [128]. Carbachol is a selective CHRM3 
agonist, which enhances prostate cancer growth via the 
CaM/CaMKK-mediated phosphorylation of Akt. Blocking 
CHRM3 by darifenacin treatment inhibits prostate cancer 
growth and castration resistance in vitro and in vivo [129]. 
In this line, other studies have also reported that CHRM1 is 
involved in regulating the migration and invasion of prostate 
cancer through the Hedgehog signaling pathway. The selec-
tive CHRM1 antagonist pirenzepine inhibits the migration and 
invasion of cancer cells [121]. Furthermore, the application of 
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the CHRM inhibitors Pirenzepine [17] and Darifenacin [129] 
reduces migration and invasion, thereby suppressing cancer 
cell proliferation.

Sensory Innervation in PDAC

General Background

The role and mechanism of sensory innervation in tumor 
progression have been increasingly investigated recently. 
In head and neck cancer, loss of tumor protein 53 leads 
to adrenergic transdifferentiation of tumor-associated 
sensory nerves through loss of the microRNA miR-34a, 

and tumor growth is suppressed by sensory denervation 
[130]. Melanoma cells interact with nociceptive sensory 
neurons, leading to increases in their neurite outgrowth 
and release of CGRP, which may further increase the 
exhaustion of cytotoxic  CD8+ T cells and promote tumor 
immune escape [131]. In oral mucosa carcinomas, the 
low-glucose environment drives the production of NGF, 
which may further promote the release of CGRP from 
nociceptive nerves. CGRP subsequently induces cytopro-
tective autophagy in cancer cells that thrive in nutrient-
poor environments [132]. CGRP is also an important 
neurotransmitter in the neural-immune axis, negatively 
regulating the infection-related immune response 
[133–135]. In CGRP-knockout mice with oral squamous 
cell carcinoma, the tumor burden is significantly reduced 
with increased tumor-infiltrating lymphocytes [29].

Mechanisms in PDAC

Neurotrophic factors derived from PDAC cells can induce 
the proliferation of nerve fibers including sensory nerves. 
In turn, sensory nerves promote the migration and inva-
sion of cancer cells in vitro and in vivo by releasing 
neurotrophic factors or chemokines [58, 86, 136]. In the 
nutrient-poor microenvironment of PDAC, the sprouting 
sensory nerve could also secret exogenous serine to main-
tain the survival of cancer cells [103] (Fig. 5A). In PDAC 
patient samples, high expression of neurotrophic factors 
has been confirmed to be associated with PNI [86]. Tran-
sient receptor potential vanilla 1 (TRPV1) is an ion chan-
nel expressed on nociceptive sensory neurons and medi-
ates thermal pain. TRPV1 can be activated by the acidic 
environment of the TME [137], resulting in increased 
release of SP and CGRP from nociceptive neurons. In the 
early stage of primary PDAC formation, MMP1 induces 
protease-activated receptor-1 (PAR1) expression in DRGs 
to release SP by activating the AKT pathway, thereby 
activating PDAC cells expressing neurokinin 1 receptor 
(NK-1R) and enhancing cell migration, invasion, and 
PNI through the SP/NK1R/ERK signal. In addition, SP 
can also induce the expression of MMP2 in tumor cells 
[138, 139]. Organoid culture experiments have also con-
firmed that sensory neurons promote the proliferation of 
pancreatic intraepithelial neoplasms (PanIN)-like organs 
through SP-NK1-R signaling and STAT3 activation. In 
the genetically engineered mouse model of PDAC, sen-
sory denervation leads to a loss of STAT3 activation and 
slows down the progression of PanIN to tumors [140] 
(Fig. 5B).

Fig. 4  Parasympathetic innervation and crosstalk with PDAC cells. 
A PDAC cells release the neurotrophic factor NGF, which combines 
with TrkA on the parasympathetic nerve and promotes the prolif-
eration of the parasympathetic nerve and the innervation of PDAC, 
resulting in an increase in the level of acetylcholine (ACh) and pro-
motes the growth of PDAC cells. In addition, parasympathetic nerves 
can also promote the transformation of Th1 to Th2 immune cells by 
releasing chemokines and inhibiting the release of IFNγ from CD8 + 
T cells, resulting in immunosuppression. B The activation of the α7 
subunit of nAChRs by nicotine increases the expression of MUC4 
through JAK2/STAT3 downstream signaling and in cooperation with 
the MEK/ERK1/2 pathway. MUC4 upregulation further promotes 
the metastasis of PDAC via the activation of downstream effectors, 
such as HER2, c-Src, and FAK. C Activation of ACh receptors by 
muscarinic agonists inhibits downstream EGFR/MAPK and PI3K/
AKT signaling pathways and inhibits the proliferation of PDAC cells. 
Abbreviations: PDAC, pancreatic ductal adenocarcinoma; NGF, 
nerve growth factor; TrkA, tropomyosin receptor kinase A; nAChR, 
nicotinic acetylcholine receptor; ACh, acetylcholine
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Therapeutic Implications

Drugs targeting nociceptor nerves, neuropeptides, and their 
receptor pathways are mainly used for pain treatment. But 
they now appear to have great potential in treating cancer. 
In acute myeloid leukemia and Ewing sarcoma, the efficacy 
of some drugs targeting CGRP and its receptors calcitonin 
receptor-like receptor (CALCRL) and receptor activity-
modifying protein 1 (RAMP1) has been verified. The CGRP 
antagonist olcegepant increases differentiation and reduces 
the burden of leukemia and key stem cell characteristics in 
mouse models of acute myeloid leukemia, while small mol-
ecule inhibitors targeting CGRP receptors reduce the growth 
of Ewing sarcoma [141–143]. Also, TRPV1 is desensitized 

by capsaicin, and capsaicin or resiniferatoxin has been used 
as an alternative pharmacological method to block pain by 
depleting CGRP and SP without stimulation or toxicity. In 
addition, intravesical injection of resiniferatoxin improves 
bladder function in patients with an overactive bladder. In 
the bone cancer model, intrathecal injection of resinifera-
toxin effectively relieves pain and improves function without 
significant long-term side-effects. These suggest the multi-
ple therapeutic effects of targeting sensory nerves [15, 44, 
144–150].

Pain Relief Targeting the Nerves Innervating 
PDAC

Cancer cells communicate with their surrounding environ-
ment [151]. Non-tumor cells in the TME may directly or 
indirectly interact with cancer cells, affecting the prolifera-
tion, migration, invasion, or drug resistance of PDAC. Evi-
dence shows that sympathetic, parasympathetic, and sensory 
nerves undergo different forms of neuronal remodeling dur-
ing the development of normal pancreatic tissue into PDAC. 
This has been confirmed in animal experiments and clinical 
pathological samples. Interstitial components such as nerve 
fibers in the TME play a direct or indirect role in promoting 
neurogenesis and tumor growth through various neurotrans-
mitters, neurotrophic factors, and chemokines. The neural 
supply of amino-acids (such as serine) to the nutritionally 
deficient TME is also an important factor in the progres-
sion of PDAC [103]. Therefore, targeting nerves may be a 
promising strategy to treat cancer and immune evasion in 
the TME [152].

Pain is one of the common clinical symptoms of advanced 
PDAC. The abdominal pain symptoms can arise from vari-
ous causes including tissue damage, inflammation, ductal 
obstruction and infiltration, and/or a direct mass effect on 
nerves in the celiac plexus [70]. At present, clinical treat-
ments for pancreatic cancer pain mainly depend on opioids 
and surgery. Commonly-used analgesics are bucinnazine 
hydrochloride and morphine, but long-term use usually 
causes drug tolerance and adverse drug reactions. Surgical 
treatment can be categorized into celiac plexus neurolysis 
(CPN) and celiac ganglion neurolysis (CGN) [153–156], 
which are variations of an interventional technique for 
the diagnosis and treatment of concealed abdominal pain. 
Also, botulinum toxin is used as a preventive strategy for 
precancerous lesions and local treatment of low-risk tumors 
in prostate cancer, or as an adjunct to tumor treatment to 
reduce recurrence rates [157]. Neurolytic agents such as eth-
anol and phenol are used to permanently destroy the celiac 
plexus. Local anesthetics, most commonly bupivacaine or 
lidocaine, are used in combination with steroids and ethanol 
for the sake of reducing pain and the usage of painkillers 

Fig. 5  Molecular mechanisms by which sensory neurons promote 
PDAC progression. A PDAC cells release NGF, promote the sprout-
ing of sensory nerves via TrKA, resulting in increased levels of 
CGRP and SP, and promote the growth of PDAC cells by binding to 
the SP receptors NK-1Rs on tumor cells. Sensory nerves also secret 
exogenous serine to maintain the survival of PDAC. B TRPV1 is acti-
vated by the acidic environment of TME, resulting in the increasing 
release of SP and CGRP from nociceptive neurons. MMP1 binding 
to its receptor PAR1 in DRG neurons mediates PNI of PDAC cells 
by activating the Akt pathway and induces the release of SP. SP pro-
motes the migration, invasion, and PNI of PDAC cells through NK-
1Rs by the activation of downstream ERK signaling. It also fuels the 
progress of PanIN by activating the STAT3 signaling pathway. Abbre-
viations: PDAC, pancreatic ductal adenocarcinoma; NGF, nerve 
growth factor; TrkA, tropomyosin receptor kinase A; NK-1R, neurok-
inin 1 receptor; CGRP, calcitonin gene-related peptide; SP, substance 
P; TME, tumor microenvironment; TRPV1, transient receptor poten-
tial vanilla 1; PAR1, protease-activated receptor-1; MMP, matrix 
metalloproteinase; PanIN, pancreatic intraepithelial neoplasms. PNI, 
perineural invasion
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[158, 159]. However, short-term back pain may occur at the 
injection site within 72 hours after celiac nerve block [156]. 
Other common side-effects include postural hypotension 
and diarrhea, which may be related to blocking or damag-
ing sympathetic signals. Severe postoperative complications 
include lower limb paralysis and multiple organ failure, pain, 
and loss of temperature sensation. Other cases have been 
reported in which celiac trunk thrombosis after celiac artery 
spasm causes liver and spleen infarction, as well as stomach 
and proximal small intestine infarction [160]. In a prospec-
tive study of patients with unresectable PDAC and abdomi-
nal pain, compared with CPN, CGN shortened the median 
survival time and did not improve pain, quality of life, or 
frequency of adverse events [161]. Therefore, celiac nerve 
block should be carefully considered.

To this end, safer and more effective treatments for 
PDAC-related pain are urgently needed. Deep exploration 
of cancer-nerve crosstalk may provide potential targets [162, 
163], such as neurotransmitters, neurotrophic factors, and 
chemokines. The effectiveness and safety of these strate-
gies have been verified in preclinical animal models. Drugs 
currently known to regulate sympathetic or parasympathetic 
signals, such as the selective or non-selective β-blocker 
propranolol or metoprolol, or parasympathetic-like drugs, 
tend to have an antinociceptive effect with promising sup-
pression of PDAC progression [164]. In turn, lidocaine or 
bupivacaine treatment has proved effective in inhibiting 
tumor growth and nerve fiber formation as well as cancer 
pain relief [165, 166]. Similarly, targeted neurotrophic factor 
therapy has also demonstrated tumor-suppressive effects in 
triple-negative breast cancer [167]. However, differences in 
cholinergic responses between cancers such as gastric and 
pancreatic cancers need to be carefully identified. In addi-
tion, capsaicin or resiniferatoxin targeting nociceptor sen-
sory nerves could reduce the production of CGRP and SP, 
thus inhibiting PDAC growth and attenuating cancer pain. 
In addition to existing methods, recently developed neural 
engineering techniques allow the selective manipulation of 
the specific type of nerve fibers in the TME, in order to con-
trol the cancer progression and pain [152, 168].

Conclusions and Perspectives

Here we highlight the crucial role of tumor-innervating 
nerves as key TME components regulating the initiation 
and progression of PDAC as well as other cancer types. In 
addition, sympathetic, parasympathetic, or sensory innerva-
tion modulates distinct signaling pathways of tumor survival 
or immune escape. Selective peripheral nerve blockade or 
abrogation, and drugs targeting neuropeptides and their 
receptor pathways may be promising treatments for PDAC 
and cancer pain. However, it remains unclear how sensory 

nerves regulate the infiltration and function of immunologi-
cal components in the TME of PDAC. Moreover, the direct 
or indirect modulation of cancer cells, stromal cells, and 
immune cells by tumor innervation interacting as a network 
in the TME warrants specific identification and detailed 
illustration. Recently, innervated wild-type or KPC murine 
pancreatic organoids have been well established, providing 
an ex vivo model to further study pancreatic neuropathy 
[169]. Future research is also needed to determine optimal 
strategies for tumor innervation based on current findings 
and to explore potential synergistic benefits when combined 
with chemotherapy or immunotherapy.
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