Neurosci. Bull. August, 2023, 39(8):1289-1308
https://doi.org/10.1007/s12264-022-00985-9

f')

Check for
updates

WWW.neurosci.cn
www.springer.com/12264

REVIEW

Physiological Roles of $-amyloid in Regulating Synaptic Function:

Implications for AD Pathophysiology

Wenwen Cai! - Linxi Li? - Shaoming Sang! -
Xiaoli Pan' - Chunjiu Zhong'?

Received: 25 April 2022 / Accepted: 2 September 2022 / Published online: 28 November 2022

© The Author(s) 2022

Abstract The physiological functions of endogenous
amyloid-f (Ap), which plays important role in the pathol-
ogy of Alzheimer’s disease (AD), have not been paid enough
attention. Here, we review the multiple physiological effects
of AP, particularly in regulating synaptic transmission, and
the possible mechanisms, in order to decipher the real char-
acters of AP under both physiological and pathological con-
ditions. Some worthy studies have shown that the depriva-
tion of endogenous A gives rise to synaptic dysfunction
and cognitive deficiency, while the moderate elevation of
this peptide enhances long term potentiation and leads to
neuronal hyperexcitability. In this review, we provide a new
view for understanding the role of Af} in AD pathophysiol-
ogy from the perspective of physiological meaning.

Keywords Ap - Physiological role - Synapse - LTP -
Synaptic vesicle cycle - Cognition - AD
Introduction

Alzheimer’s disease (AD) is an irreversible neurodegenera-
tive disorder and the most common cause of dementia [1, 2],
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which clinically manifests as progressive cognitive impair-
ment and is pathologically characterized by extracellular
amyloid-f (Ap) plaques and intraneuronal neurofibrillary
tangles [3]. Indisputable human genetic evidence and abun-
dant data from biochemistry, histology, and animal models
have established that A is a key player in the pathogenesis
of AD. However, along with a series of failures in clinical
trials for the treatment and prevention of AD targeting AP
[4, 5], there is a growing debate about its critical role in the
pathogenesis of the disease.

More than three decades have passed since AP was first
identified in 1984 when AP was recognized as an endoge-
nous neuropeptide that is physiologically metabolized in the
central nervous system [6]. The AP sequence can be dated
to ~ 500 million years ago, and the sequence homology in
mammals exceeds 95% [7]. The conservation in evolution
means that Ap is critical to providing a selective advantage
in the survival of species. Recently, accumulating studies
have implied that AP plays roles in cognitive functions,
synaptic functions, angiogenesis, antimicrobial response,
tumor suppression, recovery from injury, and neurogenesis
[8]. Especially, the roles at the synapse and antimicrobial
role of AP [9-11], potentially explain the lack of efficacy
and adverse effects in the clinical trials targeting Ap produc-
tion (Fig. 1).

The synapse is widely regarded as the basic biological
structure of memory. As early as 1991, it was recognized
that synaptic loss is a factor correlated with the cognitive
deficit in AD [12] and an important cytopathological fea-
ture of cognitive decline [13]. It has been reported that Af
regulates synaptic function in early AD [14, 15]. Given the
pivotal role of the synapse in the mechanisms of learning
and memory, elucidating how Af influences synaptic activ-
ity may benefit the understanding of AD pathology.
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Fig. 1 Schematic representation of the suggested physiological and pathological roles of Ap in the synapse. Created with https://biorender.com/.

Here, we concentrate on evidence from research on the
functions of Af in synaptic terminals. To begin with, several
key points concerned with physiological conditions, which
are usually omitted, will be elucidated. Next, the potential
necessary and sufficient role of Af in synaptic function will
be expanded into two parts (Table 1). The necessary role will
be drawn from laboratory data in which A itself was ablated
or the generation pathway was blocked, mainly referring to
amyloid precursor protein (APP) and BACE1 (p-site APP-
cleaving enzyme 1). In contrast, the sufficient role will be
discussed by underscoring the effect of moderately increased
AP, but not toxic levels, on synaptic plasticity and neural
excitability. Further, the underlying mechanism and several
contradictions in these evidence will be listed. Last, we con-
sidered the physiological role of Af at the synapse in AD
therapeutics and research on its pathology.

Keys Concerns with Physiological Ap
Biogenesis and Metabolism

APP is encoded by 19 exons on the long arm of chromosome
21, of which exons 16 and 17 are responsible for encoding
Ap. APP family proteins are type I single-pass transmem-
brane proteins; the other two isoforms, amyloid precursor-
like proteins 1 and 2 (APLP1/2) cannot produce AP peptide.
According to the splicing sequence, APP695, APP751, and
APP770 have been described most often, and APP695 is the
main isoform in the human brain. See the biosynthesis and
metabolic fate of AP in Figure 2.

@ Springer

Although A is generated from APP in a complex manner,
canonical processing by o/p/y-secretase is dominant, includ-
ing an amyloidogenic and a non-amyloidogenic pathway.
The former pathway happens in subcellular compartments
like endoplasmic reticulum/intermediate compartment, and
Golgi apparatus/trans-Golgi network [16—18], where inter-
nalized APP is proteolyzed by p-secretase on the 671-672
amino-acid sequence [19], exposing the N-terminus of Ap,
and then y-secretase works to generate the C-terminus, form-
ing a chain with 37-49 amino-acids named Af. Generally,
AP40 (~ 90% of total AB) and AP42 (~ 5%—10% of total
AP) are predominant [20, 21], and AP42 is more prone to
deposition than AB40 due to the strong hydrophobicity of
the C-terminal amino-acid residue. The unhydrolyzed APP
is located at the cell surface and is processed by the latter
means, in which «-secretase cleaves at amino-acids 16—17
on the AP sequence to generate a soluble fragment c APPs
and o C-terminal fragments, which are further catalyzed by
y-secretase to generate p3 [22, 23].

The mature AP along with the C-terminal fragment
(CTF) is packaged into vesicles or is secreted into extra-
cellular space. Intracellularly, Af can be transported in
both anterograde and retrograde directions. APP [24] as
well as somatic AP [25] are transported in the fast antero-
grade component, while retrograde transport to cell bod-
ies occurs when AP is absorbed by synaptic reuptake or is
produced by APP internalized from distal axon terminals
[26]. Besides, transport of the compartment containing
BACE and PS1 requires APP, which may function as a
kinesin-I membrane receptor [27]. After performing its
function in the intra- and extra-cellular space (see below),
Ap under physiological conditions maintains a balance
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Fig. 2 Schematic representation of the biogenesis and metabolism
of Ap. (1) Canonical APP processing. APP inserted on the cellular
membrane is cleaved by a-secretase in an amyloidogenic manner, and
internalized APP is proteolyzed by p-secretase in subcellular com-
partments to produce A; (2) Transporting. AP along with CTF is
packaged into vesicles or is secreted into extracellular space, and Ap
can be transported intracellularly in both anterograde and retrograde
directions; (3) Functioning at synapse. Ap performs the function in

that relies on a clearance mechanism. On the one hand,
central AP can be transported through the blood-brain
barrier mediated by lipoprotein receptor-related protein
and receptor for advanced glycation end products. On
the other hand, AP can be degraded by insulin-degrading

the intra- and extra-cellular space, and the presynaptic nicotinic ace-
tylcholine receptor (nAChR) mediates AP reuptake at the synaptic
terminal; (4) Degrading. Ap is transported by lipoprotein receptor-
related protein (LRP) and receptor for advanced glycation end prod-
ucts (RAGE). In cells, Ap can be degraded by insulin-degrading
enzymes and neprilysin or be bound by peripheral substances. Cre-
ated with https://biorender.com/.

enzymes and neprilysin, or be bound by peripheral sub-
stances [28]. In addition, A reuptake into neurons occurs
in the presynaptic compartment [29].
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Distribution and Localization

Central A is mainly produced in the brain. The cerebral
cortex and hippocampus are believed to be regions that are
enriched in AP and start their propagation. In AD brains, the
A deposits first appear in the neocortex, followed by allo-
cortical regions, diencephalic nuclei, the striatum, and the
cholinergic nuclei of the basal forebrain [60]; the entorhi-
nal cortex is one of the most vulnerable regions [61]. Simi-
larly, in normal brains, the cortex and hippocampus strongly
express APP, suggesting the regions where Af abounds [62,
63].

The distribution of AP in subtypes of neural cells can
be revealed by evidence of APP, and p- and y-secretase.
Although APP is widely expressed in a variety of tissues and
cells, previous studies have shown that Af is more readily
metabolized in neurons where BACEI protein is abundant
[38, 64], whereas other cell types mainly express BACE2,
which is not involved in amyloidogenesis [65]. Similarly,
neuronal APP has been identified as predominantly APP695
[66]. Besides neurons, glial cells, endothelial cells [67], and
meninges [68] also express APP. Early studies showed that
APPs in microglia and astrocyte were expressed in internal
membranous vesicles [69] as isoforms containing Kunitz-
type protease inhibitors [68, 70-73] rather than APP695. It
was believed that the main source of AP was not glia cells
but neurons [74], except for type I (GFAP+ A2B5-) astro-
cytes [75] or in a morbid environment [76]. Although this
evidence is still in vitro, the contribution to the physiological
Ap biogenesis of astrocytes should be stressed since high
levels of AP have been detected in human iPSC-derived
astrocytes [77].

However, the specific neuron type that generates Ap is
still controversial. An immunocytochemical analysis has
shown that APP is more frequently associated with gluta-
matergic rather than GABAergic or cholinergic terminals,
indicating that endogenous AP is predominantly derived
from excitatory neurons [78]. It has been reported that reduc-
ing neuronal activity using GABA-A receptor enhancers or
increasing it with GABA-A channel blockers significantly
reduces or increases Af levels (both Ap40 and AP42) [6],
stressing the contribution of GABAergic neurons to Af} pro-
duction. Given the high expression of APP in a heterogene-
ous subset of GABAergic interneurons, it has been reported
that these interneurons take part in ~ 17% of the soluble
AP and ~ 30% of the total hippocampal plaque burden,
and interneurons are also located in the CA1 region, where
plaques are most prevalent (accounting for ~ 75%) [79].

Within neurons, Af is located in neurites [80, 81]: bio-
chemical, immunostaining, and electron microscopic studies
have found APP and its fragments [66] in dendrites and axon
terminals [24, 82]. Further, AP is supposed to be primarily
released by synapses [83, 84]. It has been reported that Ap

@ Springer

levels in the brain interstitial fluid are considerably regulated
by synaptic activity and synaptic vesicle exocytosis, impli-
cating a mechanism on the presynaptic side of the synaptic
cleft [51]. Notably, neuronal activity-dependent endocytosis
of APP is involved in ~ 70% of the regulatory mechanisms
in synaptic Ap release [52].

In synapses, AP is predominantly distributed in the pre-
synaptic membrane [78, 85]. Consistent with this, a meta-
analysis of AD synaptic pathology showed that presynaptic
markers are affected more than postsynaptic markers [86].
In normal or 5XFAD mice, BACEI is localized to vesicles
(possibly endosomes) at the ends of hippocampal mossy fib-
ers, and in some cases, BACE1-positive vesicles are located
near the synaptic active zone, suggesting Af} production in
the presynaptic membrane [87]. And it has been found that
APP and BACEI interact in biosynthesis and endocytosis,
particularly along circulating microdomains such as den-
dritic spines and presynaptic boutons [88]. However, it has
also been shown that in cultured murine neurons, y-secretase
is located both presynaptically and postsynaptically [89].
Furthermore, a recent super-resolution microscopy study
found that co-labeling with APP is stronger postsynapti-
cally than presynaptically [90]. Therefore, more evidence
is needed to clarify the distribution of Af at the synapse.

Dosage Effect

Under physiological conditions, the level of Af in the human
brain and cerebrospinal fluid lies in the picomolar range [91,
92]. As the studied concentrations of AP42 ranged from
femtomolar to millimolar, covering over twelve orders of
magnitude [93], concentration matters for the physiological
function of AP. According to the existing results, both too
high and too low Af has negative effect on synaptic func-
tion, but only positive regulation has been reported in the
physiological concentration range.

First, the detrimental effect of high levels of AP has been
analyzed in the brains of AD and AD animal models. In
these brains, AP concentrations tend to be in the nanomolar-
to-micromolar range [94], which is much higher than the
physiological level, thereby impairing synaptic function
[95-97]. For example, the senile plaque requires a concen-
tration of 100 nmol/L to aggregate AP, while AB42 is con-
sidered to gather when the concentration is up to 90 nmol/L
[98]. Consequently, high concentrations of Ap oligomers can
cause the collapse of dendritic spines [84, 99] and disruption
of LTP [100]. As the toxicity of pathologically overloaded
AP is beyond the scope of this paper, further summary can
be seen in reviews [14, 101]. Interestingly, inhibition of
endogenous AP does not protect synaptic transmission as
verso of a phenomenon in AD. The genetic knockout (KO)
and pharmacological inhibition of A production also have
adverse effects on synapses. Varying degrees of cognitive
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deficits and synaptic damage are induced by knocking out
the APP or BACE] gene, interfering with siRNA, or apply-
ing an inhibitor to wild-type mice, and interestingly, some
evidence suggested this damage can be rescued by moderate
amounts of AP (Tablel).

Second, however, positive effects on synaptic regula-
tion have gradually been discovered. Several studies have
shown (Tablel) that low concentrations (picomolar) of Ap
can enhance LTP [31], increase dendritic spine density [59],
and promote docking vesicles [36]. The dose-dependence
was demonstrated in an electrophysiological study at differ-
ent concentrations (100, 200, and 300 pmol/L) of AP [49].
In another study, the full recovery of potentiation was at
300 pmol/L. AP42, the threshold required for normal syn-
aptic plasticity may be ~ 380 pmol/L [31]. Notably, the
APP mutant A673T reduced AP by 40%—-50% [102, 103]
in a laboratory study and by ~ 28% in human plasma [104],
which is thought to be protective against AD. Compared
with mutations accelerating AD, the A673T mutation seems
to reveal AP maintains a delicate balance to be a friend or
foe in a dose-dependent manner.

Although the precise concentrations of A to execute dif-
ferent acts in synaptic function are controversial, according
to the available evidence, a “hormetic effect” seems to exist
in AP roles: that is, a positive effect in the optimal dose
range and a negative effect either above or below the range.
The hormesis hypothesis may be a suitable explanation for
the etiology of sporadic AD.

Species Differences

Although it was recognized as early as the mid-1980s that
Ap is an endogenously-produced peptide, significant depo-
sition of AP is often achieved by chimeras in animals with
humanized mutations, so as to partially mimic the pathology
of anthropic AD. However, the animal sequences of Af are
distinct from humanized fragments to some extent. Block-
ade of endogenous AP with specific antibodies or ablation
of APP expression impairs LTP and memory function [31].
Conversely, neurotransmitter release and recycling of synap-
tic vesicles are enhanced by increased endogenous AB1-40
or AP1-42 via interfering with clearance, or by applying
picomolar amounts of synthetic fragments [53, 55, 105].
Therefore, the species differences in Af sequences matter
as they function in synaptic regulation, although this seems
to be complex.

On the one hand, 96.6% consistency has been identified
between human and mouse APP, and only three amino-acid
residues differ in the AP sequence [106]. However, endog-
enous picomolar Ap does not induce Ca>* homeostasis and
synaptic integrity in neurons in mice, while high concentra-
tions of AP from Tg2576 primary cortical neurons cause
Ca** overload and synaptic damage [99]. This may be due to

the sequence difference itself, or changes that occurred dur-
ing biogenesis [107]. On the other hand, the impaired LTP,
contextual fear memory, and reference memory induced by
anti-rodent AP antibodies and siRNA against murine APP
can be rescued by human Ap42 [31]. Likewise, deletion of
the Drosophila APP-like protein (Appl) is not lethal but
has subtle behavioral defects that are partially rescued by
expressing human APP [108]. Interestingly, the function of
humanized APP varies with different mutations. Knockout
of APP results in a significantly shorter body length and a
short, curly tail in zebrafish. Wild-type human APP, rather
than Swedish mutant APP, a mutation associated with famil-
ial AD, prevented these phenotypes [109]. In summary, the
evidence suggests subtle relationships among AP sequences
in various species, which needs more studies to clarify how
much its functions are distinct or overlap.

Isoforms and Aggregation

More than 20 forms of AP can be produced by enzymatic
reactions and modification. Physiologically, AB40 is in the
majority while Ap37, ApP38, AP39, and AP42 are in the
minority, and peptides such as Ap34, Ap36, Ap41, and Ap43
are detectable in some instances [91, 110, 111]. AP segments
are highly ordered, with 95% sequence identity between
Ap42 and AP40, except for a C-terminus of increased rigid-
ity at AP42, which makes AB42 more prone to aggregation
than AB40 [112]. As AP varies among monomers, oligom-
ers, fibrils, and mature plaques, it remains difficult to iden-
tify the roles of endogenous pathological Af in AD patients.
A widely held view is that AP oligomers, rather than fibrils
or monomers, are the neurotoxic forms [100]. In the late
20th century and early 2000s, several studies showed that
the soluble form of AP causes the loss of dendritic spines
in cultured neurons, whereas fibrils and monomers are rela-
tively inert [113—115]. Even at physiological concentrations,
AP dimers, trimers, but not monomers, are deemed to cause
synaptic dysfunction and loss [116]. However, the latest
research on PS1 and PS2 conditional double-KO mice has
shown that a reduced AP42 level is harmful to cognitive
function, and the cognitive decline can be alleviated by giv-
ing exogenous soluble Ap1-42 monomers [46].

In addition to the aggregated form, Ap monomers them-
selves are also thought to have different functions. The
hydrophobic C-terminal domains associated with oligomer
formation are closely associated with neurotoxicity, espe-
cially at high levels (umol/L) of Ap. However, the hydro-
philic N-terminal domain may mediate the protective action
of AP at physiological levels (pmol/L—nmol/L). It has been
found that the N-terminal AP fragment and shorter Ap core
(AB10-15) protect against or even reverse the effects of
Ap-induced neurotoxicity, memory deficits, and apoptosis
[57]. Moreover, the rescue effect also occurs in SXFAD mice
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and APP/PS1 mice, transgenic models of AD with signifi-
cant AP deposition, especially at the level of synaptic plas-
ticity [56]. Furthermore, a recent study has shown that frag-
ments containing AB1-16 but not Ap17—-42 increase the size
of the recycling pool of synaptic vesicles [54]. Therefore,
it is critical to clarify the specific length of segments and
aggregative form of A in vivo when we explore its function.

Potential Physiological Roles of Af in Regulating
Synaptic Function

Reduced Endogenous Af Impairs Synaptic Function
Blocking A by Antibodies

The absence of AP appears to be detrimental to synapses.
After antagonizing endogenous AP42 in rodents using JRF/
rAb2 [31] or 4G8 [30], animals displayed cognitive deficits
in behavior tests and impairment of LTP in electrophysiol-
ogy. Moreover, injection of human Ap42 rescued the above
phenotypes, suggesting that endogenous AP plays a crucial
role in normal LTP and memory. Abramov et al. further
revealed a mechanism indicating that A may positively
regulate basal synaptic transmission in a presynaptic and
history-dependent manner, particularly in excitatory neurons
[55]. It was reported that a reduction in presynaptic strength
by 53% + 6% and inhibited exocytosis of synaptic vesicles
occurred after using the monoclonal antibody HJ5.1 against
murine Af, and this was reversible after a 30-min washout.
In fact, the facilitation of vesicle release is diminished by
both increasing and decreasing the endogenous extracellular
AP concentrations. Similarly, short-term facilitation, which
is believed to be closely related to memory formation, is not
only impaired when Af excessively increases but when it
dramatically decreases (> 60%), further suggesting that the
action of A exhibits dose-dependent [55].

Notably, Af is also thought to be involved in memory
consolidation [30] and the forgetting mechanism by prevent-
ing subsequent modifications to provide adaptive physio-
logical functions [45]. For instance, intracerebroventricular
injection of 4G8 or knockdown of Fcgr2b, a receptor for
soluble AP, regulates memory maintenance and forgetting
in a novel object recognition test [117].

Deficiency or inhibition of APP

In early studies, APP-null mutant mice showed weight loss,
abnormalities in locomotion, astrocyte gliosis at 14 weeks
[32], and age-dependent cognitive deficits [33], with the
cognition, altered weakly [34]. Recently, a reduction of LTP
was reported when APP was knocked out or siRNA [31]
interference was applied. In primary hippocampal neurons
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from APP-KO mice, there was synapse loss, restricted
neurite growth, and reduced branching [35]. Interestingly,
APP released by astrocytes was able to partially rescue this
defect [118]. Furthermore, the absence of APP was shown
to increase neuronal excitability. Although the two homolo-
gous analogues of APP, APLP1, and APLA2, do not produce
ApB, hippocampal neurons exhibit hyperexcitability when
all three APP family genes are knocked out simultaneously
in excitatory neurons [37]. Similarly, genetic loss of APP
selectively impairs GABA-B receptor-mediated presynaptic
inhibition and reduces axonal GABA-B receptor expression
[119], indicating that this is a potential mechanism by which
APP can regulate synaptic activity. The above studies that
directly target APP somewhat of a contribution of Ap to
synaptic structural development and functions, but the role
of APP itself should not be ignored.

Deficiency or Inhibition of BACEI

As a rate-limiting enzyme in AP processing, using BACE1
inhibitors seems to be a viable approach to attenuating Ap
and then benefiting AD. However, although significantly
reducing AP production and amyloid deposition in the
brain, BACEI inhibitors can not improve the cognitive or
functional decline in subjects with mild-to-moderate AD
[120-122]. Compared to placebo, individuals who received
a BACEI] inhibitor showed a dose-dependent cognitive dete-
rioration and treatment-related adverse events, such as neu-
ropsychiatric deficits and hippocampal volume loss in phase
II and III clinical trials [123, 124], leading to the early ter-
mination of clinical trials. Interestingly, cognition returned
to baseline levels after cessation of treatment [124]. This
clinical evidence suggests that, at least in AD, remarkably
reducing A with a BACEI inhibitor needs to be approached
with prudence.

While clinical data are always limited to AD patients,
pharmacological inhibition or genetic modification of
BACE] in wild-type mice can partly reveal the physiologi-
cal roles of Ap. In animal experiments, gavage of the blood-
brain-barrier-permeable BACEI inhibitors Verubecestat
(MK-8931) and Lanabecestat (AZD3293) to mice resulted
in a dose-dependent decrease in LTP [125]. Oral administra-
tion of the BACE1 inhibitors SCH1682496 or LY2811376
also caused a dose-dependent decrease in Ap40 levels, but
prolonged treatment suppressed dendritic spine formation
in layer V pyramidal neurons, which recovered after drug
discontinuation [44]. Consistent with this, BACE1-deficient
mice exhibit impaired synaptic transmission and plasticity,
evidenced by reduced LTP in Schaffer collateral branch-to-
CA1 synapses and mossy fiber-to-CA3 synapses [41, 43].
In another study, deficits in paired-pulse facilitation and de-
depression implicated in presynaptic release and synaptic
plasticity were recorded in BACEI(-/-) mice, and the poor
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performance on tests of cognition was prevented by APP/
PS1 transgenic mice [38]. Moreover, it has been suggested
that inhibition or deficiency of BACEI leads to reduced
docking of synaptic vesicles to the active zone and the ensu-
ing glutamate release [125]. To avoid the developmentally-
relevant phenotypes in germline mutant mice, researchers
have turned to conditional KO of exon 2 of BACE] in adult
mice, in which impairment of synaptic and axonal function
also occurs [39, 126]. For example, in BACE1"; R26Cre-
ERT2-TAM mice, BACE] is reduced by 90%—95%. and AP
is inhibited by ~ 60%-90%, followed by axonal dysfunction
[126]. Collectively, the failure of BACE]1 inhibitors, which
cause a strong reduction in Af deposition, may largely be
due to their role in synaptic function.

Given the harmful effects associated with synaptic dam-
age, it appears that complete or significant inhibition of
BACEI] neutralizes or even overwhelms the anticipated
therapeutic effect against an Ap burden. Both clinical [123,
124] and laboratory [125] results have confirmed that this
impairment is dose-dependent; in addition, this can be partly
explained by the fact that germline heterozygous BACE]1-
KO mice with 50% of normal BACEL1 levels do not differ
significantly from wild-type mice [38, 127, 128]. Therefore,
the dosage is vital. Admittedly, however, seizures [129, 130],
axon guidance [131], impaired peripheral nerve myelina-
tion [132, 133], and low anxiety or depressive tendencies
[38] have been sequentially reported in BACE1-null mice.
All these side-effects are consistent with adverse events in
clinical trials with BACEI inhibitors [123, 124], although
some of the phenotypes remain controversial [42]. This indi-
cates that the functions of BACE] itself should be taken into
account.

Collectively, Ap is necessary for maintaining the normal
synaptic function, reduced endogenous AP by genetic or
pharmaceutical inhibition of A or its biogenic necessities,
APP and BACE], disturb synaptic morphology, synaptic
vesicle transmission, synaptic plasticity, and even cogni-
tive function. Although several studies have revealed a res-
cue effect [30, 31, 47] and implied a dosage effect, more
detailed and persuasive results are needed to draw firmer
conclusions.

Interplay: Ap and Neural Hyperexcitability

Moderately Increased AB Enhances LTP and Neuronal
Excitability

As previously noted, the body produces Af endogenously at
picomolar concentrations, and either too low or too high A
may impair synaptic function. However, a number of early
and recent studies have demonstrated that a modest increase
of AP can enhance synaptic transmission and neuronal
excitability, providing further evidence for its physiological

function. Puzzo et al. have worked long on the role of AP
in physiological states, particularly in synaptic regulation
and cognitive function. They initially administered intrahip-
pocampal injections or delivered picomolar levels of AB42
to mouse brain slices, and found that AB42 enhanced LTP
and behavior performance [50]. Given the toxic effects of
excess AP42 in AD, the team investigated the LTP variation
with different concentrations of AB42 in order to clarify the
dose-effect relationship, which finally took on a bell-shaped
curve [49]. Besides, the exposure time also matters [48].
Furthermore, by inhibiting thiorphan, an enzyme degrad-
ing AP in the synaptic cleft, the acute effects of endoge-
nously-released AP were investigated at single presynaptic
terminals and synaptic connections [53, 55]. These studies
demonstrated that Ap mediates presynaptic enhancement
and synaptic transmission by increasing miniature synaptic
vesicle release and mEPSC frequency, which depends on
the history of activation. As deprivation of endogenous Af
reduces presynaptic activity, it has been speculated that Af
maintains basal presynaptic activity and spontaneous activ-
ity [55]. In recent years, more studies have focused on the
aggregated forms and effective sites of Ap. So, several stud-
ies have shown that it is the N-terminal A, particularly the
1-16 fragment, that exerts excitatory effects and promotes
vesicular recycling [54, 58], even reversing the Ap toxicity.
Besides, Ap42 oligomers, commonly regarded as toxic, have
been reported to enhance synaptic plasticity at picomolar
concentrations [36, 46, 47].

Since the direct application of soluble Af in wild-type
mice increases neuronal activation [134], what is the situa-
tion in early AD or AD model mice with a mild to moderate
increase in AB?

In vivo Ca** imaging of somatic, dendritic, and axonal
activity patterns in cortical neurons has shown that both
healthy ageing and AD-related mutations have neuronal
hyperactivity [135]. In the hippocampus of young AD model
mice, hyperexcitable neurons are selectively increased prior
to plaque formation. In these animal models, acute treatment
with the y-secretase inhibitor LY-411575 reduces soluble AP
levels and rescues the neuronal dysfunction, while adminis-
tration of soluble A oligomers re-establishes the excitatory
state [134]. Here, soluble forms rather than aggregates mat-
ter. However, in the AD mouse model, two-photon data dis-
played that not all neuronal activity is reduced or increased,
and it is in the vicinity of plaques where part of the neurons
with hyperactivity are exclusively found [136, 137]. The
mechanism is attributed to the fact that low levels of Ap
enhance glutamate release and regulate Ca>* homeostasis,
particularly in the early stages of AD [99].

AP is altered 20-25 years prior to the onset of AD [138,
139]. Individuals at risk for AD always manifest hyperacti-
vation in memory-related brain regions in functional mag-
netic resonance imaging (fMRI). APOE (apolipoprotein E)
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€4 carriers at 25-35 years old present increased co-activa-
tion of the default mode network and a more activated hip-
pocampus during encoding tasks compared to non-carriers
in fMRI studies [140]. Another study not only found that
cognitively normal APOE €4 allele carriers have a greater
magnitude and greater extent of brain activation than APOE
€3 allele carriers during a memory activation task but also
showed that the extent of baseline brain activation correlated
with the degree of memory decline after a 2-year longitudi-
nal assessment [141]. In addition, young subjects with nor-
mal cognition who carry the familial AD gene E280A PSI
mutation, have hippocampal activation before the onset of
symptoms at ~ 45 years old [142]. The same phenomenon
has been demonstrated in patients with amnestic mild cogni-
tive impairment (aMCI) [143—-146]. Therefore, increased AP
at an early stage may take part in the regulation of cognitive
function, possibly by inducing synaptic dysfunction, but the
underlying mechanisms remain to be solved.

Neural Hyperexcitability Promotes A} Production

Endogenous AP increases neuronal excitability [147],
while neural activity also regulates AP production. Labora-
tory studies have shown that neuronal and synaptic activity
dynamically regulates soluble extracellular Ap concentra-
tions [6, 31, 148]. The rapid effects (a timescale of minutes
to hours) of synaptic activity on AP were investigated by
microdialysis combined with field potential recordings, in
which it was demonstrated that synaptic activity dynami-
cally and directly regulated Ap in the brain interstitial fluid
(ISF) [51]. Further, ISF A levels were elevated by enhanc-
ing synaptic transmission and were prevented by inhibiting
endocytosis mediated by clathrin. The above evidence sug-
gests that Ap release depends on synaptic activity mediated
by endocytosis [52].

Furthermore, clinical phenomena abound suggesting that
alterations of brain activity are accompanied by changes in
AP level. The regions active in the default state in young
adults have a higher propensity for Ap deposition in the
old with AD [149]. In addition, evidence from epilepsy
and post-traumatic states provide a good illustration. First,
patients with epilepsy, particularly late-onset epilepsy of
unknown etiology, are at higher risk of developing demen-
tia. Simultaneously, seizures have been detected in the early
stages of AD [150]. As previously noted, because patients
with aMCI exhibit elevated hippocampal activation in the
dentate gyrus or CA3 region, Bakker et al. [151] reduced
hippocampal hyperactivity in aMCI with the antiepileptic
drug levetiracetam, and, as expected, cognitive function
was improved. Second, the increased ISF Ap in 18 patients
with acute brain injury showed a strong positive correlation
between AP level in the ISF and neurological status [152].
The fact that ISF AP varies along with neuronal function
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further implies that the extracellular Ap level is regulated
by neuronal activity.

Underlying Mechanisms in the Regulation of A
at Synapses

nAChR

In the central nervous system, the nicotinic acetylcholine
receptors (nAChRs) are located at synapses in most neuron
populations [153] as well as being expressed in non-neu-
ronal cells [154-156]. nAChRs are ligand-gated ion chan-
nels. Depolarization of the membrane and excitatory effects
are caused by the application of nAChR agonists followed by
opening ion channels, and consequently, increasing perme-
ability to Na*/K*/Ca**. The a7 nAChR has the highest Ca>*
permeability among nAChR isoforms, so its relative perme-
ability is comparable to that of the N-methyl-D-aspartate
receptor (NMDAR) [157]. Overall, a7 nAChRs are involved
in a variety of biological processes, including neuronal excit-
ability, neurotransmitter release, signal transduction, synap-
tic plasticity, and neurogenesis [158—160].

In the brains of AD patients, the reduction of nAChRs
is correlated with disease progression [161, 162], and cho-
linesterase inhibitors are widely used in the treatment of
mild to moderate AD. o7 nAChRs have been found to co-
localize with intracellular AP42-positive neurons in the
post-mortem brain tissue of AD patients [163]. Similarly,
an increase of AP/nAChR-like complexes has been found
in carriers of APOE €4 [164], a strong risk factor for AD
[165]. In fact, nAChRs interact with AP under physiologi-
cal conditions, particularly the a7 isoform, which has a high
affinity for Ap [166, 167]. Furthermore, 12-month-old o7
KO mice exhibit an AD-like pathology, in which elevated
Ap is thought to be a compensatory response to the deletion
of nAChRs [168]. It has been reported that low levels of A
(picomolar the low nanomolar range) activate a7 nAChR
channels [50, 169] possibly via the nitric oxide/cGMP/
protein kinase G pathway [36]. In contrast, higher levels
(nanomolar the low micromolar range) reduce the duration
of ACh-induced activation [170], leading to dysregulation
of electrical activity at synapses [171]. However, contro-
versially, nicotine, another ligand of nAChRs, is reported
to improve cognition and protect neurons from AP damage
by agonizing nAChRs [172, 173]. This paradox has been
explained by the suggestion that different cellular pathways
and downstream mechanisms are initiated. That is, nicotine
acts through PI3K—AKT, JAK-2/STAT-3, and other mech-
anisms to exert protective effects, whereas Ap is thought
to initiate intracellular signaling cascades like the MAPK
kinase pathway and leads to cell death [174].
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In addition, nAChR subtypes other than a7 participate the
synaptic mechanism of AP. For instance, a7f2, a variant of
o7, is more sensitive to pathological concentrations of Ap
[175]; mice with f2nAChR deletion display neurodegen-
eration [176] despite the amelioration of spatial reference
memory in APP/PS1 mice by 2 deficiency [177]; and a4fp2
nAChR is particularly associated with episodic memory and
working memory [178], while selective co-activation of o7
and a4p2 nAChRs is also sufficient to reverse Ap-induced
AMPA receptor dysfunction and LTP alterations. Due to the
structural differences of nAChRs [179], Af might interact
with specific subtypes to varying degrees. Af and nAChRs
form complexes through multiple sites [180] to mediate the
physiological effects of A or toxicity to cholinergic neu-
rons. For example, when cell lines expressing o432 nAChRs
are exposed to nanomolar Ap 42, the expression of genes
related to Ca®* signaling and axonal vesicle transport is
upregulated while genes related to metabolic, apoptotic, or
DNA repair pathways are downregulated [181]. Notably, the
results did not mimic physiological stations because the high
concentration of AP and overexpressed nAChR receptors
were used in this research.

The complexity of relationships between A and nAChRs
is evident, but the dose of AP applied and the aggrega-
tion state still need to be considered [56, 182]. Although
nAChRs are weakly expressed in AD, they maintain normal
or even increased mRNA (for review see [174]). Besides, the
extreme susceptibility of nAChRs to desensitization may
partially explain the paradox between nicotine and AP, or
even the variation of the AP dosage effect.

The N-methyl-D-aspartate Receptor

The NMDAR belongs to the ionotropic glutamate receptor
family, and it enhances synaptic transmission and plastic-
ity [183] mediated by Ca**/calmodulin-dependent protein
kinase II [184, 185], which triggers a signaling cascade. The
NMDAR has been found to be critical for neurons [186,
187]. Antagonism of NMDARs gives rise to apoptosis and
degeneration, while moderate activation of this receptor
benefits neuron survival; however, the excessive activation
of NMDARs causes Ca®* overload, resulting in excitotox-
icity. Therefore, both inactivation and overactivation are
potentially harmful [188, 189]. In addition, it has recently
been suggested that synaptic NMDARSs and extrasynaptic
NMDARs play very different roles [190, 191], where the
former is thought to be beneficial and the latter to mediate
toxic effects [183, 192—-195].

Accumulation of AP oligomers has been observed in
the synapses of glutamatergic neurons in AD brains [196,
197]. Although plenty of studies have demonstrated that
AP mediates neurotoxicity by directly or indirectly regulat-
ing NMDARs [6, 198-202], and NMDAR antagonists can

rescue AB-induced damage [116, 203], interestingly, genetic
deletion of the NMDAR subunit GluN3A results in neuro-
pathological changes like AD, including psychological/cog-
nitive deficits and amyloid-p/tau pathology [204]. Moreover,
blocking NMDARs may reduce neurodegeneration [205].
Therefore, as a non-competitive, specific, low-affinity
NMDAR antagonist with a fast closing rate, memantine is
used to treat moderate to severe AD [206] since it can reduce
excitotoxicity while preserving normal NMDAR activity at
the same time. Notably, it has been shown that memantine
preferentially targets the extrasynaptic NMDAR [193] which
is regarded as a detrimental characteristic of AD.

The multiple possibilities for NMDARs in terms of dose,
subunit type, and subcellular localization make research on
the relationship between AP and NMDARs difficult. Com-
plete inhibition, low to mild activation, and over-activation
have dramatically distinct effects. Besides, different subunits
vary: for example, GluR2A and GIluR2B each interact with
Ap to cause opposite results [207]. Moreover, careful inves-
tigation is needed, for example, on the roles of D-serine and
glycine, co-agonists of synaptic NMDARs and extrasynaptic
NMDAR:s, respectively [208]; which downstream pathways
are activated by NMDARs with different subcellular locali-
zations; whether or not NMDARSs are translocated on the
cell membrane.

Vesicular Circulation

The synaptic vesicle cycle (SVC), comprising vesicle traf-
ficking, docking, fusion, transmitter release, and regenera-
tion of fresh vesicles [29], plays a crucial role in the biol-
ogy of synaptic terminals by way of recurrent exocytosis
and endocytosis [209]. Due to the strong positive correla-
tion between cognitive decline and synaptic loss [13, 210],
research on synapses exposed to Ap is increasing [14, 211].
A convergence of results points out a reciprocal relationship
between AP and the SVC. For one thing, Af regulates the
SVC via dosage effect, sites of action (pre- and post-syn-
aptic), and pattern of action (local autocrine or paracrine),
for another, the SVC also affects the production of A [29].

Studies so far suggest that the SVC can be regulated by
ApB. The absence of AP impairs vesicular docking in active
zones [125]. Picomolar or low levels [28] of AP have been
shown to enhance synaptic transmission by upregulating the
presynaptic neurotransmitter release probability (Pr) [55].
Furthermore, Lazarevic et al. systematically studied the
concentration effect in AP regulation at the synapse. There,
they found that the SVC decreases when Ap is depleted by
modulating production while the SVC increases by using an
endogenous A degradation inhibitor [53, 54].

On the contrary, a high level of A inhibits Pr [96]. Either
natural or synthetic AP oligomers but not monomers [116]
at high doses inhibit synaptic transmission and plasticity
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[212-214]. Intracellular administration of nanomolar Ap42
significantly cuts down LTP, reduces mEPSC amplitude,
and decreases the number of intrasynaptic vesicles and/or
Pr [215]. Moreover, direct injection of AP42 oligomers into
presynaptic axon terminals results in a blockade of synaptic
transmission [216], and even acute exposure to Ap oligomers
reduces postsynaptic current frequency by ~ 50% [116]. A
series of studies have proposed that Af is involved in many
steps of the SVC. First, AP perturbs the formation of fusion
complexes, as reported in postmortem AD brains, where
the SNARE complex, which is essential in driving synaptic
vesicle fusion in the presynaptic active zone, is significantly
reduced [217]. Second, the interaction of SNARE protein
vesicle-associated protein 2 (VAMP2) with synaptophysin
is necessary and sufficient to recruit VAMP?2 to synaptic
contacts, and it is disrupted by internalized Ap42 [218].
Further, the ability of clathrin-dependent endocytosis is a
critical step in the SVC, and a wealth of evidence, including
genomics and proteomics, shows that such endocytosis is
severely disturbed in AD [219-222]. In AP oligomer-treated
neurons, only 50% of the released vesicles are recycled back
in time, leading to a considerable delay in readily-releasable
pool recovery [223]. In particular, atypical cyclin-dependent
kinase 5 (CDKY) [224] plays a major role in regulating the
size of the synaptic vesicle pool by targeting synaptic vesicle
endocytosis [225], and consistently, CDKS is significantly
higher in postmortem AD brains [226, 227]. Although sub-
stantial studies have been devoted to the mechanisms of Ap
toxicity, from another perspective, some of these results also
imply that AP is a potent target for presynaptic regulation
both in physiology and pathology. Together, endogenously
released AP peptides are crucial for maintaining a normal
SVC in the functional range.

Vice versa, the SVC takes part in Af production [22,
23]. Indeed, non-amyloid cleavage of APP occurs on the
cell membrane, while amyloid cleavage of APP by p- and
y-secretase is facilitated in vesicles, leading to AP produc-
tion and release [19]. This process has been shown to be
upregulated by increased neuronal activity and clathrin-
dependent endocytosis [51, 52], thereby promoting A pro-
duction and even affecting the ratio of AB42 to Ap40 [55].

Other Mechanisms

Other than the above mechanisms, glial cells, energy
metabolism, and other factors participate in the role of Ap
in synapses through direct or indirect regulation. (1) Micro-
glia. On the one hand, microglia can be activated by Af
and then mediate synapse pruning and elimination [228];
on the other hand, the activated immune system influences
the aggregation of A to cause diverse effects [229] (e.g.
microglia secrete galectin3 to promote the oligomeriza-
tion of AP [230]). (2) Astrocytes. Astrocytes participate in
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the processes of synapse engulfment [231], besides which,
they secrets APOE, a risk factor of sporadic AD, to result in
synaptic degeneration by enhancing the abnormal aggrega-
tion of AP at synapses [232, 233]. (3) Energy metabolism.
The synapse is vulnerable to energy deficiency as a highly
energy-consuming structure, especially in vesicle cycling
[12, 234]. It has been shown that subthreshold amyloid dep-
osition or the distribution of A is correlated with increased
aerobic glycolysis in early adulthood [235-237], whereas
aerobic glycolysis decreases in the normal aging brain [238].

Perspectives

The underlying role of AP in regulating synaptic functions
seems to have being revealed gradually. However, sev-
eral key limitations need to be noted. (1) Animal models.
Although diverse animal models have been developed to
study AD and AP, most of them are genetically-manipu-
lated mice carrying mutations of human familial AD [106,
239-241]. Species differences should be taken into account
when they poorly mimic the pathological process of human
AD. In fact, human-derived AP fragments are more likely
to be deposited, and hAPP transgenic mice without expres-
sion of endogenous murine APP display more plaques and
faster AP deposition [230, 242]. (2) The role of APP or
BACEI. APP performs its functions concurrently with its
various products including A, all of which also join in the
regulation of synapses. For example, sAPP contributes to
synaptic function [243, 244], partly as a ligand to regulate
synaptic transmission [245]. Possibly, Ap does not act alone
[246]. Similarly for BACEL, in models with BACE1 dele-
tion, impaired axonal guidance is associated with reduced
hydrolysis of CHL1 (cell adhesion molecule L1-like) [131],
and synaptic damage is associated with seizure protein 6
[247], both of which are substrates of BACE]1. (3) The com-
plexity of Ap itself. All the following factors matter in A
functions: length of fragments [248], concentration, intra-
cellular or extracellular localization, and aggregation state
[47]. For instance, nanomolar concentrations of intra-axonal
oligomeric AP42 (o AP42), but not 0Ap40 or extracellular
0Ap42, acutely inhibit synaptic transmission in squid [6].
Besides, the effect of A varies with time under both physi-
ological [48] and pathological conditions [249]. Population
studies have shown that AP deposition does not increase all
the time, while CSF AfB42 is significantly negatively corre-
lated with disease progression [139]. All the above reveals
that AP plays different roles through a dynamic balance of
time and state. Generally, limited by the complicated bio-
physical characteristics of A aggregation [250], the state of
AP in the laboratory is not always comparable with that in
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vivo. Therefore, research on the physiological mechanisms
of AP still needs a more rigorous and unified paradigm.

In conclusion, although the history of research on the
mechanism of AP is long, the role of A itself under physi-
ological conditions is still poorly understood. Successive
failure in clinical trials has brought investigators back to the
original and intrinsic question: what is the physiological role
of AP ? Undeniable evidence has established that AP plays a
key role in AD, and this appears to imply an equally impor-
tant role in physiological memory regulation. As an essen-
tial structural base of memory formation, the synapse is a
promising target for research. However, research is difficult
because of the above challenges. In the future, we should
design effective approaches to imitate the physiological Ap
environment as much as possible, and more animal mod-
els with increased homologous AP should be developed, to
reveal the physiology and understand the pathology in AD.
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