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Abstract Understanding the fundamental processes of 
human brain development and diseases is of great impor-
tance for our health. However, existing research models such 
as non-human primate and mouse models remain limited 
due to their developmental discrepancies compared with 
humans. Over the past years, an emerging model, the “brain 
organoid” integrated from human pluripotent stem cells, 
has been developed to mimic developmental processes of 
the human brain and disease-associated phenotypes to some 
extent, making it possible to better understand the complex 
structures and functions of the human brain. In this review, 
we summarize recent advances in brain organoid technolo-
gies and their applications in brain development and dis-
eases, including neurodevelopmental, neurodegenerative, 
psychiatric diseases, and brain tumors. Finally, we also dis-
cuss current limitations and the potential of brain organoids.

Keywords Human pluripotent stem cell · Brain 
organoid · Brain development · Neurological disease

Introduction

The development of the nervous system is a strictly orches-
trated spatial and temporal process that generates an 
immense diversity of cell types. Understanding the basic 
mechanisms of human brain formation and disorder is 

important because of the widespread health burden of neu-
rological disorders. The human brain differs significantly 
from model animals like mice in terms of size, surface area, 
and the complexity of cytoarchitecture [1, 2]. Due to the 
limited accessibility of live human brains and inconsistent 
treatment of post-mortem or surgically removed human 
brain samples, it is difficult to replicate data and apply it to 
clinical treatment.

Human pluripotent stem cells (hPSCs), including human 
embryonic stem cells (hESCs) and human induced pluri-
potent stem cells (hiPSCs), which possess a unique ability 
for self-renewal and broad plasticity for differentiation, have 
emerged as invaluable tools for exploring the human brain. 
By providing different levels of inhibition of bone mor-
phogenic protein (BMP) and transforming growth factor-β/
NODAL signaling, known as “Dual SMAD” inhibition, 
hPSCs can be induced into neural stem cells and cortical 
pyramidal neurons, among others [3]. This method obtains 
highly consistent neural cells in vitro. However, monolayer 
cultures lack cell-type diversity and spatial complexity, and 
cannot recapitulate cell-cell interactions and certain impor-
tant cellular properties, such as cell polarity and guided cell 
migration. In 2008, in vitro neural differentiation was fur-
ther improved using more reproducible serum-free methods, 
known as SFEBq (serum-free, floating culture of embry-
oid body (EB)-like aggregates) [4]. Aggregates plated on 
coated dishes would efficiently differentiate into multiple 
small rosettes of neural precursors surrounding and grow-
ing around apical lumens. Afterward, aggregates embedded 
in Matrigel formed an organized architecture, referred to 
as a brain organoid, mimicking the cellular and structural 
complexity of the prenatal developing brain and the radial 
migration of later-born neurons from the ventricular zone in 
the center of the brain out to the superficial layers [5]. The 
advent of brain organoid technology has brought a new era 
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of human brain research. Brain organoids have been used to 
model human-specific developmental processes and recapit-
ulate disease-specific pathologies associated with neurode-
velopmental, neuropsychiatric, and neurodegenerative dis-
orders [2, 6–8]. In this review, we discuss the development 
of brain organoid culture systems and their applications to 
various neurological disorders, including neurodevelopmen-
tal disorders, neurodegenerative diseases, major psychiatric 
diseases, and brain tumors.

Development of the Brain Organoid System

Human brain development begins around the third week 
of gestation, when the neural tube forms, and differentia-
tion occurs along the anterior-posterior axis. By the sixth 
gestational week, the difference in the rates of proliferation 
of cells in rostral regions of the neural tube results in the 
formation of three brain vesicles, the prospective forebrain, 
midbrain, and hindbrain [9]. These basic structures pro-
vide the basis for the progressive development of region-
ally more defined brain regions such as the cerebral cortex 
and thalamus (forebrain), parts of the brainstem (midbrain), 
and the pons and cerebellum (hindbrain) [9]. To reconstruct 
the developmental processes of the human brain in vitro, 
researchers have established various culture systems for the 
whole brain and specialized regions of the mature central 
nervous system, such as the forebrain organoid, midbrain 
organoid, and hindbrain/spinal cord organoid [10].

The method of forming the whole brain is referred to as 
the unguided method (Fig. 1). This protocol was developed 
by Lancaster et al [5], who embedded EBs in Matrigel and 
cultured them in a neural induction medium without the use 
of patterning growth factors, focusing instead on improv-
ing growth conditions and providing the environment nec-
essary for intrinsic cues to help self-organization. Taking 
advantage of this method, embryonic stem cells or human 
induced pluripotent stem cells (hiPSCs) can self-assemble 
to form cerebral organoids, including various discrete, but 
interdependent brain regions (Fig. 1). This can be used to 
study the interactions of multi-regional brain areas, but is 
less subject to external control and more stochastic [5, 11]. 
Other techniques for developing specialized brain regions 
are known as guided approaches, which involve the addition 
of small molecules to organoids to steer them in a certain 
direction [11]. To promote specific neural fates that gener-
ate organoids with varied identities from the forebrain to 
the midbrain to the hindbrain, defined developmental pat-
terning cues are used, among which some have previously 
been effectively used in 2D differentiation procedures [3]. 
Dorsal forebrain organoids can be developed after continu-
ous “Dual SMAD” inhibitor induction, and a sonic hedge-
hog antagonist is added after the SMAD inhibitor to induce 
ventral forebrain [12–15]. Functional hippocampal gran-
ule- and pyramidal-like neurons have been generated via 
long-term dissociation culture of the self-organizing dor-
somedial telencephalic tissues derived from hESCs treated 
with Wnt agonist and BMP ligand, under optimized culture 

Fig. 1  Advances in brain organoid methods. Human stem cell/pluri-
potent stem cells can be differentiated in self-organizing 3D cultures 
to derive unguided neural organoids (cerebral organoids) or brain 
region-specific organoids resembling various regions of the nervous 
system. Brain region-specific organoids can be combined to generate 

assemblies to model complex cell-cell interactions and neural circuit 
formation in the human nervous system. Brain organoids also can 
be fused with non-neuronal cellular components such as vessels and 
microglia or transplanted into animals to vascularize brain organoids. 
The figure was created with BioRender.com.
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and treatment conditions [16]. After receiving initial dual 
SMAD inhibitors, EBs have been preprogrammed to have 
a neuroectodermal fate. Insulin and MAPK/ERK inhibitors 
were then used to prevent over-causation to a midbrain fate, 
and the addition of BMP7 guided toward thalamus tissue 
development [17]. The forebrain organoids are similar to the 
human cerebral cortex in the aspects of cell types and struc-
tures, containing several ventricular structures, each with 
a defined ventricular zone enriched for  FOXG1+ forebrain 
progenitors and also producing astrocytes at a later stage of 
development [13]. Many cortical organoid techniques have 
poor lamination and layer distinction, but some have dem-
onstrated the sequential production of neurons expressing 
layer-specific markers in the right order, including RELN, 
TBR1, CTIP2, and SATB2 [5]. The ability of brain orga-
noids to mimic fetal brain development in utero has been 
tested by transcriptome sequencing, single-cell sequencing, 
and epitranscriptome analysis of multi-period organoids [18, 
19]. Several studies have examined the physiological char-
acteristics of neurons produced using organoid methods and 
demonstrated how their functional development proceeds 
through time [5, 20, 21]. Electrophysiological recordings 
and  Ca2+ surges have shown that neurons produced in brain 
organoids functionally mature gradually and fire spontane-
ously [5, 13]. The frequency of this firing is sensitive to the 
application of glutamate and glutamate receptor antagonists, 
indicating the presence of glutamatergic neurons [13].

Although spinning bioreactors have been widely used to 
help increase nutrient and oxygen diffusion within organoids 
by agitating and better circulating the medium, the small 
contact surface of the organoid with the culture medium has 
the disadvantage that the inside cells die at a later stage of 
culture. Different techniques such as sectioning, adding ves-
sel-like structures, and orthotopic xenotransplantation, have 
been used to extend the culture time of the organoid [21–25] 
(Fig. 1). Organoids cultured at the air-liquid interface were 
able to show a great improvement in the survival and matu-
ration of neurons [21, 22]. Some studies co-cultured hiPSC-
derived endothelial cells or umbilical vein endothelial cells 
with brain organoids and reported robust engraftment with 
the formation of capillary-like structures [23–25]. Recently, 
we generated a human brain vessel organoid, which pos-
sesses multiple cell types including pericytes, endothelial 
cells, and microglia, and has a vascular lumen structure 
[25]. By encapsulating them with brain organoids, the fused 
organoids not only provided a variety of cell types but also 
reduced the apoptosis, and increased the neural progenitor 
proliferation and cortical thickness [25]. An alternate strat-
egy engineered hESCs to ectopically express human ETV2 
to create endothelial cells within cortical organoids, result-
ing in the appearance of vascular network-like structures 
along with enhanced neuron maturity [26]. In addition, some 
studies have transplanted organoids into rodent brains so that 

the implanted organoids can integrate into the host brain 
circuits to extend the cultural life of organoids with the pro-
duction of more mature functional neurons [27–31] (Fig. 1).

Organoids that are patterned to particular brain regions 
contain more homogeneous populations of progenitor cells 
and neurons, which minimizes inter-organoid variation. 
However, this enhancement also reduces the possibility of 
investigating the interactions between various brain regions. 
To overcome this limitation, several studies have created 
assembled organoids, named assemblies. which are formed 
by fusing organoids from different regions. Ventral fore-
brain-like organoids containing gamma-aminobutyric acid 
(GABA)-ergic cortical interneurons can be combined with 
dorsal forebrain-like organoids in order to capture the cell-
cell interactions in vitro [32, 33] (Fig. 1). The construction 
of a thalamus-cortex assembly has modeled the connection 
loops between the cortex and the thalamus [17]. Recently, 
Jimena et al. have created a cortico-spinal-muscle assembly 
to model multi-organ connections with functional regulatory 
effects [34]. In this system, glutamate uncaging or optoge-
netic stimulation of cortical spheroids can trigger strong 
muscle contraction, and these assemblies are morphologi-
cally and functionally intact for up to 10 weeks post-fusion 
[34].

The nervous system contains not only cells of neuroe-
ctodermal origin but also microglia from the yolk sac and 
vascular cells from the mesoderm. Microglia are the brain’s 
resident immune cells that play crucial roles in regulating 
neuronal circuits, preserving homeostasis, and monitoring 
the surrounding area [35]. Due to the diverse germ layer 
origins, it has been challenging to generate brain organoids 
containing blood vessels and microglia. Some studies have 
tried to add in vitro cultured microglia-like cells to brain 
organoids [36–38]. Recently, we developed a new strategy 
for vascularizing brain organoids [25]. First, brain vessel 
organoids were generated by sequential mesodermal and 
endothelial cell induction and then fused with brain orga-
noids at an early stage. The fused organoids formed brain-
blood barrier (BBB)-like structures and contained extensive 
amounts of microglia, which responded to immune stimuli 
and engulfed synapses [25]. The current induction of blood 
vessels and microglia in vitro does not fully mimic the in 
vivo situation, and more work is needed to further optimize 
the induction conditions of the organoid to make its develop-
ment more stable and mature.

Neurodevelopmental Disorders

Most neurodevelopmental disorders occur with complex 
conditions in childhood and remain incurable and irrevers-
ible [39, 40]. Limited research models and poor diagnos-
tic conditions and standards render neurodevelopmental 
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disorder studies at a bottleneck stage. The advent of brain 
organoid models offers an opportunity to uncover unknowns 
and develop new intervention strategies [41].

Autism spectrum disorder (ASD) is considered to result 
from overall brain developmental defects, especially at 
the synapse level, and genetic and environmental factors 
can both lead to the pathologies of ASD [42] (Fig. 2). As 
a genetically heterogeneous syndrome, ASD is found in 
patients with fragile X syndrome, tuberous sclerosis, Jou-
bert syndrome, and Rett syndrome, among others. Besides, 
genomic copy-number variants are also closely associated 
with ASD such as deletions and duplications of chromosome 
16p11.2 and duplications of maternal 15q11-q13 [43].

The induced neural cells from hiPSCs of ASD patients 
in a 2D culture system have been used to study the molecu-
lar and cellular mechanisms of ASD. For example, hiPSC-
derived neuronal progenitor cells (NPCs) from ASD patients 
with megalencephaly have been found to have a greater 
ability of proliferation regulated by β-catenin/BRN2 tran-
scriptional activity [44]. Furthermore, ASD-derived neurons 
display decreased synaptogenesis and defects in neuronal 
networks [44]. Co-culture of ASD-derived astrocytes and 
neurons has shown that astrocytes play a negative role in 
neuronal morphology and synaptogenesis via the production 
of reactive oxygen species and the cytokine interleukin-6 

[45]. These 2D culture models provide some clues about the 
relationships between neuronal cell types in ASD. Neverthe-
less, as a heterogeneous disorder, limited cell types and a 
lack of brain environment restrict the usage of 2D culture 
systems. The emergence of organoid models brings a new 
opportunity for deeper mechanistic understanding.

The hiPSC-derived telencephalic organoid model has 
been developed to study severe idiopathic ASD [46]. Using 
this model, it has been revealed that the transcription fac-
tor FOXG1 dysregulates the proliferation and differentia-
tion of GABAergic inhibitory neurons, and the imbalance 
of GABA/glutamate neuronal fates can be reversed by 
the knockdown intervention of FOXG1 [47]. The single-
nucleotide mutation of the CDH8 gene has been associ-
ated with ASD [43]. The cerebral organoids derived from 
 CDH8+/− iPSCs exhibit large-scale overlapped differen-
tially-expressed genes (DEGs) with the transcriptome of 
idiopathic ASD organoids [48]. Non-coding RNA DLX6-
AS1 is dramatically upregulated in these ASD organoids 
and essential for GABAergic interneuron differentiation 
[48]. ASD forebrain organoids have also revealed the het-
erochronicity of developmental gene networks, which are 
associated with morphological growth acceleration [49]. 
The cortical organoid with haploinsufficiency of three 
ASD risk genes SUV420H1, ARID1B, and CHD8 displays 

Fig. 2  Applications of brain organoids. A Neurodevelopmental dis-
orders. Brain organoids have been used to study neurodevelopmental 
disorders such as autism spectrum disorder, microcephaly, and Rett 
syndrome. B Neurodegenerative disorders. iPSC-induced or CRISPR-
Cas9 gene-edited brain organoids have been successfully established 
for studying aging-dependent Alzheimer’s disease (AD), Parkinson’s 

disease (PD), and Huntington’s disease (HD). C Psychiatric disor-
ders. Mental diseases mainly include depressive disorder, schizophre-
nia, and bipolar disorder. D Brain tumors. They also provide a unique 
opportunity to model brain tumors such as glioblastoma, medullo-
blastoma, and meningioma. The figure was created with BioRender.
com.
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phenotypic convergence with the asynchronous development 
of GABAergic neurons and deep-layer excitatory projection 
neurons through distinct molecular pathways, which leads to 
abnormal circuit activity [50].

Microcephaly is a kind of neurodevelopmental dis-
order with a smaller brain size in patients [51] (Fig. 2). 
Several genes have been shown to be linked with micro-
cephaly, such as MCPH1, WDR62, CDK5RAP2, CEP152, 
and ASPM [52–54]. Knockdown of the CDK5RAP2 gene 
in cerebral organoids causes premature neural differentia-
tion and leads to a marked reduction in organoid size, and 
over-expression of CDK5RAP2 can rescue these defects. 
Mutation of Centrosomal-P4.1-associated protein (CPAP) 
leads to Seckel syndrome with microcephaly [55]. Cerebral 
organoids with the natural CPAP microcephaly mutation 
show smaller size caused by depletion of the cortical neural 
progenitor radial glial cells (RGCs), and early neuronal dif-
ferentiation, probably via the action of the cilium disassem-
bly complex [55]. Asparaginyl-tRNA synthetase1 (NARS1) 
has also been reported to be a risk gene associated with 
microcephaly [56]. Cortical organoids induced by patients 
with the NARS1 mutation exhibit reduced proliferation of 
RGCs, impaired differentiation, and smaller sizes, indicating 
that NARS1 is important for normal human brain develop-
ment [56]. By using brain organoid models, several studies 
have investigated the effects of Zika virus (ZIKV) infection, 
which is associated with the occurrence of microcephaly 
in newborns, on brain development and neural precursor 
cell proliferation [20, 57]. Human neural progenitors, neu-
rospheres, and brain organoids infected with ZIKV exhibit 
reduced growth and increased cell death [58]. The immune 
receptor Toll-like-receptor 3 and downstream pathways are 
activated by ZIKV, thus affecting neurogenesis and resulting 
in apoptosis [59]. Taken together, brain organoid models 
have faithfully mimicked brain developmental phenotypes 
and offer a platform for exploring the molecular basis of 
microcephaly.

Rett Syndrome (RTT) is another type of neurodevel-
opmental disorder caused by the mutation of X-linked 
methyl-CpG binding protein 2 (MECP2), leading to mental 
retardation primarily in females [60] (Fig. 2). Before the 
appearance of brain organoid models, it was difficult to study 
the dynamic molecular and cellular processes due to limited 
patient samples and unreliable mouse models. Benefiting 
from 3D brain organoids, more molecular features of RTT 
have been revealed [61]. For example, MECP2-deficient 
or mutant cerebral organoids show defects in early neuro-
genesis and increased expression of miR-199 and miR-214 
[61]. Interestingly, the defects in neural development can be 
rescued by the down-regulation of these miRNAs. Another 
study showed that MECP2 mutant human interneurons (INs) 
are abnormal and identified an epigenetic reader BRD4 as 

a trigger of IN dysfunction [62]. Thus, brain organoids pro-
vide an opportunity for the identification of targets for RTT 
therapy.

Fragile X syndrome (FXS) is an X-linked dominant dis-
order caused by the low expression of the FMR1 gene due 
to excessive CGG repeats in its 5′ untranslated region [63, 
64]. The encoded protein FMRP inhibits the translation of 
specific mRNAs and thus decreased FMRP protein incurs an 
excess of translated products, which further affects neuronal 
maturation and synaptic plasticity [63, 64]. The 2D culture 
system has been applied to the study of FXS and found 
that decreased expression of FMR1 leads to poor neuronal 
maturation [65, 66]. Brain organoids derived from FMRP-
KO iPSCs showed bigger sizes and an increased number of 
glial cells [67]. In addition, FXS forebrain organoids from 
patient-derived iPSCs exhibit reduced neural progenitor pro-
liferation, dysregulated differentiation, increased synapse 
formation, hyperexcitability, and a deficit in the production 
of GABAergic neurons [68]. Interestingly, pharmacological 
inhibition of the phosphoinositide 3-kinase pathway rescues 
the neurodevelopmental and synapse formation defects in 
FXS forebrain organoids [68].

Down syndrome (DS) is caused by the presence of an 
additional copy of Homo sapiens chromosome 21 (HSA21), 
termed trisomy 21 [69, 70]. The prevalence of DS is around 
0.125% worldwide [69]. DS patients usually have intellec-
tual disabilities and other defects of bodily systems such as 
the musculoskeletal and cardiovascular systems [69, 70]. By 
adding a partial trisomy of Mus musculus chromosome 16 
(MMU16) that is orthologous to HSA21 in humans, several 
DS mouse models have been established [70, 71]. However, 
these models are artificial and cannot reflect the true DS 
pathologies because of the discrepancies between humans 
and mice. Xu et al. [72] have established DS human brain 
organoids and found overproduction of  OLIGO2+ neural 
progenitors, which leads to excessive GABAergic interneu-
ron production. Another study focused on microglia in DS 
organoids and found that tau protein triggers microglial 
interferon (IFN)-I signaling, which causes increased synap-
tic pruning, and the microglia dysfunction and senescence 
can be rescued by inhibiting the IFN-I receptor [73]. Inter-
estingly, DS cerebral organoids show increased DSCAM/
PAK1 pathway activity and down-regulation or inhibition 
of this pathway reverses the abnormal neurogenesis in DS 
organoids [74].

Angelman syndrome (AS) is a rare neurodevelopmental 
disorder with 0.4% prevalence, caused by the loss of UBE3A 
protein, an E3 ubiquitin ligase in neurons [75, 76]. Notably, 
AS human brain organoids exhibit early silencing of pater-
nal UBE3A and abnormal neuronal activity, which are par-
tially rescued by topoisomerase inhibitors [77]. Using orga-
noid systems, it has been revealed that UBE3A suppresses 



1708 Neurosci. Bull. November, 2023, 39(11):1703–1716

1 3

neuronal excitability via ubiquitin-mediated degradation of 
calcium- and voltage-dependent big potassium (BK) chan-
nels, providing mechanistic insights into AS occurrence 
[78].

Besides, brain organoids have also been used to model 
other neural developmental disorders, such as macrocephaly 
[79, 80], neuronal heterotopia [81, 82], tuberous sclerosis 
[83, 84], and Timothy syndrome [85]. These studies have 
revealed the molecular basis of these syndromic disorders, 
leading to the identification of intervention targets or the 
development of strategies to restore deficits in the context 
of disease.

Neurodegenerative Disorders

Neurodegenerative diseases (NDDs) are major threats to 
human health caused by the progressive death of selec-
tively vulnerable populations of neurons and the loss of 
normal brain functions [86]. Major types of NDD include 
Alzheimer’s disease (AD), Parkinson’s disease (PD), amyo-
trophic lateral sclerosis (ALS), spinal muscular atrophy, 
Batten disease, multiple sclerosis, and Huntington’s disease 
(HD) (Fig. 2). Aging, genetics, protein misfolding, and pro-
grammed cell death are the main causal factors of NDDs 
[87–89]. Patients with NDDs have various clinical manifes-
tations including memory loss, cognitive dysfunction, and 
abnormalities in behavior, language, and respiration, which 
severely affect the normal life of patients and endanger their 
safety [90–92]. NDDs are in urgent need of effective treat-
ment programs and drugs, which require a deep understand-
ing of the pathogenesis.

Various animal models have been used to investigate the 
pathogenesis of NDDs [93–96]. However, due to the large 
inherent differences between human and animal models, the 
value of the results based on model systems is suboptimal. 
Because of the rarity and difficulty in obtaining human tis-
sues, some studies have used stem cell induction technology 
in vitro to induce neurons and glial cells for the mechanistic 
investigation of NDDs [97, 98]. However, it is difficult to 
simulate the complex environment inside the real human 
brain for the induced single cell types, so some studies 
are beginning to use organoid technology to study related 
NDDs by establishing organoids representing different brain 
regions, such as the whole brain, forebrain, midbrain, stria-
tum, and sensorimotor cortex, derived from patient iPSCs 
[99–104].

AD is the most common neurodegenerative disease [90], 
with pathological features mainly including amyloid plaques 
formed by the accumulation of extracellular amyloid-beta 
(Aβ) and intracellular neurofibrillary tangles formed by 
the accumulation of phosphorylated tau protein [105]. 
Brain organoids can be induced from hiPSCs from patients 

with familial AD (APP, PSEN1, and PSEN2 mutations) 
or patients with sporadic AD, leading to the identification 
of modulators of the tau interactome, reproduction of AD 
pathology, and findings of cell fate changes in AD orga-
noids [99–101]. Apolipoprotein E4 (APOE4) is the strongest 
genetic risk factor associated with late-onset AD among the 
three polymorphic alleles (APOE2, APOE3, and APOE4), 
and has recently been proposed to impair myelination via 
cholesterol dysregulation in oligodendrocytes [106, 107]. 
Interestingly, APOE4 organoids exhibit more severe synap-
tic loss and neurodegeneration phenotypes [108]. Cerebral 
organoids increase Aβ and p-Tau by inducing beta-secretase 
1 and glycogen synthase kinase-3 alpha/beta levels after 
being exposed to serum from AD patients [109]. By inte-
grating mathematical modeling and the pathological features 
of AD in iPSC-derived cerebral organoids, a high-content 
screening platform has been established for drug screening 
and testing [110].

PD is the most common movement disorder; it is char-
acterized pathologically by the accumulation of Lewy Bod-
ies consisting of insoluble aggregates of α-synuclein and 
reduced dopamine levels due to degeneration of the sub-
stantia nigra [91, 111]. Previous studies have identified a 
number of PD risk genes including SNCA, PARK2, PINK2, 
and LRRK2 [112]. In 2D cell culture, inducing hiPSCs into 
neurons and astrocytes, the degeneration of PD neurons 
was found to be associated with the accumulation of toxic 
α-synuclein in astrocytes [113, 114]. In cultured midbrain 
organoids from PD patients with the LRRK2-G2019S muta-
tion, high-content imaging data has shown decreased dopa-
minergic differentiation, altered mitochondrial morphology, 
and increased cell death compared to the organoids from 
isogenic lines [102]. PD organoids can also be established 
by CRISPR-Cas9-mediated gene editing in human embry-
onic stem cells. After introducing the DNAJC6 mutation in 
human midbrain-like organoids, PD pathologic features such 
as midbrain-type dopamine neuron degeneration, pathologi-
cal α-synuclein aggregation, an increase in intrinsic neuronal 
firing frequency, and mitochondrial and lysosomal dysfunc-
tions were detected [115].

ALS is a neurodegenerative disease specifically affect-
ing motor neurons; it typically results in progressive muscle 
atrophy and usually death from respiratory failure [92, 116]. 
Cultured motor neurons from ALS patients show degenera-
tion, abnormal protein aggregation, and increased cell death 
[117, 118]. Given the unfeasibility of obtaining presympto-
matic samples, the development of brain organoids may help 
elucidate initial molecular events. By using a combination 
of single-cell RNA sequencing and biological assays, it has 
been revealed that the cortical organoids from patients with 
ALS overlapping with frontotemporal dementia harboring 
the C9ORF72 hexanucleotide repeat expansion mutation 
exhibit distinct transcriptional, proteostasis, and DNA repair 
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disturbances in astroglia and neurons [119]. Apart from the 
traditional method of culturing brain organoids, ALS can be 
modeled by sensorimotor organoids, which contain sensory 
neurons, astrocytes, microglia, and vasculature, and include 
functional neuromuscular junctions (NMJs), and this ALS 
organoid displays impaired NMJs [103].

HD is the most frequent autosomal-dominant neurode-
generative disease; it is caused by somatic expansion of 
CAG repeats in the Huntington (HTT) gene, which results 
in neurodegeneration in the striatum and cortex [120, 121]. 
Patients with HD show motor, cognitive, and mental abnor-
malities in mid-life [122]. Fetal brains of HD patients and 
mutant mouse models display mislocalization of mutant 
huntingtin and junctional complex proteins, defects in neu-
ral progenitor cell polarity and differentiation, abnormal 
ciliogenesis, and changes in mitosis and cell-cycle progres-
sion [123]. By comparing HD organoids with controls at 
the transcriptome level, HD organoids had a more immature 
transcription profile as well as disrupted cortical cytoarchi-
tecture, indicating a possible connection between mutant 
huntingtin and abnormal neural development [124]. Another 
study found that heat shock transcription factor 1 (HSF1) 
accumulates in the mitochondria of HD cell models, a mouse 
model, and human striatal organoids derived from induced 
HD iPSCs, and suppressing the mitochondrial localization 
of HSF1 by interfering with its binding to dynamin-related 
protein 1 can rescue the pathological HD changes in striatal 
organoids [104]. Taken together, organoids have become a 
powerful model in which to explore the pathogenesis and 
develop potential treatments for NDDs.

To date, there is no satisfactory treatment for NDDs. 
Many drugs are effective in laboratory animals but do not 
achieve the desired therapeutic effect in humans, most likely 
due to inherent differences between humans and other spe-
cies. Thus, human brain organoids can be used as a compen-
satory approach for target identification and drug develop-
ment. Previous studies have built a complete experimental 
system for drug screening for cancer using organoid technol-
ogy [125–127], but the application of organoids in NDDs is 
more challenging because of the complexity of the origin 
of neuronal cell types, cell-type specific pathogenesis, and 
complicated cell-cell interactions, as well as the involvement 
of environmental and immune factors. Nevertheless, brain 
organoids resemble some key features of NDDs and thus can 
be used to test the effects of potential modulators. For exam-
ple, treatment with the LRRK2 inhibitor 2 has shown some 
rescue effects on LRRK2-G2019S-dependent dopaminergic 
phenotypes in PD organoids [102]. The BBB is another ele-
ment that should be considered because most NDDs at late 
stages are accompanied by disruption of the BBB, which 
fails to prevent the entrance of toxic substances from the 
circulatory system into the brain [25]. However, the current 

brain organoid models lack BBB structure, which limits their 
applications.

Psychiatric Disorders

Because the clinical manifestations of psychiatric disease are 
very subjective, most being diagnosed by doctors through 
oral communications with patients, and objectively quanti-
fiable phenotypes [128]. Thus, simulating mental diseases 
using animal models is extremely challenging. Owing to the 
research on the family pedigrees of patients with psychiatric 
diseases and the development of gene technology, many risk 
genes for psychiatric diseases have been identified, and vari-
ous experimental models based on these genes have been 
established [128].

Mental diseases mainly include depressive disorder, 
schizophrenia, and bipolar disorder (Fig. 2). Major depres-
sion is one of the most common mental diseases; patients 
often present with loss of interest or pleasure, insomnia or 
hypersomnia, and mental disorders [129, 130]. However, 
the current understanding of the mechanism of depressive 
disorder is still incomplete, and some symptoms and eti-
ology have great heterogeneity. In postmortem brain scans 
of people with depressive disorder, it has been found that 
GABA receptor-mediated inhibition is dysregulated in 
depressed individuals with a history of suicidal behavior, 
but the molecular mechanism underlying this abnormality 
is not clear [131, 132]. Recent studies have used hiPSCs 
from patients with a depressive disorder to induce the ventral 
forebrain organoids and GABAergic neurons in vitro [133]. 
Through transcriptome sequencing and single-cell tech-
nology, it has been found that the decreased expression of 
serotonergic receptor 2C in neurons under the condition of 
depressive disorder may lead to defective neuronal activity, 
and targeting the 5-HT2C receptor by adding small molecule 
agonists and genetic methods can effectively restore neural 
activity [133].

Schizophrenia is a chronic brain disease that occurs 
mostly in early adulthood. It is polygenic and is hypoth-
esized to be a neurodevelopmental disorder with an as-yet-
unknown molecular origin [134–136]. Disordered neuro-
genesis, impaired synaptic transmission, and dysfunction of 
mitochondria have been identified in neurons derived from 
hiPSCs from patients with schizophrenia [137–141]. The 
astrocytes induced by schizophrenic hiPSCs show DEGs 
related to inflammation and synaptic function, and trans-
planting schizophrenic astrocytes to mouse brains results 
in behavioral changes in cognitive and olfactory functions 
[142]. The reduction in synaptic density in schizophrenic 
patients is caused by the excessive synaptic pruning by 
microglia [143]. In an in vitro model of microglia-medi-
ated synapse engulfment, schizophrenic microglia increase 
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synapse elimination [144]. Recent studies have used hiPSCs 
from patients with schizophrenia to construct whole-brain 
organoids [145, 146]. Using transcriptome sequencing anal-
ysis, the authors found that the genes related to mitochon-
drial function showed marked differences [145]. By apply-
ing the Seahorse Mito Stress test of organoids, it has been 
found that the level of oxygen consumption of schizophrenic 
organoids decreases significantly [145]. These organoids 
also show neuronal dysfunction as reflected by weakened 
responses to electrical stimulation and KCl depolarization 
measured with a microelectrode array [145]. By analyz-
ing the single-cell RNA sequence profile of schizophrenic 
organoids, decreased progenitor survival and disrupted neu-
rogenesis were detected [147]. Transcription factor BRN2 
and growth factor PTN have been identified as mechanistic 
substrates of neurogenesis and cellular survival, respectively, 
in schizophrenic organoids [147].

Bipolar patients experience recurrent episodes of depres-
sion and mania that affect perception, emotion, thought, and 
social behavior [148]. Due to the complexity of the symp-
toms, the diagnosis and treatment of bipolar cognitive dis-
order are still subjective. In cultured neurons derived from 
bipolar hiPSCs, mitochondrial abnormalities, hyperexcit-
ability, anomalous calcium signaling, impaired neural dif-
ferentiation, and decreased proliferation have been reported 
[149–151]. By transcriptome analysis of brain organoids 
derived from the hiPSCs of bipolar patients, it has been 
found that the expression of genes related to cell adhesion, 
neurodevelopment, and synaptic regulation is decreased, 
while the expression of genes related to immune signaling is 
increased in bipolar organoids [152]. In another study, bipo-
lar organoids showed specific deficits in response to stimu-
lation and depolarization, as reflected by neuronal activity 
measured by microelectrode arrays, and enrichment of endo-
plasmic reticulum pathways as analyzed by Gene Ontology 
analysis for DEGs [152]. In conclusion, organoids provide 
an in vitro model in which to study psychiatric disorders and 
help explore the causes and develop treatment strategies.

Brain Tumors

Brain tumors are a type of neoplasm that arises from brain 
tissue or systemic cancer metastases, classified as malignant 
and benign tumors [153, 154]. Malignant brain tumors cause 
high morbidity and mortality and thus are considered one 
of the most devastating neoplasms due to the complexity 
of cell types and structures in the human brain. In 2021, 
the World Health Organization published the fifth edition of 
the classification of brain tumors, which recapitulated their 
characteristics and linked the molecular mechanisms of a set 
of brain tumors including gliomas, glioneuronal tumors, and 
neuronal tumors [155].

For a better understanding of brain tumors and the asso-
ciated therapies, genetically engineered mouse models 
(GEMMs) have been established and used for mimicking 
the pathological phenotypes and elucidating the innate 
mechanisms of brain tumors [156–158]. However, GEMMs 
cannot fully simulate the phenotypes because of the spe-
cies differences. Patient-derived xenografts (PDXs) are 
a model that transplants dissected tumor tissue from can-
cer patients into immunodeficient mice to mimic tumor 
growth in vivo [159, 160], and have been used for anti-
tumor drug screening [161]. Nevertheless, PDXs lack the 
procedures for tumor origination and formation, which 
limits their application. Recently, the production of orga-
noids has enabled further advances in brain tumor research 
[162]. Brain tumor organoids are classified by the origin 
of tumor cells such as genetically-engineered stem cells or 
dissected tumor tissues or cancer stem cells. For example, 
Bian et al. [163] established a neoplastic cerebral organoid 
from hESCs using genome-editing technologies to intro-
duce mutation of tumor-suppressor genes combined with 
Sleeping Beauty transposon gene insertion. Tumor over-
growth occurs in induced cerebral organoids and mimics 
brain tumor formation. The MYC gene, a proto-oncogene, 
is over-expressed in cerebral organoids; it is exhibited in 
brain tumors such as glioblastoma (GBM), central nervous 
system primitive neuroectodermal tumor, atypical teratoid/
rhabdoid tumor, and medulloblastoma. Another human cer-
ebral organoid modeling GBM has been developed by tar-
geting an  HRasG12V-IRES-tdTomato sequence into the TP53 
locus using the CRISPR-Cas9 system [164], which exhibits 
an increased fraction of tumor cells, accompanied by the 
expression of the GBM stem cell markers OLIG2, GFAP, 
and SOX2, and the proliferation marker KI67, indicating the 
GBM identity. Transplantation of brain tumor organoids into 
immunodeficient mice shows the invasiveness of the brain 
tumor and higher mortality of mice [164].

To overcome the limitation of the lack of a “normal” 
human brain microenvironment, Linkous et al. [165] have 
established a cerebral organoid glioma (GLICO) model sys-
tem in which they introduced patient-derived glioma stem 
cells (GSCs) into hESC-derived cerebral organoids. In the 
GLICO system, GSCs invade, proliferate, and form tumors 
within the host organoids, and these processes faithfully 
phenocopy patient GBMs. Furthermore, the sensitivity to 
chemotherapeutic agents and ionizing radiation of GLICO 
tumors also confirmed it as a suitable model resembling in 
vivo tumors compared with 2D cultured tumor cells. Con-
sidering the cellular and genetic heterogeneity in inter- and 
intra-GBM samples, a comprehensive study has established 
patient-derived glioblastoma organoids (GBOs) and trans-
planted them into immunodeficient mouse brains [166]. 
These GBOs have been used experimentally for personalized 
drug testing, in particular T cell immunotherapy. This offers 
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a possible approach to the development of patient-specific 
treatment strategies. By combining single-cell transcriptom-
ics and live imaging of primary tumor resections, multiple 
GSC subtypes have been identified, leading to the finding of 
an invasive population similar to outer radial glia (oRG), a 
type of cortical neural progenitor which is believed to con-
tribute to cortical expansion and folding [167]. Transplant-
ing GFP-labelled oRG-like tumor cells into hPSC-derived 
cortical organoids confirmed the tumorigenic and invasive 
properties of this tumor cell population [167]. Thus, the 
analysis of GSC heterogeneity may provide an optimized 
strategy for an individual patient.

Brain tumor organoids have been applied to studies of 
GBM, medulloblastoma (MB), and meningioma [168] 
(Fig. 2). MB is the most common malignant brain tumor 
in the cerebellum that occurs mostly in childhood [169]. 
Transcriptional profiling has revealed four main subgroups 
of MB, and group 3 is characterized by c-MYC upregulation 
and has the worst outcome [170]. Based on the previous pro-
tocol of cerebellar organoid generation [171], a group 3 MB 
organoid model has been developed by overexpression of 
the Otx2 and c-MYC genes, which promote tumor cell over-
proliferation [172]. Using the MB organoids, the authors 
found that up-regulation of the on-co-suppressor SMARC4 
or treatment with Tazemetostat, an EZH2-specific inhibi-
tor, reduces Otx2/c-MYC-induced tumorigenesis [172]. 
In another study, overexpression of the MB driver genes 
MYC and Gfi1 in human cerebellar organoids induces group 
3 MB with an epigenetic profile similar to human patients 
in vivo [173]. Moreover, activation of the Notch1 pathway 
fosters group 3 MB formation [173]. Meningiomas are the 
most common intracranial tumors, but the molecular drivers 
are poorly understood and effective treatments are lacking 
because of the shortage of research models. Recently, several 
studies have established meningioma organoid models from 
patient-derived tumor cells or tissues [174–176]. The histo-
logical features and innate molecular profiles of meningioma 
organoids are similar to corresponding parental tumors, and 
this advantage has allowed the model to be applied to the 
identification of potential targets for meningioma therapy 
[174].

Outlook

Improvements in organoid technology in recent years have 
contributed greatly to our understanding of the mechanisms 
of human brain development and the pathogenesis of neuro-
logical diseases. However, in vitro culture conditions limit 
the size of the organoid, neuronal maturation, and subse-
quent production of more complete cell types, such as astro-
cytes and oligodendrocytes. Furthermore, the lack of blood 
vessels and immune cells also limits the applications of brain 

organoids. Although some advances have been made, the 
innermost parts of an organoid eventually die due to the 
lack of oxygen and nutrients. Several studies have attempted 
to establish assembled organoids to resemble inter-regional 
interactions in the brain and brain periphery interactions, 
but they only partially mimic the counterparts of the real 
human body. Nevertheless, partial simulation has already 
demonstrated broad prospects in disease modeling and the 
clarification of mechanisms, as well as drug screening or 
testing. Transplantation of specific types of brain organoids 
into injured or degenerative regions provides another avenue 
for the repair of the related neural circuits under disease con-
texts. A combination of multidisciplinary strategies would 
help optimize the brain organoid system and broaden its 
applications.
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