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which clinically manifests as progressive cognitive impair-
ment and is pathologically characterized by extracellular 
amyloid-β (Aβ) plaques and intraneuronal neurofibrillary 
tangles [3]. Indisputable human genetic evidence and abun-
dant data from biochemistry, histology, and animal models 
have established that Aβ is a key player in the pathogenesis 
of AD. However, along with a series of failures in clinical 
trials for the treatment and prevention of AD targeting Aβ 
[4, 5], there is a growing debate about its critical role in the 
pathogenesis of the disease.

More than three decades have passed since Aβ was first 
identified in 1984 when Aβ was recognized as an endoge-
nous neuropeptide that is physiologically metabolized in the 
central nervous system [6]. The Aβ sequence can be dated 
to ~ 500 million years ago, and the sequence homology in 
mammals exceeds 95% [7]. The conservation in evolution 
means that Aβ is critical to providing a selective advantage 
in the survival of species. Recently, accumulating studies 
have implied that Aβ plays roles in cognitive functions, 
synaptic functions, angiogenesis, antimicrobial response, 
tumor suppression, recovery from injury, and neurogenesis 
[8]. Especially, the roles at the synapse and antimicrobial 
role of Aβ [9–11], potentially explain the lack of efficacy 
and adverse effects in the clinical trials targeting Aβ produc-
tion (Fig. 1).

The synapse is widely regarded as the basic biological 
structure of memory. As early as 1991, it was recognized 
that synaptic loss is a factor correlated with the cognitive 
deficit in AD [12] and an important cytopathological fea-
ture of cognitive decline [13]. It has been reported that Aβ 
regulates synaptic function in early AD [14, 15]. Given the 
pivotal role of the synapse in the mechanisms of learning 
and memory, elucidating how Aβ influences synaptic activ-
ity may benefit the understanding of AD pathology.

Abstract The physiological functions of endogenous 
amyloid-β (Aβ), which plays important role in the pathol-
ogy of Alzheimer’s disease (AD), have not been paid enough 
attention. Here, we review the multiple physiological effects 
of Aβ, particularly in regulating synaptic transmission, and 
the possible mechanisms, in order to decipher the real char-
acters of Aβ under both physiological and pathological con-
ditions. Some worthy studies have shown that the depriva-
tion of endogenous Aβ gives rise to synaptic dysfunction 
and cognitive deficiency, while the moderate elevation of 
this peptide enhances long term potentiation and leads to 
neuronal hyperexcitability. In this review, we provide a new 
view for understanding the role of Aβ in AD pathophysiol-
ogy from the perspective of physiological meaning.
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Introduction

Alzheimer’s disease (AD) is an irreversible neurodegenera-
tive disorder and the most common cause of dementia [1, 2], 
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Here, we concentrate on evidence from research on the 
functions of Aβ in synaptic terminals. To begin with, several 
key points concerned with physiological conditions, which 
are usually omitted, will be elucidated. Next, the potential 
necessary and sufficient role of Aβ in synaptic function will 
be expanded into two parts (Table 1). The necessary role will 
be drawn from laboratory data in which Aβ itself was ablated 
or the generation pathway was blocked, mainly referring to 
amyloid precursor protein (APP) and BACE1 (β-site APP-
cleaving enzyme 1). In contrast, the sufficient role will be 
discussed by underscoring the effect of moderately increased 
Aβ, but not toxic levels, on synaptic plasticity and neural 
excitability. Further, the underlying mechanism and several 
contradictions in these evidence will be listed. Last, we con-
sidered the physiological role of Aβ at the synapse in AD 
therapeutics and research on its pathology.

Keys Concerns with Physiological Aβ

Biogenesis and Metabolism

APP is encoded by 19 exons on the long arm of chromosome 
21, of which exons 16 and 17 are responsible for encoding 
Aβ. APP family proteins are type I single-pass transmem-
brane proteins; the other two isoforms, amyloid precursor-
like proteins 1 and 2 (APLP1/2) cannot produce Aβ peptide. 
According to the splicing sequence, APP695, APP751, and 
APP770 have been described most often, and APP695 is the 
main isoform in the human brain. See the biosynthesis and 
metabolic fate of Aβ in Figure 2.

Although Aβ is generated from APP in a complex manner, 
canonical processing by α/β/γ-secretase is dominant, includ-
ing an amyloidogenic and a non-amyloidogenic pathway. 
The former pathway happens in subcellular compartments 
like endoplasmic reticulum/intermediate compartment, and 
Golgi apparatus/trans-Golgi network [16–18], where inter-
nalized APP is proteolyzed by β-secretase on the 671–672 
amino-acid sequence [19], exposing the N-terminus of Aβ, 
and then γ-secretase works to generate the C-terminus, form-
ing a chain with 37–49 amino-acids named Aβ. Generally, 
Aβ40 (~ 90% of total Aβ) and Aβ42 (~ 5%–10% of total 
Aβ) are predominant [20, 21], and Aβ42 is more prone to 
deposition than Aβ40 due to the strong hydrophobicity of 
the C-terminal amino-acid residue. The unhydrolyzed APP 
is located at the cell surface and is processed by the latter 
means, in which α-secretase cleaves at amino-acids 16–17 
on the Aβ sequence to generate a soluble fragment αAPPs 
and α C-terminal fragments, which are further catalyzed by 
γ-secretase to generate p3 [22, 23].

The mature Aβ along with the C-terminal fragment 
(CTF) is packaged into vesicles or is secreted into extra-
cellular space. Intracellularly, Aβ can be transported in 
both anterograde and retrograde directions. APP [24] as 
well as somatic Aβ [25] are transported in the fast antero-
grade component, while retrograde transport to cell bod-
ies occurs when Aβ is absorbed by synaptic reuptake or is 
produced by APP internalized from distal axon terminals 
[26]. Besides, transport of the compartment containing 
BACE and PS1 requires APP, which may function as a 
kinesin-I membrane receptor [27]. After performing its 
function in the intra- and extra-cellular space (see below), 
Aβ under physiological conditions maintains a balance 

Fig. 1  Schematic representation of the suggested physiological and pathological roles of Aβ in the synapse. Created with https:// biore nder. com/.

https://biorender.com/
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that relies on a clearance mechanism. On the one hand, 
central Aβ can be transported through the blood-brain 
barrier mediated by lipoprotein receptor-related protein 
and receptor for advanced glycation end products. On 
the other hand, Aβ can be degraded by insulin-degrading 

enzymes and neprilysin, or be bound by peripheral sub-
stances [28]. In addition, Aβ reuptake into neurons occurs 
in the presynaptic compartment [29].

Fig. 2  Schematic representation of the biogenesis and metabolism 
of Aβ. (1) Canonical APP processing. APP inserted on the cellular 
membrane is cleaved by α-secretase in an amyloidogenic manner, and 
internalized APP is proteolyzed by β-secretase in subcellular com-
partments to produce Aβ; (2) Transporting. Aβ along with CTF is 
packaged into vesicles or is secreted into extracellular space, and Aβ 
can be transported intracellularly in both anterograde and retrograde 
directions; (3) Functioning at synapse. Aβ performs the function in 

the intra- and extra-cellular space, and the presynaptic nicotinic ace-
tylcholine receptor (nAChR) mediates Aβ reuptake at the synaptic 
terminal; (4) Degrading. Aβ is transported by lipoprotein receptor-
related protein (LRP) and receptor for advanced glycation end prod-
ucts (RAGE). In cells, Aβ can be degraded by insulin-degrading 
enzymes and neprilysin or be bound by peripheral substances. Cre-
ated with https:// biore nder. com/.

https://biorender.com/
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Distribution and Localization

Central Aβ is mainly produced in the brain. The cerebral 
cortex and hippocampus are believed to be regions that are 
enriched in Aβ and start their propagation. In AD brains, the 
Aβ deposits first appear in the neocortex, followed by allo-
cortical regions, diencephalic nuclei, the striatum, and the 
cholinergic nuclei of the basal forebrain [60]; the entorhi-
nal cortex is one of the most vulnerable regions [61]. Simi-
larly, in normal brains, the cortex and hippocampus strongly 
express APP, suggesting the regions where Aβ abounds [62, 
63].

The distribution of Aβ in subtypes of neural cells can 
be revealed by evidence of APP, and β- and γ-secretase. 
Although APP is widely expressed in a variety of tissues and 
cells, previous studies have shown that Aβ is more readily 
metabolized in neurons where BACE1 protein is abundant 
[38, 64], whereas other cell types mainly express BACE2, 
which is not involved in amyloidogenesis [65]. Similarly, 
neuronal APP has been identified as predominantly APP695 
[66]. Besides neurons, glial cells, endothelial cells [67], and 
meninges [68] also express APP. Early studies showed that 
APPs in microglia and astrocyte were expressed in internal 
membranous vesicles [69] as isoforms containing Kunitz-
type protease inhibitors [68, 70–73] rather than APP695. It 
was believed that the main source of Aβ was not glia cells 
but neurons [74], except for type I (GFAP+ A2B5–) astro-
cytes [75] or in a morbid environment [76]. Although this 
evidence is still in vitro, the contribution to the physiological 
Aβ biogenesis of astrocytes should be stressed since high 
levels of Aβ have been detected in human iPSC-derived 
astrocytes [77].

However, the specific neuron type that generates Aβ is 
still controversial. An immunocytochemical analysis has 
shown that APP is more frequently associated with gluta-
matergic rather than GABAergic or cholinergic terminals, 
indicating that endogenous Aβ is predominantly derived 
from excitatory neurons [78]. It has been reported that reduc-
ing neuronal activity using GABA-A receptor enhancers or 
increasing it with GABA-A channel blockers significantly 
reduces or increases Aβ levels (both Aβ40 and Aβ42) [6], 
stressing the contribution of GABAergic neurons to Aβ pro-
duction. Given the high expression of APP in a heterogene-
ous subset of GABAergic interneurons, it has been reported 
that these interneurons take part in ~ 17% of the soluble 
Aβ and ~ 30% of the total hippocampal plaque burden, 
and interneurons are also located in the CA1 region, where 
plaques are most prevalent (accounting for ~ 75%) [79].

Within neurons, Aβ is located in neurites [80, 81]: bio-
chemical, immunostaining, and electron microscopic studies 
have found APP and its fragments [66] in dendrites and axon 
terminals [24, 82]. Further, Aβ is supposed to be primarily 
released by synapses [83, 84]. It has been reported that Aβ 

levels in the brain interstitial fluid are considerably regulated 
by synaptic activity and synaptic vesicle exocytosis, impli-
cating a mechanism on the presynaptic side of the synaptic 
cleft [51]. Notably, neuronal activity-dependent endocytosis 
of APP is involved in ~ 70% of the regulatory mechanisms 
in synaptic Aβ release [52].

In synapses, Aβ is predominantly distributed in the pre-
synaptic membrane [78, 85]. Consistent with this, a meta-
analysis of AD synaptic pathology showed that presynaptic 
markers are affected more than postsynaptic markers [86]. 
In normal or 5XFAD mice, BACE1 is localized to vesicles 
(possibly endosomes) at the ends of hippocampal mossy fib-
ers, and in some cases, BACE1-positive vesicles are located 
near the synaptic active zone, suggesting Aβ production in 
the presynaptic membrane [87]. And it has been found that 
APP and BACE1 interact in biosynthesis and endocytosis, 
particularly along circulating microdomains such as den-
dritic spines and presynaptic boutons [88]. However, it has 
also been shown that in cultured murine neurons, γ-secretase 
is located both presynaptically and postsynaptically [89]. 
Furthermore, a recent super-resolution microscopy study 
found that co-labeling with APP is stronger postsynapti-
cally than presynaptically [90]. Therefore, more evidence 
is needed to clarify the distribution of Aβ at the synapse.

Dosage Effect

Under physiological conditions, the level of Aβ in the human 
brain and cerebrospinal fluid lies in the picomolar range [91, 
92]. As the studied concentrations of Aβ42 ranged from 
femtomolar to millimolar, covering over twelve orders of 
magnitude [93], concentration matters for the physiological 
function of Aβ. According to the existing results, both too 
high and too low Aβ has negative effect on synaptic func-
tion, but only positive regulation has been reported in the 
physiological concentration range.

First, the detrimental effect of high levels of Aβ has been 
analyzed in the brains of AD and AD animal models. In 
these brains, Aβ concentrations tend to be in the nanomolar-
to-micromolar range [94], which is much higher than the 
physiological level, thereby impairing synaptic function 
[95–97]. For example, the senile plaque requires a concen-
tration of 100 nmol/L to aggregate Aβ, while Aβ42 is con-
sidered to gather when the concentration is up to 90 nmol/L 
[98]. Consequently, high concentrations of Aβ oligomers can 
cause the collapse of dendritic spines [84, 99] and disruption 
of LTP [100]. As the toxicity of pathologically overloaded 
Aβ is beyond the scope of this paper, further summary can 
be seen in reviews [14, 101]. Interestingly, inhibition of 
endogenous Aβ does not protect synaptic transmission as 
verso of a phenomenon in AD. The genetic knockout (KO) 
and pharmacological inhibition of Aβ production also have 
adverse effects on synapses. Varying degrees of cognitive 
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deficits and synaptic damage are induced by knocking out 
the APP or BACE1 gene, interfering with siRNA, or apply-
ing an inhibitor to wild-type mice, and interestingly, some 
evidence suggested this damage can be rescued by moderate 
amounts of Aβ (Table1).

Second, however, positive effects on synaptic regula-
tion have gradually been discovered. Several studies have 
shown (Table1) that low concentrations (picomolar) of Aβ 
can enhance LTP [31], increase dendritic spine density [59], 
and promote docking vesicles [36]. The dose-dependence 
was demonstrated in an electrophysiological study at differ-
ent concentrations (100, 200, and 300 pmol/L) of Aβ [49]. 
In another study, the full recovery of potentiation was at 
300 pmol/L Aβ42, the threshold required for normal syn-
aptic plasticity may be ~ 380 pmol/L [31]. Notably, the 
APP mutant A673T reduced Aβ by 40%–50% [102, 103] 
in a laboratory study and by ~ 28% in human plasma [104], 
which is thought to be protective against AD. Compared 
with mutations accelerating AD, the A673T mutation seems 
to reveal Aβ maintains a delicate balance to be a friend or 
foe in a dose-dependent manner.

Although the precise concentrations of Aβ to execute dif-
ferent acts in synaptic function are controversial, according 
to the available evidence, a “hormetic effect” seems to exist 
in Aβ roles: that is, a positive effect in the optimal dose 
range and a negative effect either above or below the range. 
The hormesis hypothesis may be a suitable explanation for 
the etiology of sporadic AD.

Species Differences

Although it was recognized as early as the mid-1980s that 
Aβ is an endogenously-produced peptide, significant depo-
sition of Aβ is often achieved by chimeras in animals with 
humanized mutations, so as to partially mimic the pathology 
of anthropic AD. However, the animal sequences of Aβ are 
distinct from humanized fragments to some extent. Block-
ade of endogenous Aβ with specific antibodies or ablation 
of APP expression impairs LTP and memory function [31]. 
Conversely, neurotransmitter release and recycling of synap-
tic vesicles are enhanced by increased endogenous Aβ1-40 
or Aβ1-42 via interfering with clearance, or by applying 
picomolar amounts of synthetic fragments [53, 55, 105]. 
Therefore, the species differences in Aβ sequences matter 
as they function in synaptic regulation, although this seems 
to be complex.

On the one hand, 96.6% consistency has been identified 
between human and mouse APP, and only three amino-acid 
residues differ in the Aβ sequence [106]. However, endog-
enous picomolar Aβ does not induce  Ca2+ homeostasis and 
synaptic integrity in neurons in mice, while high concentra-
tions of Aβ from Tg2576 primary cortical neurons cause 
 Ca2+ overload and synaptic damage [99]. This may be due to 

the sequence difference itself, or changes that occurred dur-
ing biogenesis [107]. On the other hand, the impaired LTP, 
contextual fear memory, and reference memory induced by 
anti-rodent Aβ antibodies and siRNA against murine APP 
can be rescued by human Aβ42 [31]. Likewise, deletion of 
the Drosophila APP-like protein (Appl) is not lethal but 
has subtle behavioral defects that are partially rescued by 
expressing human APP [108]. Interestingly, the function of 
humanized APP varies with different mutations. Knockout 
of APP results in a significantly shorter body length and a 
short, curly tail in zebrafish. Wild-type human APP, rather 
than Swedish mutant APP, a mutation associated with famil-
ial AD, prevented these phenotypes [109]. In summary, the 
evidence suggests subtle relationships among Aβ sequences 
in various species, which needs more studies to clarify how 
much its functions are distinct or overlap.

Isoforms and Aggregation

More than 20 forms of Aβ can be produced by enzymatic 
reactions and modification. Physiologically, Aβ40 is in the 
majority while Aβ37, Aβ38, Aβ39, and Aβ42 are in the 
minority, and peptides such as Aβ34, Aβ36, Aβ41, and Aβ43 
are detectable in some instances [91, 110, 111]. Aβ segments 
are highly ordered, with 95% sequence identity between 
Aβ42 and Aβ40, except for a C-terminus of increased rigid-
ity at Aβ42, which makes Aβ42 more prone to aggregation 
than Aβ40 [112]. As Aβ varies among monomers, oligom-
ers, fibrils, and mature plaques, it remains difficult to iden-
tify the roles of endogenous pathological Aβ in AD patients. 
A widely held view is that Aβ oligomers, rather than fibrils 
or monomers, are the neurotoxic forms [100]. In the late 
20th century and early 2000s, several studies showed that 
the soluble form of Aβ causes the loss of dendritic spines 
in cultured neurons, whereas fibrils and monomers are rela-
tively inert [113–115]. Even at physiological concentrations, 
Aβ dimers, trimers, but not monomers, are deemed to cause 
synaptic dysfunction and loss [116]. However, the latest 
research on PS1 and PS2 conditional double-KO mice has 
shown that a reduced Aβ42 level is harmful to cognitive 
function, and the cognitive decline can be alleviated by giv-
ing exogenous soluble Aβ1-42 monomers [46].

In addition to the aggregated form, Aβ monomers them-
selves are also thought to have different functions. The 
hydrophobic C-terminal domains associated with oligomer 
formation are closely associated with neurotoxicity, espe-
cially at high levels (μmol/L) of Aβ. However, the hydro-
philic N-terminal domain may mediate the protective action 
of Aβ at physiological levels (pmol/L–nmol/L). It has been 
found that the N-terminal Aβ fragment and shorter Aβ core 
(Aβ10–15) protect against or even reverse the effects of 
Aβ-induced neurotoxicity, memory deficits, and apoptosis 
[57]. Moreover, the rescue effect also occurs in 5XFAD mice 
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and APP/PS1 mice, transgenic models of AD with signifi-
cant Aβ deposition, especially at the level of synaptic plas-
ticity [56]. Furthermore, a recent study has shown that frag-
ments containing Aβ1–16 but not Aβ17–42 increase the size 
of the recycling pool of synaptic vesicles [54]. Therefore, 
it is critical to clarify the specific length of segments and 
aggregative form of Aβ in vivo when we explore its function.

Potential Physiological Roles of Aβ in Regulating 
Synaptic Function

Reduced Endogenous Aβ Impairs Synaptic Function

Blocking Aβ by Antibodies

The absence of Aβ appears to be detrimental to synapses. 
After antagonizing endogenous Aβ42 in rodents using JRF/
rAb2 [31] or 4G8 [30], animals displayed cognitive deficits 
in behavior tests and impairment of LTP in electrophysiol-
ogy. Moreover, injection of human Aβ42 rescued the above 
phenotypes, suggesting that endogenous Aβ plays a crucial 
role in normal LTP and memory. Abramov et al. further 
revealed a mechanism indicating that Aβ may positively 
regulate basal synaptic transmission in a presynaptic and 
history-dependent manner, particularly in excitatory neurons 
[55]. It was reported that a reduction in presynaptic strength 
by 53% ± 6% and inhibited exocytosis of synaptic vesicles 
occurred after using the monoclonal antibody HJ5.1 against 
murine Aβ, and this was reversible after a 30-min washout. 
In fact, the facilitation of vesicle release is diminished by 
both increasing and decreasing the endogenous extracellular 
Aβ concentrations. Similarly, short-term facilitation, which 
is believed to be closely related to memory formation, is not 
only impaired when Aβ excessively increases but when it 
dramatically decreases (> 60%), further suggesting that the 
action of Aβ exhibits dose-dependent [55].

Notably, Aβ is also thought to be involved in memory 
consolidation [30] and the forgetting mechanism by prevent-
ing subsequent modifications to provide adaptive physio-
logical functions [45]. For instance, intracerebroventricular 
injection of 4G8 or knockdown of Fcgr2b, a receptor for 
soluble Aβ, regulates memory maintenance and forgetting 
in a novel object recognition test [117].

Deficiency or inhibition of APP

In early studies, APP-null mutant mice showed weight loss, 
abnormalities in locomotion, astrocyte gliosis at 14 weeks 
[32], and age-dependent cognitive deficits [33], with the 
cognition, altered weakly [34]. Recently, a reduction of LTP 
was reported when APP was knocked out or siRNA [31] 
interference was applied. In primary hippocampal neurons 

from APP-KO mice, there was synapse loss, restricted 
neurite growth, and reduced branching [35]. Interestingly, 
APP released by astrocytes was able to partially rescue this 
defect [118]. Furthermore, the absence of APP was shown 
to increase neuronal excitability. Although the two homolo-
gous analogues of APP, APLP1, and APLA2, do not produce 
Aβ, hippocampal neurons exhibit hyperexcitability when 
all three APP family genes are knocked out simultaneously 
in excitatory neurons [37]. Similarly, genetic loss of APP 
selectively impairs GABA-B receptor-mediated presynaptic 
inhibition and reduces axonal GABA-B receptor expression 
[119], indicating that this is a potential mechanism by which 
APP can regulate synaptic activity. The above studies that 
directly target APP somewhat of a contribution of Aβ to 
synaptic structural development and functions, but the role 
of APP itself should not be ignored.

Deficiency or Inhibition of BACE1

As a rate-limiting enzyme in Aβ processing, using BACE1 
inhibitors seems to be a viable approach to attenuating Aβ 
and then benefiting AD. However, although significantly 
reducing Aβ production and amyloid deposition in the 
brain, BACE1 inhibitors can not improve the cognitive or 
functional decline in subjects with mild-to-moderate AD 
[120–122]. Compared to placebo, individuals who received 
a BACE1 inhibitor showed a dose-dependent cognitive dete-
rioration and treatment-related adverse events, such as neu-
ropsychiatric deficits and hippocampal volume loss in phase 
II and III clinical trials [123, 124], leading to the early ter-
mination of clinical trials. Interestingly, cognition returned 
to baseline levels after cessation of treatment [124]. This 
clinical evidence suggests that, at least in AD, remarkably 
reducing Aβ with a BACE1 inhibitor needs to be approached 
with prudence.

While clinical data are always limited to AD patients, 
pharmacological inhibition or genetic modification of 
BACE1 in wild-type mice can partly reveal the physiologi-
cal roles of Aβ. In animal experiments, gavage of the blood-
brain-barrier-permeable BACE1 inhibitors Verubecestat 
(MK-8931) and Lanabecestat (AZD3293) to mice resulted 
in a dose-dependent decrease in LTP [125]. Oral administra-
tion of the BACE1 inhibitors SCH1682496 or LY2811376 
also caused a dose-dependent decrease in Aβ40 levels, but 
prolonged treatment suppressed dendritic spine formation 
in layer V pyramidal neurons, which recovered after drug 
discontinuation [44]. Consistent with this, BACE1-deficient 
mice exhibit impaired synaptic transmission and plasticity, 
evidenced by reduced LTP in Schaffer collateral branch-to-
CA1 synapses and mossy fiber-to-CA3 synapses [41, 43]. 
In another study, deficits in paired-pulse facilitation and de-
depression implicated in presynaptic release and synaptic 
plasticity were recorded in BACE1(-/-) mice, and the poor 
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performance on tests of cognition was prevented by APP/
PS1 transgenic mice [38]. Moreover, it has been suggested 
that inhibition or deficiency of BACE1 leads to reduced 
docking of synaptic vesicles to the active zone and the ensu-
ing glutamate release [125]. To avoid the developmentally-
relevant phenotypes in germline mutant mice, researchers 
have turned to conditional KO of exon 2 of BACE1 in adult 
mice, in which impairment of synaptic and axonal function 
also occurs [39, 126]. For example, in  BACE1fl/fl; R26Cre-
ERT2-TAM mice, BACE1 is reduced by 90%–95%. and Aβ 
is inhibited by ~ 60%–90%, followed by axonal dysfunction 
[126]. Collectively, the failure of BACE1 inhibitors, which 
cause a strong reduction in Aβ deposition, may largely be 
due to their role in synaptic function.

Given the harmful effects associated with synaptic dam-
age, it appears that complete or significant inhibition of 
BACE1 neutralizes or even overwhelms the anticipated 
therapeutic effect against an Aβ burden. Both clinical [123, 
124] and laboratory [125] results have confirmed that this 
impairment is dose-dependent; in addition, this can be partly 
explained by the fact that germline heterozygous BACE1-
KO mice with 50% of normal BACE1 levels do not differ 
significantly from wild-type mice [38, 127, 128]. Therefore, 
the dosage is vital. Admittedly, however, seizures [129, 130], 
axon guidance [131], impaired peripheral nerve myelina-
tion [132, 133], and low anxiety or depressive tendencies 
[38] have been sequentially reported in BACE1-null mice. 
All these side-effects are consistent with adverse events in 
clinical trials with BACE1 inhibitors [123, 124], although 
some of the phenotypes remain controversial [42]. This indi-
cates that the functions of BACE1 itself should be taken into 
account.

Collectively, Aβ is necessary for maintaining the normal 
synaptic function, reduced endogenous Aβ by genetic or 
pharmaceutical inhibition of Aβ or its biogenic necessities, 
APP and BACE1, disturb synaptic morphology, synaptic 
vesicle transmission, synaptic plasticity, and even cogni-
tive function. Although several studies have revealed a res-
cue effect [30, 31, 47] and implied a dosage effect, more 
detailed and persuasive results are needed to draw firmer 
conclusions.

Interplay: Aβ and Neural Hyperexcitability

Moderately Increased AΒ Enhances LTP and Neuronal 
Excitability

As previously noted, the body produces Aβ endogenously at 
picomolar concentrations, and either too low or too high Aβ 
may impair synaptic function. However, a number of early 
and recent studies have demonstrated that a modest increase 
of Aβ can enhance synaptic transmission and neuronal 
excitability, providing further evidence for its physiological 

function. Puzzo et al. have worked long on the role of Aβ 
in physiological states, particularly in synaptic regulation 
and cognitive function. They initially administered intrahip-
pocampal injections or delivered picomolar levels of Aβ42 
to mouse brain slices, and found that Aβ42 enhanced LTP 
and behavior performance [50]. Given the toxic effects of 
excess Aβ42 in AD, the team investigated the LTP variation 
with different concentrations of Aβ42 in order to clarify the 
dose-effect relationship, which finally took on a bell-shaped 
curve [49]. Besides, the exposure time also matters [48]. 
Furthermore, by inhibiting thiorphan, an enzyme degrad-
ing Aβ in the synaptic cleft, the acute effects of endoge-
nously-released Aβ were investigated at single presynaptic 
terminals and synaptic connections [53, 55]. These studies 
demonstrated that Aβ mediates presynaptic enhancement 
and synaptic transmission by increasing miniature synaptic 
vesicle release and mEPSC frequency, which depends on 
the history of activation. As deprivation of endogenous Aβ 
reduces presynaptic activity, it has been speculated that Aβ 
maintains basal presynaptic activity and spontaneous activ-
ity [55]. In recent years, more studies have focused on the 
aggregated forms and effective sites of Aβ. So, several stud-
ies have shown that it is the N-terminal Aβ, particularly the 
1–16 fragment, that exerts excitatory effects and promotes 
vesicular recycling [54, 58], even reversing the Aβ toxicity. 
Besides, Aβ42 oligomers, commonly regarded as toxic, have 
been reported to enhance synaptic plasticity at picomolar 
concentrations [36, 46, 47].

Since the direct application of soluble Aβ in wild-type 
mice increases neuronal activation [134], what is the situa-
tion in early AD or AD model mice with a mild to moderate 
increase in Aβ?

In vivo  Ca2+ imaging of somatic, dendritic, and axonal 
activity patterns in cortical neurons has shown that both 
healthy ageing and AD-related mutations have neuronal 
hyperactivity [135]. In the hippocampus of young AD model 
mice, hyperexcitable neurons are selectively increased prior 
to plaque formation. In these animal models, acute treatment 
with the γ-secretase inhibitor LY-411575 reduces soluble Aβ 
levels and rescues the neuronal dysfunction, while adminis-
tration of soluble Aβ oligomers re-establishes the excitatory 
state [134]. Here, soluble forms rather than aggregates mat-
ter. However, in the AD mouse model, two-photon data dis-
played that not all neuronal activity is reduced or increased, 
and it is in the vicinity of plaques where part of the neurons 
with hyperactivity are exclusively found [136, 137]. The 
mechanism is attributed to the fact that low levels of Aβ 
enhance glutamate release and regulate  Ca2+ homeostasis, 
particularly in the early stages of AD [99].

Aβ is altered 20–25 years prior to the onset of AD [138, 
139]. Individuals at risk for AD always manifest hyperacti-
vation in memory-related brain regions in functional mag-
netic resonance imaging (fMRI). APOE (apolipoprotein E) 
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ε4 carriers at  25–35 years old present increased co-activa-
tion of the default mode network and a more activated hip-
pocampus during encoding tasks compared to non-carriers 
in fMRI studies [140]. Another study not only found that 
cognitively normal APOE ε4 allele carriers have a greater 
magnitude and greater extent of brain activation than APOE 
ε3 allele carriers during a memory activation task but also 
showed that the extent of baseline brain activation correlated 
with the degree of memory decline after a 2-year longitudi-
nal assessment [141]. In addition, young subjects with nor-
mal cognition who carry the familial AD gene E280A PS1 
mutation, have hippocampal activation before the onset of 
symptoms at ~ 45 years old [142]. The same phenomenon 
has been demonstrated in patients with amnestic mild cogni-
tive impairment (aMCI) [143–146]. Therefore, increased Aβ 
at an early stage may take part in the regulation of cognitive 
function, possibly by inducing synaptic dysfunction, but the 
underlying mechanisms remain to be solved.

Neural Hyperexcitability Promotes Aβ Production

Endogenous Aβ increases neuronal excitability [147], 
while neural activity also regulates Aβ production. Labora-
tory studies have shown that neuronal and synaptic activity 
dynamically regulates soluble extracellular Aβ concentra-
tions [6, 31, 148]. The rapid effects (a timescale of minutes 
to hours) of synaptic activity on Aβ were investigated by 
microdialysis combined with field potential recordings, in 
which it was demonstrated that synaptic activity dynami-
cally and directly regulated Aβ in the brain interstitial fluid 
(ISF) [51]. Further, ISF Aβ levels were elevated by enhanc-
ing synaptic transmission and were prevented by inhibiting 
endocytosis mediated by clathrin. The above evidence sug-
gests that Aβ release depends on synaptic activity mediated 
by endocytosis [52].

Furthermore, clinical phenomena abound suggesting that 
alterations of brain activity are accompanied by changes in 
Aβ level. The regions active in the default state in young 
adults have a higher propensity for Aβ deposition in the 
old with AD [149]. In addition, evidence from epilepsy 
and post-traumatic states provide a good illustration. First, 
patients with epilepsy, particularly late-onset epilepsy of 
unknown etiology, are at higher risk of developing demen-
tia. Simultaneously, seizures have been detected in the early 
stages of AD [150]. As previously noted, because patients 
with aMCI exhibit elevated hippocampal activation in the 
dentate gyrus or CA3 region, Bakker et al. [151] reduced 
hippocampal hyperactivity in aMCI with the antiepileptic 
drug levetiracetam, and, as expected, cognitive function 
was improved. Second, the increased ISF Aβ in 18 patients 
with acute brain injury showed a strong positive correlation 
between Aβ level in the ISF and neurological status [152]. 
The fact that ISF Aβ varies along with neuronal function 

further implies that the extracellular Aβ level is regulated 
by neuronal activity.

Underlying Mechanisms in the Regulation of Aβ 
at Synapses

nAChR

In the central nervous system, the nicotinic acetylcholine 
receptors (nAChRs) are located at synapses in most neuron 
populations [153] as well as being expressed in non-neu-
ronal cells [154–156]. nAChRs are ligand-gated ion chan-
nels. Depolarization of the membrane and excitatory effects 
are caused by the application of nAChR agonists followed by 
opening ion channels, and consequently, increasing perme-
ability to  Na+/K+/Ca2+. The α7 nAChR has the highest  Ca2+ 
permeability among nAChR isoforms, so its relative perme-
ability is comparable to that of the N-methyl-D-aspartate 
receptor (NMDAR) [157]. Overall, α7 nAChRs are involved 
in a variety of biological processes, including neuronal excit-
ability, neurotransmitter release, signal transduction, synap-
tic plasticity, and neurogenesis [158–160].

In the brains of AD patients, the reduction of nAChRs 
is correlated with disease progression [161, 162], and cho-
linesterase inhibitors are widely used in the treatment of 
mild to moderate AD. α7 nAChRs have been found to co-
localize with intracellular Aβ42-positive neurons in the 
post-mortem brain tissue of AD patients [163]. Similarly, 
an increase of Aβ/nAChR-like complexes has been found 
in carriers of APOE ε4 [164], a strong risk factor for AD 
[165]. In fact, nAChRs interact with Aβ under physiologi-
cal conditions, particularly the α7 isoform, which has a high 
affinity for Aβ [166, 167]. Furthermore, 12-month-old α7 
KO mice exhibit an AD-like pathology, in which elevated 
Aβ is thought to be a compensatory response to the deletion 
of nAChRs [168]. It has been reported that low levels of Aβ 
(picomolar the low nanomolar range) activate α7 nAChR 
channels [50, 169] possibly via the nitric oxide/cGMP/
protein kinase G pathway [36]. In contrast, higher levels 
(nanomolar the low micromolar range) reduce the duration 
of ACh-induced activation [170], leading to dysregulation 
of electrical activity at synapses [171]. However, contro-
versially, nicotine, another ligand of nAChRs, is reported 
to improve cognition and protect neurons from Aβ damage 
by agonizing nAChRs [172, 173]. This paradox has been 
explained by the suggestion that different cellular pathways 
and downstream mechanisms are initiated. That is, nicotine 
acts through PI3K–AKT, JAK–2/STAT-3, and other mech-
anisms to exert protective effects, whereas Aβ is thought 
to initiate intracellular signaling cascades like the MAPK 
kinase pathway and leads to cell death [174].
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In addition, nAChR subtypes other than α7 participate the 
synaptic mechanism of Aβ. For instance, α7β2, a variant of 
α7, is more sensitive to pathological concentrations of Aβ 
[175]; mice with β2nAChR deletion display neurodegen-
eration [176] despite the amelioration of spatial reference 
memory in APP/PS1 mice by β2 deficiency [177]; and α4β2 
nAChR is particularly associated with episodic memory and 
working memory [178], while selective co-activation of α7 
and α4β2 nAChRs is also sufficient to reverse Aβ-induced 
AMPA receptor dysfunction and LTP alterations. Due to the 
structural differences of nAChRs [179], Aβ might interact 
with specific subtypes to varying degrees. Aβ and nAChRs 
form complexes through multiple sites [180] to mediate the 
physiological effects of Aβ or toxicity to cholinergic neu-
rons. For example, when cell lines expressing α4β2 nAChRs 
are exposed to nanomolar Aβ 42, the expression of genes 
related to  Ca2+ signaling and axonal vesicle transport is 
upregulated while genes related to metabolic, apoptotic, or 
DNA repair pathways are downregulated [181]. Notably, the 
results did not mimic physiological stations because the high 
concentration of Aβ and overexpressed nAChR receptors 
were used in this research.

The complexity of relationships between Aβ and nAChRs 
is evident, but the dose of Aβ applied and the aggrega-
tion state still need to be considered [56, 182]. Although 
nAChRs are weakly expressed in AD, they maintain normal 
or even increased mRNA (for review see [174]). Besides, the 
extreme susceptibility of nAChRs to desensitization may 
partially explain the paradox between nicotine and Aβ, or 
even the variation of the Aβ dosage effect.

The N-methyl-D-aspartate Receptor

The NMDAR belongs to the ionotropic glutamate receptor 
family, and it enhances synaptic transmission and plastic-
ity [183] mediated by  Ca2+/calmodulin-dependent protein 
kinase II [184, 185], which triggers a signaling cascade. The 
NMDAR has been found to be critical for neurons [186, 
187]. Antagonism of NMDARs gives rise to apoptosis and 
degeneration, while moderate activation of this receptor 
benefits neuron survival; however, the excessive activation 
of NMDARs causes  Ca2+ overload, resulting in excitotox-
icity. Therefore, both inactivation and overactivation are 
potentially harmful [188, 189]. In addition, it has recently 
been suggested that synaptic NMDARs and extrasynaptic 
NMDARs play very different roles [190, 191], where the 
former is thought to be beneficial and the latter to mediate 
toxic effects [183, 192–195].

Accumulation of Aβ oligomers has been observed in 
the synapses of glutamatergic neurons in AD brains [196, 
197]. Although plenty of studies have demonstrated that 
Aβ mediates neurotoxicity by directly or indirectly regulat-
ing NMDARs [6, 198–202], and NMDAR antagonists can 

rescue Aβ-induced damage [116, 203], interestingly, genetic 
deletion of the NMDAR subunit GluN3A results in neuro-
pathological changes like AD, including psychological/cog-
nitive deficits and amyloid-β/tau pathology [204]. Moreover, 
blocking NMDARs may reduce neurodegeneration [205]. 
Therefore, as a non-competitive, specific, low-affinity 
NMDAR antagonist with a fast closing rate, memantine is 
used to treat moderate to severe AD [206] since it can reduce 
excitotoxicity while preserving normal NMDAR activity at 
the same time. Notably, it has been shown that memantine 
preferentially targets the extrasynaptic NMDAR [193] which 
is regarded as a detrimental characteristic of AD.

The multiple possibilities for NMDARs in terms of dose, 
subunit type, and subcellular localization make research on 
the relationship between Aβ and NMDARs difficult. Com-
plete inhibition, low to mild activation, and over-activation 
have dramatically distinct effects. Besides, different subunits 
vary: for example, GluR2A and GluR2B each interact with 
Aβ to cause opposite results [207]. Moreover, careful inves-
tigation is needed, for example, on the roles of D-serine and 
glycine, co-agonists of synaptic NMDARs and extrasynaptic 
NMDARs, respectively [208]; which downstream pathways 
are activated by NMDARs with different subcellular locali-
zations; whether or not NMDARs are translocated on the 
cell membrane.

Vesicular Circulation

The synaptic vesicle cycle (SVC), comprising vesicle traf-
ficking, docking, fusion, transmitter release, and regenera-
tion of fresh vesicles [29], plays a crucial role in the biol-
ogy of synaptic terminals by way of recurrent exocytosis 
and endocytosis [209]. Due to the strong positive correla-
tion between cognitive decline and synaptic loss [13, 210], 
research on synapses exposed to Aβ is increasing [14, 211]. 
A convergence of results points out a reciprocal relationship 
between Aβ and the SVC. For one thing, Aβ regulates the 
SVC via dosage effect, sites of action (pre- and post-syn-
aptic), and pattern of action (local autocrine or paracrine), 
for another, the SVC also affects the production of Aβ [29].

Studies so far suggest that the SVC can be regulated by 
Aβ. The absence of Aβ impairs vesicular docking in active 
zones [125]. Picomolar or low levels [28] of Aβ have been 
shown to enhance synaptic transmission by upregulating the 
presynaptic neurotransmitter release probability (Pr) [55]. 
Furthermore, Lazarevic et al. systematically studied the 
concentration effect in Aβ regulation at the synapse. There, 
they found that the SVC decreases when Aβ is depleted by 
modulating production while the SVC increases by using an 
endogenous Aβ degradation inhibitor [53, 54].

On the contrary, a high level of Aβ inhibits Pr [96]. Either 
natural or synthetic Aβ oligomers but not monomers [116] 
at high doses inhibit synaptic transmission and plasticity 
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[212–214]. Intracellular administration of nanomolar Aβ42 
significantly cuts down LTP, reduces mEPSC amplitude, 
and decreases the number of intrasynaptic vesicles and/or 
Pr [215]. Moreover, direct injection of Aβ42 oligomers into 
presynaptic axon terminals results in a blockade of synaptic 
transmission [216], and even acute exposure to Aβ oligomers 
reduces postsynaptic current frequency by ~ 50% [116]. A 
series of studies have proposed that Aβ is involved in many 
steps of the SVC. First, Aβ perturbs the formation of fusion 
complexes, as reported in postmortem AD brains, where 
the SNARE complex, which is essential in driving synaptic 
vesicle fusion in the presynaptic active zone, is significantly 
reduced [217]. Second, the interaction of SNARE protein 
vesicle-associated protein 2 (VAMP2) with synaptophysin 
is necessary and sufficient to recruit VAMP2 to synaptic 
contacts, and it is disrupted by internalized Aβ42 [218]. 
Further, the ability of clathrin-dependent endocytosis is a 
critical step in the SVC, and a wealth of evidence, including 
genomics and proteomics, shows that such endocytosis is 
severely disturbed in AD [219–222]. In Aβ oligomer-treated 
neurons, only 50% of the released vesicles are recycled back 
in time, leading to a considerable delay in readily-releasable 
pool recovery [223]. In particular, atypical cyclin-dependent 
kinase 5 (CDK5) [224] plays a major role in regulating the 
size of the synaptic vesicle pool by targeting synaptic vesicle 
endocytosis [225], and consistently, CDK5 is significantly 
higher in postmortem AD brains [226, 227]. Although sub-
stantial studies have been devoted to the mechanisms of Aβ 
toxicity, from another perspective, some of these results also 
imply that Aβ is a potent target for presynaptic regulation 
both in physiology and pathology. Together, endogenously 
released Aβ peptides are crucial for maintaining a normal 
SVC in the functional range.

Vice versa, the SVC takes part in Aβ production [22, 
23]. Indeed, non-amyloid cleavage of APP occurs on the 
cell membrane, while amyloid cleavage of APP by β- and 
γ-secretase is facilitated in vesicles, leading to Aβ produc-
tion and release [19]. This process has been shown to be 
upregulated by increased neuronal activity and clathrin-
dependent endocytosis [51, 52], thereby promoting Aβ pro-
duction and even affecting the ratio of Aβ42 to Aβ40 [55].

Other Mechanisms

Other than the above mechanisms, glial cells, energy 
metabolism, and other factors participate in the role of Aβ 
in synapses through direct or indirect regulation. (1) Micro-
glia. On the one hand, microglia can be activated by Aβ 
and then mediate synapse pruning and elimination [228]; 
on the other hand, the activated immune system influences 
the aggregation of Aβ to cause diverse effects [229] (e.g. 
microglia secrete galectin3 to promote the oligomeriza-
tion of Aβ [230]). (2) Astrocytes. Astrocytes participate in 

the processes of synapse engulfment [231], besides which, 
they secrets APOE, a risk factor of sporadic AD, to result in 
synaptic degeneration by enhancing the abnormal aggrega-
tion of Aβ at synapses [232, 233]. (3) Energy metabolism. 
The synapse is vulnerable to energy deficiency as a highly 
energy-consuming structure, especially in vesicle cycling 
[12, 234]. It has been shown that subthreshold amyloid dep-
osition or the distribution of Aβ is correlated with increased 
aerobic glycolysis in early adulthood [235–237], whereas 
aerobic glycolysis decreases in the normal aging brain [238].

Perspectives

The underlying role of Aβ in regulating synaptic functions 
seems to have being revealed gradually. However, sev-
eral key limitations need to be noted. (1) Animal models. 
Although diverse animal models have been developed to 
study AD and Aβ, most of them are genetically-manipu-
lated mice carrying mutations of human familial AD [106, 
239–241]. Species differences should be taken into account 
when they poorly mimic the pathological process of human 
AD. In fact, human-derived Aβ fragments are more likely 
to be deposited, and hAPP transgenic mice without expres-
sion of endogenous murine APP display more plaques and 
faster Aβ deposition [230, 242]. (2) The role of APP or 
BACE1. APP performs its functions concurrently with its 
various products including Aβ, all of which also join in the 
regulation of synapses. For example, sAPP contributes to 
synaptic function [243, 244], partly as a ligand to regulate 
synaptic transmission [245]. Possibly, Aβ does not act alone 
[246]. Similarly for BACE1, in models with BACE1 dele-
tion, impaired axonal guidance is associated with reduced 
hydrolysis of CHL1 (cell adhesion molecule L1-like) [131], 
and synaptic damage is associated with seizure protein 6 
[247], both of which are substrates of BACE1. (3) The com-
plexity of Aβ itself. All the following factors matter in Aβ 
functions: length of fragments [248], concentration, intra-
cellular or extracellular localization, and aggregation state 
[47]. For instance, nanomolar concentrations of intra-axonal 
oligomeric Aβ42 (o Aβ42), but not oAβ40 or extracellular 
oAβ42, acutely inhibit synaptic transmission in squid [6]. 
Besides, the effect of Aβ varies with time under both physi-
ological [48] and pathological conditions [249]. Population 
studies have shown that Aβ deposition does not increase all 
the time, while CSF Aβ42 is significantly negatively corre-
lated with disease progression [139]. All the above reveals 
that Aβ plays different roles through a dynamic balance of 
time and state. Generally, limited by the complicated bio-
physical characteristics of Aβ aggregation [250], the state of 
Aβ in the laboratory is not always comparable with that in 
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vivo. Therefore, research on the physiological mechanisms 
of Aβ still needs a more rigorous and unified paradigm.

In conclusion, although the history of research on the 
mechanism of Aβ is long, the role of Aβ itself under physi-
ological conditions is still poorly understood. Successive 
failure in clinical trials has brought investigators back to the 
original and intrinsic question: what is the physiological role 
of Aβ ?  Undeniable evidence has established that Aβ plays a 
key role in AD, and this appears to imply an equally impor-
tant role in physiological memory regulation. As an essen-
tial structural base of memory formation, the synapse is a 
promising target for research. However, research is difficult 
because of the above challenges. In the future, we should 
design effective approaches to imitate the physiological Aβ 
environment as much as possible, and more animal mod-
els with increased homologous Aβ should be developed, to 
reveal the physiology and understand the pathology in AD.
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