Skip to main content

Advertisement

Log in

Induction of Anxiety-Like Phenotypes by Knockdown of Cannabinoid Type-1 Receptors in the Amygdala of Marmosets

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The amygdala is an important hub for regulating emotions and is involved in the pathophysiology of many mental diseases, such as depression and anxiety. Meanwhile, the endocannabinoid system plays a crucial role in regulating emotions and mainly functions through the cannabinoid type-1 receptor (CB1R), which is strongly expressed in the amygdala of non-human primates (NHPs). However, it remains largely unknown how the CB1Rs in the amygdala of NHPs regulate mental diseases. Here, we investigated the role of CB1R by knocking down the cannabinoid receptor 1 (CNR1) gene encoding CB1R in the amygdala of adult marmosets through regional delivery of AAV-SaCas9-gRNA. We found that CB1R knockdown in the amygdala induced anxiety-like behaviors, including disrupted night sleep, agitated psychomotor activity in new environments, and reduced social desire. Moreover, marmosets with CB1R-knockdown had up-regulated plasma cortisol levels. These results indicate that the knockdown of CB1Rs in the amygdala induces anxiety-like behaviors in marmosets, and this may be the mechanism underlying the regulation of anxiety by CB1Rs in the amygdala of NHPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Morrison SE, Salzman CD. Re-valuing the amygdala. Curr Opin Neurobiol 2010, 20: 221–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Janak PH, Tye KM. From circuits to behaviour in the amygdala. Nature 2015, 517: 284–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gothard KM. Multidimensional processing in the amygdala. Nat Rev Neurosci 2020, 21: 565–575.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dunsmoor JE, Paz R. Fear generalization and anxiety: Behavioral and neural mechanisms. Biol Psychiatry 2015, 78: 336–343.

    Article  PubMed  Google Scholar 

  5. Fan XC, Ma CN, Song JC, Liao ZH, Huang N, Liu X. Rac1 signaling in amygdala astrocytes regulates fear memory acquisition and retrieval. Neurosci Bull 2021, 37: 947–958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hamilton JP, Gotlib IH. Neural substrates of increased memory sensitivity for negative stimuli in major depression. Biol Psychiatry 2008, 63: 1155–1162.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shen CJ, Zheng D, Li KX, Yang JM, Pan HQ, Yu XD, et al. Cannabinoid CB1 receptors in the amygdalar cholecystokinin glutamatergic afferents to nucleus accumbens modulate depressive-like behavior. Nat Med 2019, 25: 337–349.

    Article  CAS  PubMed  Google Scholar 

  8. Ferrara NC, Trask S, Rosenkranz JA. Maturation of amygdala inputs regulate shifts in social and fear behaviors: A substrate for developmental effects of stress. Neurosci Biobehav Rev 2021, 125: 11–25.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hyde LW, Gorka A, Manuck SB, Hariri AR. Perceived social support moderates the link between threat-related amygdala reactivity and trait anxiety. Neuropsychologia 2011, 49: 651–656.

    Article  PubMed  Google Scholar 

  10. Jayakar R, Tone EB, Crosson B, Turner JA, Anderson PL, Phan KL, et al. Amygdala volume and social anxiety symptom severity: Does segmentation technique matter? Psychiatry Res Neuroimaging 2020, 295: 111006.

    Article  PubMed  Google Scholar 

  11. Lutz B, Marsicano G, Maldonado R, Hillard CJ. The endocannabinoid system in guarding against fear, anxiety and stress. Nat Rev Neurosci 2015, 16: 705–718.

    Article  CAS  PubMed Central  Google Scholar 

  12. Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y. Endocannabinoid signaling and synaptic function. Neuron 2012, 76: 70–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ohno-Shosaku T, Kano M. Endocannabinoid-mediated retrograde modulation of synaptic transmission. Curr Opin Neurobiol 2014, 29: 1–8.

    Article  CAS  PubMed  Google Scholar 

  14. Choi K, Le T, McGuire J, Xing G, Zhang L, Li H, et al. Expression pattern of the cannabinoid receptor genes in the frontal cortex of mood disorder patients and mice selectively bred for high and low fear. J Psychiatr Res 2012, 46: 882–889.

    Article  PubMed  Google Scholar 

  15. Hungund BL, Vinod KY, Kassir SA, Basavarajappa BS, Yalamanchili R, Cooper TB, et al. Upregulation of CB1 receptors and agonist-stimulated [35S]GTPgammaS binding in the prefrontal cortex of depressed suicide victims. Mol Psychiatry 2004, 9: 184–190.

    Article  CAS  PubMed  Google Scholar 

  16. Moreira FA, Grieb M, Lutz B. Central side-effects of therapies based on CB1 cannabinoid receptor agonists and antagonists: Focus on anxiety and depression. Best Pract Res Clin Endocrinol Metab 2009, 23: 133–144.

    Article  CAS  PubMed  Google Scholar 

  17. Häring M, Kaiser N, Monory K, Lutz B. Circuit specific functions of cannabinoid CB1 receptor in the balance of investigatory drive and exploration. PLoS One 2011, 6: e26617.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rey AA, Purrio M, Viveros MP, Lutz B. Biphasic effects of cannabinoids in anxiety responses: CB1 and GABA(B) receptors in the balance of GABAergic and glutamatergic neurotransmission. Neuropsychopharmacology 2012, 37: 2624–2634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Herrera-Solís A, Vásquez KG, Prospéro-García O. Acute and subchronic administration of anandamide or oleamide increases REM sleep in rats. Pharmacol Biochem Behav 2010, 95: 106–112.

    Article  PubMed  Google Scholar 

  20. Rueda-Orozco PE, Soria-Gómez E, Montes-Rodríguez CJ, Pérez-Morales M, Prospéro-García O. Intrahippocampal administration of anandamide increases REM sleep. Neurosci Lett 2010, 473: 158–162.

    Article  CAS  PubMed  Google Scholar 

  21. Pérez-Morales M, De La Herrán-Arita AK, Méndez-Díaz M, Ruiz-Contreras AE, Drucker-Colín R, Prospéro-García O. 2-AG into the lateral hypothalamus increases REM sleep and cFos expression in melanin concentrating hormone neurons in rats. Pharmacol Biochem Behav 2013, 108: 1–7.

    Article  PubMed  Google Scholar 

  22. Okano H, Sasaki E, Yamamori T, Iriki A, Shimogori T, Yamaguchi Y, et al. Brain/MINDS: A Japanese national brain project for marmoset neuroscience. Neuron 2016, 92: 582–590.

    Article  CAS  PubMed  Google Scholar 

  23. Okano H. Current status of and perspectives on the application of marmosets in neurobiology. Annu Rev Neurosci 2021, 44: 27–48.

    Article  CAS  PubMed  Google Scholar 

  24. Miller CT, Freiwald WA, Leopold DA, Mitchell JF, Silva AC, Wang X. Marmosets: A neuroscientific model of human social behavior. Neuron 2016, 90: 219–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Samandra R, Haque ZZ, Rosa MGP, Mansouri FA. The marmoset as a model for investigating the neural basis of social cognition in health and disease. Neurosci Biobehav Rev 2022, 138: 104692.

    Article  PubMed  Google Scholar 

  26. Galvão-Coelho NL, Silva HP, Leão Ade C, de Sousa MB. Common marmosets (Callithrix jacchus) as a potential animal model for studying psychological disorders associated with high and low responsiveness of the hypothalamic-pituitary-adrenal axis. Rev Neurosci 2008, 19: 187–201.

    Article  PubMed  Google Scholar 

  27. Kaas JH. Comparative functional anatomy of marmoset brains. Ilar J 2020, 61: 260–273.

    Article  CAS  PubMed  Google Scholar 

  28. Marx V. Neurobiology: Learning from marmosets. Nat Methods 2016, 13: 911–916.

    Article  CAS  PubMed  Google Scholar 

  29. Li H, Wu S, Ma X, Li X, Cheng T, Chen Z, et al. Co-editing PINK1 and DJ-1 genes via adeno-associated virus-delivered CRISPR/Cas9 system in adult monkey brain elicits classical parkinsonian phenotype. Neurosci Bull 2021, 37: 1271–1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu SH, Li X, Qin DD, Zhang LH, Cheng TL, Chen ZF, et al. Induction of core symptoms of autism spectrum disorder by in vivo CRISPR/Cas9-based gene editing in the brain of adolescent rhesus monkeys. Sci Bull (Beijing) 2021, 66: 937–946.

    Article  CAS  PubMed  Google Scholar 

  31. Cao X, Zhu L, Qi R, Wang X, Sun G, Ying Y, et al. Effect of a high estrogen level in early pregnancy on the development and behavior of marmoset offspring. ACS Omega 2022, 7: 36175–36183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou Y, Sharma J, Ke Q, Landman R, Yuan J, Chen H, et al. Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature 2019, 570: 326–331.

    Article  CAS  PubMed  Google Scholar 

  33. Farsi H, Harti D, Achaâban MR, Piro M, Ouassat M, Challet E, et al. Validation of locomotion scoring as a new and inexpensive technique to record circadian locomotor activity in large mammals. Heliyon 2018, 4: e00980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ross CN, Adams J, Gonzalez O, Dick E, Giavedoni L, Hodara VL, et al. Cross-sectional comparison of health-span phenotypes in young versus geriatric marmosets. Am J Primatol 2019, 81: e22952.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Walton A, Branham A, Gash DM, Grondin R. Automated video analysis of age-related motor deficits in monkeys using EthoVision. Neurobiol Aging 2006, 27: 1477–1483.

    Article  PubMed  Google Scholar 

  36. Yabumoto T, Yoshida F, Miyauchi H, Baba K, Tsuda H, Ikenaka K, et al. MarmoDetector: A novel 3D automated system for the quantitative assessment of marmoset behavior. J Neurosci Methods 2019, 322: 23–33.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Miller CT, Wang X. Sensory-motor interactions modulate a primate vocal behavior: Antiphonal calling in common marmosets. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006, 192: 27–38.

    Article  PubMed  Google Scholar 

  38. Miller CT, Beck K, Meade B, Wang X. Antiphonal call timing in marmosets is behaviorally significant: Interactive playback experiments. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009, 195: 783–789.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Alexander L, Gaskin PLR, Sawiak SJ, Fryer TD, Hong YT, Cockcroft GJ, et al. Fractionating blunted reward processing characteristic of anhedonia by over-activating primate subgenual anterior cingulate cortex. Neuron 2019, 101: 307-320.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nakagami A, Yasue M, Nakagaki K, Nakamura M, Kawai N, Ichinohe N. Reduced childhood social attention in autism model marmosets predicts impaired social skills and inflexible behavior in adulthood. Front Psychiatry 2022, 13: 885433.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Montardy Q, Kwan WC, Mundinano IC, Fox DM, Wang L, Gross CT, et al. Mapping the neural circuitry of predator fear in the nonhuman primate. Brain Struct Funct 2021, 226: 195–205.

    Article  PubMed  Google Scholar 

  42. Melamed JL, de Jesus FM, Maior RS, Barros M. Scopolamine induces deficits in spontaneous object-location recognition and fear-learning in marmoset monkeys. Front Pharmacol 2017, 8: 395.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Xu P, Yue Y, Su J, Sun X, Du H, Liu Z, et al. Pattern decorrelation in the mouse medial prefrontal cortex enables social preference and requires MeCP2. Nat Commun 2022, 13: 3899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pandi-Perumal SR, Monti JM, Burman D, Karthikeyan R, BaHammam AS, Spence DW, et al. Clarifying the role of sleep in depression: A narrative review. Psychiatry Res 2020, 291: 113239.

    Article  CAS  PubMed  Google Scholar 

  45. Yu J, Rawtaer I, Fam J, Jiang MJ, Feng L, Kua EH, et al. Sleep correlates of depression and anxiety in an elderly Asian population. Psychogeriatrics 2016, 16: 191–195.

    Article  PubMed  Google Scholar 

  46. Jumpertz R, Wiesner T, Blüher M, Engeli S, Bátkai S, Wirtz H, et al. Circulating endocannabinoids and N-acyl-ethanolamides in patients with sleep apnea—specific role of oleoylethanolamide. Exp Clin Endocrinol Diabetes 2010, 118: 591–595.

    Article  CAS  PubMed  Google Scholar 

  47. Paquet J, Kawinska A, Carrier J. Wake detection capacity of actigraphy during sleep. Sleep 2007, 30: 1362–1369.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Allison KC, Spaeth A, Hopkins CM. Sleep and eating disorders. Curr Psychiatry Rep 2016, 18: 92.

    Article  PubMed  Google Scholar 

  49. Spasojevic N, Stefanovic B, Jovanovic P, Dronjak S. Anxiety and hyperlocomotion induced by chronic unpredictable mild stress can be moderated with melatonin treatment. Folia Biol (Praha) 2016, 62: 250–257.

    CAS  PubMed  Google Scholar 

  50. Penninx BW, Pine DS, Holmes EA, Reif A. Anxiety disorders. Lancet 2021, 397: 914–927.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Miller CT, Wren Thomas A. Individual recognition during bouts of antiphonal calling in common marmosets. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012, 198: 337–346.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Miller CT, Mandel K, Wang X. The communicative content of the common marmoset phee call during antiphonal calling. Am J Primatol 2010, 72: 974–980.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rein B, Ma K, Yan Z. A standardized social preference protocol for measuring social deficits in mouse models of autism. Nat Protoc 2020, 15: 3464–3477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shi Y, Wu X, Zhou J, Cui W, Wang J, Hu Q, et al. Single-nucleus RNA sequencing reveals that decorin expression in the amygdala regulates perineuronal nets expression and fear conditioning response after traumatic brain injury. Adv Sci (Weinh) 2022, 9: e2104112.

    Article  PubMed  Google Scholar 

  55. Chida Y, Steptoe A. Cortisol awakening response and psychosocial factors: A systematic review and meta-analysis. Biol Psychol 2009, 80: 265–278.

    Article  PubMed  Google Scholar 

  56. Feng G, Jensen FE, Greely HT, Okano H, Treue S, Roberts AC, et al. Opportunities and limitations of genetically modified nonhuman primate models for neuroscience research. Proc Natl Acad Sci U S A 2020, 117: 24022–24031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Izpisua Belmonte JC, Callaway EM, Caddick SJ, Churchland P, Feng G, Homanics GE, et al. Brains, genes, and primates. Neuron 2015, 86: 617–631.

    Article  PubMed  Google Scholar 

  58. Camus S, Ko WK, Pioli E, Bezard E. Why bother using non-human primate models of cognitive disorders in translational research? Neurobiol Learn Mem 2015, 124: 123–129.

    Article  PubMed  Google Scholar 

  59. Jennings CG, Landman R, Zhou Y, Sharma J, Hyman J, Movshon JA, et al. Opportunities and challenges in modeling human brain disorders in transgenic primates. Nat Neurosci 2016, 19: 1123–1130.

    Article  PubMed  Google Scholar 

  60. Braesicke K, Parkinson JA, Reekie Y, Man MS, Hopewell L, Pears A, et al. Autonomic arousal in an appetitive context in primates: A behavioural and neural analysis. Eur J Neurosci 2005, 21: 1733–1740.

    Article  PubMed  Google Scholar 

  61. Wellman LL, Forcelli PA, Aguilar BL, Malkova L. Bidirectional control of social behavior by activity within basolateral and central amygdala of primates. J Neurosci 2016, 36: 8746–8756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dal Monte O, Costa VD, Noble PL, Murray EA, Averbeck BB. Amygdala lesions in rhesus macaques decrease attention to threat. Nat Commun 2015, 6: 10161.

    Article  Google Scholar 

  63. Ramikie TS, Patel S. Endocannabinoid signaling in the amygdala: Anatomy, synaptic signaling, behavior, and adaptations to stress. Neuroscience 2012, 204: 38–52.

    Article  CAS  PubMed  Google Scholar 

  64. Park SC, Kim YK. Anxiety disorders in the DSM-5: Changes, controversies, and future directions. Adv Exp Med Biol 2020, 1191: 187–196.

    Article  CAS  PubMed  Google Scholar 

  65. Calhoon GG, Tye KM. Resolving the neural circuits of anxiety. Nat Neurosci 2015, 18: 1394–1404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tovote P, Fadok JP, Lüthi A. Neuronal circuits for fear and anxiety. Nat Rev Neurosci 2015, 16: 317–331.

    Article  CAS  PubMed  Google Scholar 

  67. Roche M, O’Connor E, Diskin C, Finn DP. The effect of CB1 receptor antagonism in the right basolateral amygdala on conditioned fear and associated analgesia in rats. Eur J Neurosci 2007, 26: 2643–2653.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Zilong Qiu for providing the AAV-SaCas9 vector. We are grateful to Research Assistant Shuangshuang Liu from the Core Facilities of Zhejiang University School of Medicine, as well as Dr. Sanhua Fang and Research Assistant Li Liu from the Core Facilities of Zhejiang University Institute of Neuroscience. This work was supported by the Zhejiang Province Natural Science Foundation of China (LD22H090003), Key-Area Research and Development Program of Guangdong Province (2019B030335001 and 2018B030334001), the National Natural Science Foundation of China (31871070, 82090031, 32071097, 31871056, and 32170991), the Key R&D Program of Zhejiang Province (2020C03009), Fundamental Research Funds for the Central Universities (2021FZZX001-37), and the CAMS Innovation Fund for Medical Sciences (2019-I2M-5-057).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lixia Gao or Xiao-Ming Li.

Ethics declarations

Conflict of Interest

The authors report no biomedical financial interests or potential conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1196 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Zheng, D., Li, R. et al. Induction of Anxiety-Like Phenotypes by Knockdown of Cannabinoid Type-1 Receptors in the Amygdala of Marmosets. Neurosci. Bull. 39, 1669–1682 (2023). https://doi.org/10.1007/s12264-023-01081-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-023-01081-2

Keywords

Navigation