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Abstract Primary familial brain calcification (PFBC) is an 
inherited neurodegenerative disorder mainly characterized 
by progressive calcium deposition bilaterally in the brain, 
accompanied by various symptoms, such as dystonia, ataxia, 
parkinsonism, dementia, depression, headaches, and epi-
lepsy. Currently, the etiology of PFBC is largely unknown, 
and no specific prevention or treatment is available. During 
the past 10 years, six causative genes (SLC20A2, PDGFRB, 
PDGFB, XPR1, MYORG, and JAM2) have been identified 
in PFBC. In this review, considering mechanistic studies 
of these genes at the cellular level and in animals, we sum-
marize the pathogenesis and potential preventive and thera-
peutic strategies for PFBC patients. Our systematic analysis 
suggests a classification for PFBC genetic etiology based on 
several characteristics, provides a summary of the known 
composition of brain calcification, and identifies some 
potential therapeutic targets for PFBC.
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Introduction

Brain calcification is a common neuropathological phenom-
enon in the clinic. Its prevalence increases with age (from 
~1% in young individuals to 20%–30% in the elderly >60 
years) [1–4]. Other than genetic defects, a variety of factors, 
including endocrine disorders (hypo/hyperparathyroidism 
and hypothyroidism), intracranial atherosclerosis, infections, 
brain neoplasms, neurotoxicity, physical injury, and inflam-
mation have been reported to promote or even cause brain 
calcification [5, 6].

Primary familial brain calcification (PFBC), formerly 
known as Fahr’s disease or idiopathic basal ganglia calcifi-
cation, is an inherited and intractable disorder mainly char-
acterized by progressive bilateral calcification distributed 
in the basal ganglia region and/or other areas of the brain 
[7]. PFBC can serve as an ideal model in which to study 
the pathogenesis and potential prevention and treatment of 
brain calcification. PFBC can result in a variety of clinical 
symptoms, ranging from occasional migraines to serious 
symptoms including motor disorders (parkinsonism, tremor, 
and dystonia), cognitive disorders (memory impairment, 
executive dysfunction symptoms, and mental retardation), 
and neurological disorders (depression, affective disorder, 
and insanity), but nearly one-third of the carriers of causa-
tive gene mutation are asymptomatic [3, 8, 9]. Due to the 
high degree of clinical heterogeneity, the clinical symptoms 
are not suitable criteria for a diagnosis of PFBC. In contrast, 
the clinical diagnosis mainly relies on brain calcification 
identified by computed tomography (CT). The most typical 
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feature in the neuroimages of PFBC patients is symmetrical 
bilateral calcification in the basal ganglia, thalamus, frontal 
cortex, or cerebellum. However, the levels of calcium (Ca), 
phosphorus (P), alkaline phosphatase, parathyroid hormone, 
and other serum biochemical indicators are normal in PFBC 
patients [3, 10, 11]. The overall prevalence of PFBC is esti-
mated to be 0.21%–0.66% [12, 13].

It has been >170 years since the initial report of a case 
of bilateral basal ganglia calcification by Delacour in 1850 
[14]. The genetic etiology of PFBC was largely unknown 
before the identification of SLC20A2 as the first associated 
gene in 2012 by Prof. Jing-Yu Liu’s lab [11]. A few patho-
logical studies found that the main component of brain cal-
cification is hydroxyapatite [15, 16]. Calcification particles 
mainly occur in adventitial vessel cells and sometimes in 
glial cells, as observed by transmission electron microscopy. 
Some spherical and hemispherical calcium deposits have 
been located in the vascular adventitia and connected to the 
filamentous processes of surrounding cells, as observed by 
scanning electron microscopy [17]. Furthermore, in some 
PFBC cases, large spherical calcification particles, mainly 
calcium phosphate, have been reported to be attached to 
the capillary wall and located in the media of some large 
arteries, and reactive astrocytes and microglia have been 
found to accumulate around the calcification sites [18, 19]. 
A few neurofibrillary tangles and dystrophic neurites in the 
medial temporal lobe, rarely spreading senile plaques, and 
a few amyloid deposits in vascular walls have been detected 
by silver staining and immunohistochemical staining [20]. 
Overall, these studies demonstrate that brain calcifications 
are mostly associated with blood vessels and sometimes 
involve neurons or glial cells, but the calcification process 
is still largely unknown.

Since 2012, mutations in 6 genes have been associated 
with PFBC, including the 4 autosomal dominant genes 
SLC20A2, PDGFRB, PDGFB, and XPR1, and the 2 autoso-
mal recessive genes MYORG and JAM2 [11, 21–25]. Recent 
cohort studies have expanded the causative gene mutation 
spectrum by identifying 248 different variants, including 125 
in SLC20A2 (57 missense, 15 nonsense, 11 splicings, 30 
small deletions, 4 small insertions, 1 intronic, and 7 gross 
deletions), 15 in PDGFRB (14 missense and 1 start loss), 
26 in PDGFB (9 missense, 4 nonsense, 5 splicings, 1 small 
deletion, 1 small insertion, 2 start loss, 2 stop loss, 1 gross 
deletion, and 1 complete deletion), 14 in XPR1 (13 mis-
sense and 1 small insertion), 59 in MYORG (34 missense, 9 
nonsense, 9 small deletions, 6 small insertions, and 1 small 
indel), and 8 in JAM2 (2 missense, 1 nonsense, 1 splicing, 2 
small deletions, 1 start loss, and 1 gross deletion). The fre-
quencies of these genes counted from 555 individuals with 
PFBC were 59.78%, 5.98%, 12.68%, 5.98%, 13.59%, and 
1.99%, respectively [9, 26–39] (http:// www. hgmd. cf. ac. uk/ 

ac/ index. php), but the spectrum may vary among different 
cohorts and countries. Some mechanistic studies of these 
causative genes at the cellular level and in animals have 
been reported, contributing to the understanding of PFBC 
pathogenesis.

In this review, we focus on studies of the biological func-
tions of the causative genes SLC20A2, PDGFRB, PDGFB, 
XPR1, MYORG, and JAM2 to summarize PFBC patho-
genesis and potential strategies for PFBC prevention and 
treatment.

The Genetic Etiology of PFBC

Based on the functions of the reported causative genes 
(SLC20A2, PDGFRB, PDGFB, XPR1, MYORG, and JAM2), 
the genetic etiology of PFBC can be classified into two cat-
egories: imbalance of inorganic phosphate (Pi) and dysfunc-
tion of the neurovascular unit (NVU) in the brain. The Pi 
levels in the cerebrospinal fluid (CSF) from PFBC patients 
are known to be an overall increase compared with controls 
[40], implying that impairment of cerebral Pi homeostasis is 
a major factor in brain calcification. Mutations of SLC20A2 
and XPR1 resulting in cellular Pi imbalance can be direct 
contributors to the increased CSF Pi levels, and mutations 
of PDGFRB, PDGFB, MYORG, and JAM2 leading to NVU 
dysfunction may be indirect contributors to the increased 
CSF Pi levels.

Pi Imbalance

In the brain, Pi homeostasis is closely related to changes 
in Pi levels in CSF, brain interstitial fluid (ISF), cerebral 
blood, and intracellular fluid, the regulation of which is 
mainly dependent on Pi transporters. Since CSF occurs in 
the ventricles and subarachnoid space, it is easier to acquire 
and test than other cerebral fluids, and therefore is the 
currently best choice to reflect changes in Pi levels in the 
brain. In both blood and CSF, there is a dynamic shuttle of 
phosphate between its free inorganic form and various Pi-
containing compounds, which results in different outcomes 
in the measurement of inorganic Pi concentrations by dif-
ferent kits from different suppliers. Using a clinical spectro-
photometry method and a malachite green and ammonium 
molybdate-based colorimetric approach, the concentration 
of CSF Pi is reported to be maintained at ~0.6 mmol/L in 
humans and ~0.9 mmol/L in mice [41, 42].

SLC20A2

SLC20A2 encodes type III sodium-dependent phos-
phate  (Na+/Pi) transporter 2 (PiT2), which was originally 
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identified as a receptor for amphotropic murine retroviruses 
and soon shown to be able to transport extracellular Pi into 
the cell depending on excess sodium ions with a 2:1  Na+:Pi 
transport stoichiometry [43–45]. In vitro, SLC20A2 muta-
tions impair the cellular Pi transport activity of PiT2, leading 
to the accumulation of extracellular Pi [11, 46], indicating 
that the formation of brain calcification may be associated 
with cerebral Pi dyshomeostasis. Recently, changes in PiT2 
expression levels have been shown to affect not only Pi 
uptake but also some Pi efflux [47]. In animal models, Dros-
ophila cannot be used for mechanistic studies of PFBC due 
to embryonic lethality resulting from a deficiency of dPiT 
(the protein homologous to human PiT2) [48]. Mice with 
PiT2 deficiency develop widespread brain calcification and 
exhibit abnormal multisystem phenotypes, including pla-
cental calcification, fetal growth restriction, developmental 
delay, lean body mass, lower bone quality and strength, skel-
etal malformation, a high likelihood of eye defects, impaired 
spatial learning, memory, and sensorimotor gating [49–52].

Furthermore, compared with wild-type mice, homozy-
gous Slc20a2-knockout (Slc20a2−/−) mice display a dramati-
cally elevated Pi level in CSF [42, 53], consistent with the 
increase in CSF Pi level in PFBC patients with SLC20A2 

mutations [40]. Considering that CSF flowing along the 
paravascular spaces exchanges metabolites with parenchyma 
ISF [54, 55], it is reasonable to expect that the ISF Pi level 
also undergoes an increase similar to CSF Pi. In addition, 
PiT2 is widely and strongly expressed in neurons, astrocytes, 
oligodendrocytes, microglia, vascular smooth muscle cells 
(VSMCs), and vascular fibroblast-like cells (Fig. 1) [56] 
(https:// www. prote inatl as. org/), and deficiencies or muta-
tions of PiT2 in these cells probably have impaired Pi trans-
port activity leading to the accumulation of extracellular ISF 
Pi. Moreover, PiT2-deficient VSMCs have been shown to 
present high Pi-induced calcification and elevated expres-
sion of Runx2 and osteopontin (OPN) [57]. Thus, the high 
extracellular Pi environment may induce intracranial VSMC 
calcification, possibly via transdifferentiation of VSMCs into 
osteoblast-like cells, an initial phase similar to the minerali-
zation process during bone development [57–59].

How do Pi levels increase in CSF in response to PiT2 
deficiency or SLC20A2 mutations? CSF is predominantly 
secreted by the choroid plexus in the lateral, third, and 
fourth ventricles, and may also be associated with some 
poorly-defined sources such as ISF, ependyma, and capil-
laries [60–62]. In the brain, type III transporters (PiT1 and 

Fig. 1  Expression of genes in mouse NVU-related cells [56] (https:// 
www. prote inatl as. org/). A–F Single cell RNA-seq of the mouse 
brain database showing the expression of (A) Slc20a2, (B) Xpr1, 
(C) Pdgfrb, (D) Pdgfb, (E) Myorg, and (F) Jam2 in NVU-related 
cells. PC, pericytes; vSMC, venous smooth muscle cells; aaSMC, 
arteriolar smooth muscle cells; aSMC, arterial smooth muscle cells; 

MG, microglia; FB1, type 1 vascular fibroblast-like cells; FB2, type 
2 vascular fibroblast-like cells; OL, oligodendrocytes; EC1, type 1 
endothelial cells; EC2, type 2 endothelial cells; EC3, type 3 endothe-
lial cells; vEC, venous endothelial cells; capilEC, capillary endothe-
lial cells; aEC, arterial endothelial cells; AC, astrocytes.

https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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PiT2) are the major detectable  Na+/Pi transporters [63, 64], 
which are highly tissue-specifically expressed in the choroid 
plexus. PiT1 is largely expressed in the vascular endothelium 
of the choroid plexus facing the blood, while PiT2 is mainly 
expressed in the apical membrane region facing the CSF 
[53, 63], implying that PiT1 contributes to the transport of 
Pi from blood to CSF and PiT2 contributes to the transport 
of Pi from CSF to blood. A single impairment of PiT2 may 
largely reduce Pi transportability from CSF to blood, which 
leads to Pi accumulation in the CSF. On the other hand, 
the likely increased ISF Pi level may also contribute to the 
increased CSF Pi level via substance exchange in the CSF-
ISF system.

Mechanistically, at the plasma membrane, PiT2 and PiT1 
are mostly in the form of homodimers, but some are in the 
form of Pi-regulated heterodimers, which may mediate 
extracellular Pi signaling [65]. Under high extracellular Pi 
conditions, PiT2 deficiency increases VSMC calcification 
by reducing the expression of osteoprotegerin (OPG), sup-
plementation of which can attenuate calcification [57]. OPG 

is an anti-calcification factor that inhibits NF-κB/RANKL/
RANK (nuclear factor kappa B/receptor activator of NF-κB 
ligand/receptor activator of NF-κB) signaling, which plays 
important roles in Pi-induced osteochondrogenic differen-
tiation and vascular calcification [66, 67]. In contrast, PiT1 
plays a role in promoting high Pi-induced osteochondrogenic 
differentiation and VSMC calcification via extracellular 
regulated protein kinases 1/2 (ERK1/2) phosphorylation 
independent of Pi uptake. Knockdown of PiT1 abrogates 
high Pi-induced ERK1/2 signaling, which is rescued by sup-
plementation with transport-deficient PiT1 mutants or wild-
type PiT1 (Fig. 2) [68, 69].

XPR1

XPR1 encodes xenotropic and polytropic murine virus recep-
tor 1 (XPR1), which was originally identified as a retroviral 
receptor [70, 71], and later shown to be able to export intracel-
lular Pi out of the cell; XPR1 is the only known Pi exporter 
in metazoans [72]. The amino terminus of XPR1 contains an 

Fig. 2  Potential mechanism of Pi transport and calcification regu-
lated by Pi transporters at the cellular level. Intracellular Pi levels are 
in a dynamic balance regulated by the Pi importers PiT2/PiT1 and 
the Pi exporter XPR1. Under physiological conditions, PiT2 inhibits 
osteochondrogenic differentiation and calcification by activating OPG 
(osteoprotegerin) and inhibiting NF-κB/RANKL/RANK signaling. 
However, increased extracellular Pi can induce osteochondrogenic 
differentiation and calcification by activating PiT1/ERK1/2 signaling. 
XPR1-dependent Pi efflux is regulated by XPR1/InsP8 signaling, defi-
ciency of which increases intracellular Pi and induces osteochondro-

genic differentiation and calcification. Excessive intracellular Pi can 
be stored by the synthesis of polyP via IP6Ks and 5-InsP7. ERK1/2, 
extracellular regulated protein kinases 1/2; DIPP, diphosphoinositol 
polyphosphate phosphohydrolase;  InsP8, 1,5-bis-diphosphoinositol 
2,3,4,6-tetrakisphosphate; PPIP5K, diphosphoinositol pentakispho-
sphate kinase; IP6Ks, inositol hexakisphosphate kinases; 5-InsP7, 
5-diphosphoinositol 1,2,3,4,6-pentakisphosphate; 1-InsP7, 1-diphos-
phoinositol 1,2,3,4,6-pentakisphosphate;  InsP6, inositol hexakisphos-
phate; polyP, intracellular inorganic polyphosphate.
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SPX (named after the proteins SYG1, PHO81, and XPR1) 
domain that was recently identified as an intracellular sensor 
of Pi level and homeostasis in both plants and animals [73, 
74]. In vitro studies found that mutations in the SPX domain 
of XPR1 or short interfering RNA-mediated knockdown of 
XPR1 lead to decreased Pi export [23], suggesting that mis-
sense mutations in XPR1 in PFBC patients may also be asso-
ciated with impaired brain Pi homeostasis. Recently, knock-
out of XPR1 in human cell lines was reported to cause not 
only a significant reduction in Pi efflux but also to markedly 
down-regulate Pi uptake, suggesting a potential synergistic 
mechanism to coordinate Pi uptake and export. Moreover, 
when incubated in a high Pi medium, cultured human Saos-2 
cells with XPR1 deficiency show increased expression of 
osteocalcin, osteonectin, and alkaline phosphatase, and finally 
accumulation of calcification deposits [75].

In animal models, xpr1b (the orthologue of human XPR1 
in zebrafish) mutations in zebrafish lead to a lack of micro-
glia in the brain and an osteopetrotic phenotype, but no data 
on brain calcification have been reported [76]. Heterozygous 
Xpr1-knockout mice older than 1 year fail to show a brain 
calcification phenotype (unpublished data), and the homozy-
gotes die perinatally [77]. Complete knockout of Xpr1 seems 
to not be a good choice for generating a PFBC model, but 
knock-in or conditional knockout of Xpr1 in cerebral cells 
such as neurons and astrocytes may be worth attempting. 
In other tissue studies associated with Pi transport, XPR1 
deficiency in mice results in severe placental calcification, 
reduced placental Pi exchange, lower Pi levels in amniotic 
fluid and serum, and decreased fetal skeletal mineral content 
[77]. Conditional inactivation of Xpr1 in the renal tubule 
of mice impairs renal Pi reabsorption, which is accompa-
nied by glycosuria, aminoaciduria, calciuria, albuminuria, 
hypophosphatemic rickets, reduction in NaPi-IIa/NaPi-IIc 
expression, and vertebral osteomalacia [78]. These results 
indicate that XPR1 deficiency impairs tissue Pi homeostasis 
and may be an inducible factor of ectopic calcification.

In the brain, the only known Pi exporter, XPR1, is widely 
expressed in various cerebral cells and is particularly highly 
expressed in neurons, astrocytes, and microglia (Fig. 1) [56] 
(https:// www. prote inatl as. org/). It must be expected that 
mutations in XPR1 impair Pi balance in cerebral cells, but 
the detailed effects of Pi levels in CSF and ISF are largely 
unknown. In addition to the lack of direct measurements of 
CSF and ISF Pi levels, studies of the tissue-specific expres-
sion of XPR1 in the structures of substance exchange sys-
tems, such as the choroid plexus of the blood-CSF barrier 
(BCB) and blood-brain barrier (BBB), are lacking.

How does XPR1 regulate Pi homeostasis and calcification 
at the cellular level? Recent studies have shown that XPR1-
dependent Pi efflux is specifically regulated by a member 
of the inositol pyrophosphate (PP-InsP) signaling family, 
1,5-bis-diphosphoinositol 2,3,4,6-tetrakisphosphate  (InsP8), 

which binds to the SPX domain of XPR1 [75]. The multiple 
upstream pathways of  InsP8, including diphosphoinositol 
pentakisphosphate kinases (PPIP5Ks), 5-diphosphoinosi-
tol 1,2,3,4,6-pentakisphosphate (5-InsP7), inositol hexaki-
sphosphate kinases (IP6Ks), and inositol hexakisphosphate 
 (InsP6), indirectly affect XPR1-dependent Pi efflux [47, 75, 
79]. Deficiency of XPR1/InsP8 signaling results in an ele-
vated intracellular Pi environment, which contributes to the 
induction of an osteoblastic phenotype and calcification in 
Saos-2 cells [75]. In addition, inhibition of XPR1 leads to 
the accumulation of intracellular inorganic polyphosphate 
(polyP) [80], a major Pi storage molecule, the synthesis of 
which is also associated with IP6Ks and 5-InsP7 (Fig. 2) 
[81–84].

NVU Dysfunction

The concept of the NVU was first described in 2001 to 
emphasize the unique relationship between brain cells and 
cerebral blood vessels (https:// www. ninds. nih. gov/ About- 
NINDS/ Strat egic- Plans- Evalu ations/ Strat egic- Plans/ Stroke- 
Progr ess- Review- Group). The NVU comprises neurons, 
glial cells (including astrocytes, microglia, and oligoden-
droglia), and vascular cells (including endothelial cells, 
pericytes, and VSMCs) [85, 86]. Specifically, the tubular 
structure of the cerebral capillaries is composed of endothe-
lial cells. Adjacent endothelial cells are connected by tight 
junctions and adherens junctions. Tight junctions are mainly 

Fig. 3  Structural diagram of an NVU (neurovascular unit). Endothe-
lial cells form the tubular structure of the cerebral capillaries via the 
connection of tight junctions and adherens junctions. The basement 
membrane is embedded between endothelial cells and pericytes. 
Astrocytic end-foot processes ensheath the vascular wall. Microglia 
and neurons surround the vascular wall.

https://www.proteinatlas.org/
https://www.ninds.nih.gov/About-NINDS/Strategic-Plans-Evaluations/Strategic-Plans/Stroke-Progress-Review-Group
https://www.ninds.nih.gov/About-NINDS/Strategic-Plans-Evaluations/Strategic-Plans/Stroke-Progress-Review-Group
https://www.ninds.nih.gov/About-NINDS/Strategic-Plans-Evaluations/Strategic-Plans/Stroke-Progress-Review-Group
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composed of occludin, claudins, and junctional adhesion 
molecules (JAMs). The outer edges of endothelial tubes are 
surrounded by pericytes and astrocytic end-feet (Fig. 3) [85, 
87, 88]. The BBB is centrally located within the NVU and 
consists of a continuous endothelial cell membrane structure 
and coverage structures of endothelial cells by the basement 
membrane and pericytes [89–91].

An NVU, as the minimal functional unit in the brain, plays 
a vital role in regulating cerebral blood flow and maintain-
ing BBB integrity, dysfunction of which impairs the normal 
substance exchange between blood and cerebral parenchyma. 
In humans, the Pi level in CSF (~0.6 mmol/L) is significantly 
lower than that in serum (~1.1 mmol/L) [41]. If the BBB is 
impaired, the increased BBB permeability probably leads to a 
high concentration of blood Pi leaking into the brain.

PDGFRB and PDGFB

PDGFRB encodes platelet-derived growth factor receptor beta 
(PDGFR-β), and its ligand protein, platelet-derived growth 
factor B (PDGF-B), is encoded by PDGFB [89, 92–94]. 
PDGFR-β is a transmembrane tyrosine kinase receptor for 
platelet-derived growth factor family members (PDGF-A, B, 
C, and D). In the mammalian brain, PDGFR-β is expressed 
mainly by pericytes, VSMCs, and vascular fibroblast-like 
cells [92, 95, 96]. On the contrary, PDGFB is predominantly 
expressed by vascular endothelial cells (vECs) and neu-
rons (Fig. 1) [56]. As a paracrine factor, secreted PDGF-B 
homodimer enables vECs to recruit chemotactic PDGFR-
β-expressing pericytes and VSMCs, thereby promoting the 
envelopment or wrapping of the cerebral vessel network by 
pericytes and VSMCs to consolidate the cellular basis of BBB 
integrity [97, 98]. Deficiency of PDGF-B/PDGFR-β signaling 
leads to microvascular pericyte deficiency, endothelial hyper-
plasia, increased vessel diameter, abnormal endothelial cell 
shape and ultrastructure, the abnormal cellular distribution 
of junctional proteins (occludin and vascular endothelial-cad-
herin), and morphological signs of increased vascular perme-
ability [92, 93]. Adult mice with partial inactivation of Pdgfb 
or Pdgfrb also present with defects in pericyte generation, 
which impairs BBB integrity and increases BBB permeability 
due to the activation of endothelial transcytosis and astrocytic 
end-foot polarization [89, 91].

In vitro, missense mutations in PDGFR-β interfere with 
the activation of PDGFR-β and its downstream effectors 
via reduced autophosphorylation or protein levels [99]. 
Similarly, several functional studies subsequently demon-
strated that PDGFR-β autophosphorylation, in response to 
PDGF-BB (the dimer of PDGF-B) stimulation, is abolished/
reduced due to PDGFB or PDGFRB mutations [99–101], 
indicating that a functional loss of PDGF-B/PDGFR-β may 
be the cause of PFBC. Interestingly, several studies have 
reported that PDGF-BB induces calcification in VSMC lines 

accompanied by increased expression of PiT1 in the endo-
plasmic reticulum and an increased Pi transport rate [102, 
103]. Based on these findings, Nicolas et al. put forward the 
opposite hypothesis that an activating mutation in PDGF-
B/PDGFR-β may lead to brain calcification due to altera-
tions in the PDGF-PiT1 pathway directly inducing vascular 
calcification [22]. However, no further evidence has sup-
ported this hypothesis. Recently, PDGF-BB was shown to 
increase intracellular Pi uptake by regulating the membrane 
migration of PiT-1 by activating protein kinase B (AKT) 
signaling in human neuroblastoma SH-SY5Y cells [104], 
indicating that increased PDGF-B/PDGFR-β signaling may 
contribute to intracellular Pi uptake in the central nervous 
system (CNS), but it is unclear whether decreased PDGF-B/
PDGFR-β signaling in the CNS has an influence similar to 
SLC20A2 mutations on normal intracellular Pi uptake and 
leads to extracellular Pi accumulation.

As both homozygous Pdgfb- and Pdgfrb-knockout mice 
die perinatally [105, 106], these mouse lines are not good 
models in which to simulate brain calcification. However, 
the mutant line Pdgfbret/ret, with a disrupted PDGF-B reten-
tion motif that impairs its maturation and binding to the 
membrane [107], develops progressive calcification in the 
brain [21]. Another mouse line, Pdgfb−/−; R26P+/0 mice, 
with a 50% level of rescue by transgenic re-expression of 
human PDGF-B in the endothelium [89], develop smaller 
and fewer lesions but with a similar histological appearance 
and anatomical location [21], suggesting a strong correlation 
of endothelial PDGFB deficiency with brain calcification. 
Pathologic studies have shown that with respect to the levels 
in control mice, Pdgfbret/ret mice display a more profound 
reduction in pericyte coverage and a greater increase in BBB 
permeability than Pdgfb+/−; Pdgfrb+/− or Pdgfrbredeye/redeye 
mice [101]. These results imply that brain calcification result-
ing from a reduction in PDGF-B/PDGFR-β signaling may 
be associated with the degree of pericyte loss and/or BBB 
impairment, which contributes to the high concentration of 
blood Pi leaking into the brain. In a neuropathological study 
of one PFBC case, impaired BBB integrity with substance 
leakage from blood to the brain was identified in calcified 
brain areas [18], which supports the above speculation. How-
ever, the possibility that the integrity of the BBB in this case 
was destroyed by increased calcification cannot be excluded. 
Another study showed that PFBC patients carrying PDGFB 
mutants display a slight increase in the CSF Pi level, further 
supporting the aforementioned phenomena and speculation 
[40].

MYORG

MYORG encodes a putative myogenesis-regulating gly-
cosidase (MYORG), which contains an N-terminal trans-
membrane domain and a C-terminal predictive glycosidase 
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domain. It is widely expressed in many tissues [108], but its 
molecular function remains largely unknown. The homozy-
gous nonsense mutations in PFBC patients suggest a causal 
association of the functional loss of MYORG with brain 
calcification [24]. In animal models, homozygous Myorg-
knockout (Myorg−/−) mice are viable and display calcifi-
cation in the thalamus at 9 months of age, which is much 
later than that reported in Slc20a2−/− and Pdgfbret/ret mice. 
In contrast to the enriched expression in perivascular cell 
types by other causative genes, MYORG has been found 
to be predominantly expressed in astrocytes (Fig. 1) [56], 
and is mainly localized to the endoplasmic reticulum [24]. 
Astrocytes function as essential metabolic intermediates 
between neuron-centralized intra-parenchyma circumstances 
and NVU-connected blood circulation, the dysfunction of 
which is frequently found to cause abnormal BBB func-
tion and neuroinflammation in neurodegenerative diseases 
[109]. Thus, it is interesting to explore whether the function 
of astrocytes is impaired in both Myorg-deficient mice and 
human patients, which in turn might result in the disturbance 
of NVU permeability, or otherwise decoy causative changes 
of surrounding pericytes and smooth muscle cells, paving 
the way for calcification development.

JAM2

JAM2 encodes junctional adhesion molecule 2 (JAM2), 
a member of the JAM family, and is a key component of 
the tight junctions between adjacent endothelial cells in 
the NVU [25]. In the brain, JAM2 is expressed mainly in 
endothelial cells and astrocytes and to a lesser degree in 
vascular fibroblast-like cells (Fig. 1) [56]. Functional studies 
of JAM2 variants have demonstrated that JAM2-associated 
PFBC results from the effects of JAM2 loss-of-function [25, 
110]. Homozygous Jam2-knockout (Jam2−/−) mice present 
with no calcification but prominent vacuolation with reac-
tive astrogliosis and neuronal density reduction in the brain 
at the age of 6 or 18 months. Interestingly, in the spinal 
cord of Jam2−/− mice, in addition to vacuolation, mineral-
ized deposits are widely evident in the grey matter [110]. 
In addition to mutations in JAM2, biallelic mutations in the 
tight junction proteins occludin and JAM3 (a member of the 
JAM family and a counter-receptor of JAM2 [111]) have 
also been reported to result in brain calcification in con-
genital syndromes in humans [112, 113]. JAM3 mutations or 
deficiencies in humans and mice also result in hemorrhages 
in the brain and hydrocephalus [114, 115], suggesting that 
JAM3 is associated with the regulation of BBB integrity. 
Taken together, we speculate that JAM2 mutants probably 
impair the tight junctions between adjacent endothelial cells 
in the BBB and/or BCB, leading to increased BBB and/or 
BCB permeability with high Pi leakage from the blood to the 
brain, which contributes to an increased Pi level in the CSF.

In addition to regulating the formation of tight junctions, 
JAMs participate in the immune cell response by regulat-
ing the transendothelial migration of leukocytes [116, 117], 
but this has not yet been linked to calcification. Much more 
research on the relationship between the functional duality 
of JAMs and brain calcification is needed.

In summary, two characteristics of PFBC initiation have 
been identified: Pi imbalance (SLC20A2 and XPR1) and 
NVU dysfunction (PDGFRB, PDGFB, MYORG, and JAM2). 
Cerebral Pi dyshomeostasis seems to be a common cause of 
PFBC. Mutations in SLC20A2 and XPR1 directly impair the 
Pi transport capacity of cerebral cells. Mutations in PDG-
FRB, PDGFB, MYORG, and JAM2 impair the integrity of 
the BBB and/or BCB, leading to blood Pi leakage into the 
brain (Figs. 4, 5).

The Basis of Calcification in PFBC

The above studies on the genetic etiology of PFBC revealed 
that it originally results from a Pi imbalance and NVU dys-
function in the brain, but the further mechanisms by which 
these defects lead to brain calcification remain unclear. Here, 
we further analyze the possible explanations by summariz-
ing the composition of calcification in PFBC, which may 
also provide some potential biological markers and thera-
peutic targets for PFBC.

Early pathological examination revealed that the main 
component of brain calcification in PFBC patients is 
hydroxyapatite  (Ca10[PO4]6[OH]2) [15, 16]. In addition, 
trace metals such as Al, Ar, Co, Cu, Mo, Fe, Pb, Mn, Mg, 
Ag, and Zn have also been detected in the calcium deposits 
in PFBC patients [16, 118, 119]. In 1987, Kobayashi et al. 
found that the calcium deposits were composed of a mix-
ture of calcium salts, iron, glycoproteins, and mucopoly-
saccharides in one PFBC patient [17]. In 2005, Miklossy 
et al. identified the elements of calcium deposits via com-
bined scanning electron microscopy and X-ray spectrom-
etry, revealing a high level of Ca (19.97%) and P (10.08%), 
indicative of hydroxyapatite; C (18.11%) and O (50.49%), 
indicative of organic substances; and a small amount 
of Na (0.51%), K (0.24%), S (0.20%), and Mg (0.39%) 
[18]. In 2018, Jensen et al. analyzed calcium deposits in 
Slc20a2−/− mice and found increased contents of Ca, P, Fe, 
Zn, Al, Mg, S, O, and N compared with the levels in non-
calcified areas [120]. These studies indicate that calcium 
deposits in PFBC patients include a mixture of inorganic 
and organic substances (Fig. 4).

Anomalous Deposition of Inorganic Substances

The inorganic substances in brain calcification are mainly 
hydroxyapatite, as well as low-level incorporation of 
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metal elements, including  Cu2+,  Zn2+,  Fe2+, and  Mg2+. 
Intriguingly, constituent analysis of CSF from three PFBC 
patients detected increased concentrations of  Cu2+,  Zn2+, 
 Fe2+, and  Mg2+, with  Ca2+,  Na+, and  Cl− levels remain-
ing unchanged [40, 121]. Although increased Pi levels 
have been shown to be a major driving factor of PFBC 
pathogenesis,  Ca2+ seems to be a passive component in 
hydroxyapatite formation. Increased levels of  Cu2+,  Zn2+, 
 Fe2+, and  Mg2+ in CSF are also commonly found in some 
other neurodegenerative diseases such as amyotrophic lat-
eral sclerosis, Alzheimer’s disease (AD), and Parkinson’s 
disease [122–124]. Whether and how an abnormality of 
metal minerals is engaged in the onset and/or progression 
of these diseases is an interesting question.  Cu2+ and  Zn2+ 

are potentially associated with amyloid beta protein (Aβ) 
42 plaque formation, oxidative stress, and neurodegenera-
tion [124, 125]. Similarly,  Fe2+ has been suggested to be 
involved in the release of oxidative factors and inflamma-
tion leading to neurodegeneration [126–128]. In humans, 
plasma  Cu2+,  Zn2+, and  Fe2+ concentrations are much 
higher than those in CSF [124]. Disrupted BBB integrity 
is also associated with increased levels of  Cu2+,  Zn2+, and 
 Fe2+ in the brains of AD patients [129]. Thus, combined 
with studies showing BBB impairment in a PFBC patient 
and Pdgfrb/Pdgfb-deficient mice [18, 89, 91], increased 
levels of  Cu2+,  Zn2+, and  Fe2+ in PFBC patients might 
be associated with increased BBB permeability leading 
to blood leakage. Interestingly, amyloid precursor protein 

Fig. 4  Putative mechanism of 
brain calcification induced by 
increased Pi levels. In the brain, 
increased Pi levels may induce 
the ossification of NVU cells 
contributing to the produc-
tion of organic substances for 
calcification. On the other 
hand, increased Pi levels may 
contribute to combination with 
 Ca2+ to form hydroxyapatite. 
After a series of combinations 
of organic substances and 
inorganic substances including 
hydroxyapatite,  Cu2+,  Zn2+, 
 Fe2+, and  Mg2+, calcified crys-
tals form and grow larger. HAP, 
hydroxyapatite; APP, amyloid 
precursor protein.
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(APP) and amyloid precursor-like protein 2 (APLP2), 
which harbor binding sites for  Cu2+ and  Zn2+ [130], accu-
mulate in calcified nodules [131]. This feature may con-
tribute to  Cu2+ and  Zn2+ deposition in calcifications.

Anomalous Changes in Organic Substances

Many studies have shown that ectopic calcification is not a 
simple passive process but a complex and highly-regulated 
active process involving the activation of cell signaling path-
ways and the production of calcification inhibitors and hor-
mone regulation [132, 133], some of which may be detected 
in the organic components of calcium deposits. Few early 
reports described organic substances in brain calcifications, 
and systematic studies are particularly rare. Recently, Nahar 
et al., using liquid chromatography with tandem mass spec-
trometry, identified the protein components in brain calcifi-
cations in Pdgfbret/ret mice, and found 10 proteins exclusively 
in calcified nodules, including three bone-formation inhibi-
tors, fetuin A (alpha 2-Heremans–Schmid glycoprotein, 
AHSG), matrix gla protein (MGP), and OPN [134–136]; 
an ancestral mineralization protein sparc-like 1 (SPARCL1) 
[137]; three neuronal function-associated proteins APP, 
APLP2, and the neurosecretory protein nerve growth factor 
inducible (VGF) [138, 139]; two hormonal activity-associ-
ated proteins secretogranin-1 (CHGB) and chromogranin A 
(CHGA) [140]; and the lysosomal proteinase cathepsin Z 
(CTSZ) [141]. Immunohistochemical staining has confirmed 

the presence of OPN, APP, APLP2, SPARCL1, VGF, and 
CHGA in calcium deposits in Pdgfbret/ret mice, and similarly, 
APP, APLP2, and SPARCL1 have also been found in cal-
cium deposits in Slc20a2−/− mice [131].

Among the organic content in calcium deposits, four 
proteins (AHSG, MGP, OPN, and SPARCL1) are well-
known to modulate bone formation and homeostasis [136, 
142–144], implying that brain calcification undergoes simi-
lar pathological processes. In addition, Zarb et al. analyzed 
the cellular circumstances of calcified nodules in Pdgfbret/ret 
mice and showed the presence of bone matrix proteins (col-
lagen I, osteocalcin, and OPN) in calcification deposits. 
Moreover, the cells around calcium deposits were found to 
express markers of osteoblasts (RUNX2), osteoclasts (cath-
epsin K and RANK), and osteocytes (sclerostin). Consist-
ent with this, osteogenic niches surrounding brain calcium 
deposits have also been reported in 3 PFBC patients car-
rying mutations in PDGFRB (p.Arg695Cys), SLC20A2 
(p.Met1_Val652del), or SLC20A2 (p.Ser113*) [145]. In 
addition, accumulated reactive astrocytes and microglia 
have been observed around calcium deposits in one PFBC 
case and Pdgfbret/ret mice [18, 131, 145]. Reactive astrocytes 
abnormally express the bone matrix protein OPN and the 
osteocyte marker podoplanin accompanied by a neurotoxic 
response and oxidative damage [145, 146], indicating that 
reactive astrocytes play an important role in the forma-
tion of an osteogenic environment but remain difficult to 
identify as promoters or inhibitors of brain calcification. 

Fig. 5  Structural diagram of 
the potential pathogenesis and 
potential prevention/treatment 
of PFBC. BBB, blood-brain 
barrier; BCB, blood-CSF bar-
rier; OPN, osteopontin; AHSG, 
fetuin A; MGP, matrix gla 
protein; SPARCL1, an ancestral 
mineralization protein sparc-like 
1; APP, amyloid precursor pro-
tein; APLP2, amyloid precur-
sor-like protein 2; RUNX2, 
runt-related transcription fac-
tor-2; RANK, receptor activator 
of nuclear factor kappa B.
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Reactive microglia abnormally express the osteoclast mark-
ers cathepsin K and RANK and have been demonstrated to 
be beneficial for pathological brain calcification; their defi-
ciency intensifies brain calcification via triggering receptors 
expressed on myeloid cells 2 (TREM2) [146]. Considering 
that VSMCs can be induced by high Pi to undergo differen-
tiation to osteoblast-like cells and form calcification [58, 59], 
brain calcification associated with osteogenic environments 
and vessels suggests that ossification of some cerebral cells 
induced by increased Pi levels in the brain might be a com-
mon process in PFBC.

The proteins associated with neuronal function APP, 
APLP2, and VGF are associated with AD, especially 
APP, which is key to the formation of Aβ plaques in AD 
[147–149]. However, these proteins deposited in calcified 
areas lack a β-pleated sheet conformation and structural 
regularity [146], in contrast to Aβ plaques in patients with 
AD. Recently, APP and APLP2 messenger RNAs have been 
shown to be highly expressed in bone [150]. APP and Aβ (a 
small proteolytic fragment of APP) have also been identi-
fied in the bone, largely in osteocytes and the bone matrix. 
Furthermore, Aβ enhances the differentiation and activation 
of osteoclasts [151, 152]. Thus, the accumulation of APP 
and APLP2 in brain calcification seems to be caused by a 
mechanism similar to that of AHSG, MGP, and OPN accu-
mulation, contributing to the formation of osteogenic envi-
ronments. Another protein component of calcium deposits, 
CTSZ, a lysosomal proteinase cathepsin, is produced in both 
osteoclast and osteoblast lineages [153–155], suggesting that 
CTSZ in calcification areas also contributes to the formation 
of osteogenic environments. Nahar et al. hypothesized that 
VGF and the hormonal activity-associated proteins CHGB 
and CHGA passively adhere to calcifications because the 
expression of these proteins is mostly restricted to neurons 
[131]. However, more experiments are needed to identify the 
key proteins because ectopic calcification is highly regulated 
by hormones.

In summary, analysis of the composition of calcifica-
tion in PFBC reveals that brain calcification formation is 
a complex process involving various inorganic and organic 
substances. The discovery of osteogenic environments in 
the calcified brain suggests that cell ossification induced by 
increased Pi levels in the brain seems to be a common pro-
cess of calcification in PFBC (Fig. 4).

Prevention and Treatment of PFBC

Although PFBC has been studied for >170 years, no specific 
prevention or treatment has been discovered. The identifi-
cation of causative genes (SLC20A2, PDGFRB, PDGFB, 
XPR1, MYORG, and JAM2) and studies of its pathogenesis 

may provide some potential therapeutic targets for the pre-
vention and treatment of PFBC.

Treatment Cases

Currently, the clinical treatment of PFBC patients is mainly 
symptomatic-oriented. Due to the large clinical heteroge-
neity of PFBC symptoms, different medications are used, 
including antipsychotics, anticonvulsants, antidepressants, 
mood stabilizers, antiparkinsonism-directed and anti-
incontinence-directed medications, analgesics, and benzo-
diazepines [156]. However, only a few patients have shown 
improved control of their symptoms (e.g., Tololeski et al. 
reported an adolescent patient for whom quetiapine treat-
ment successfully attenuated acute psychosis, and Uno et al. 
reported a middle-aged patient who was relieved of recurrent 
psychosis with risperidone) and no positive effect on brain 
calcification has been shown; moreover, the risk of symptom 
relapse is high [26, 157].

Effective therapies to control the progress of brain calci-
fication have rarely been reported. Treatment with nimodi-
pine, a calcium channel blocker in the CNS, has been unsuc-
cessful in attenuating PFBC [10]. Bisphosphonates, with 
a structure analogous to that of pyrophosphoric acid, are 
mainly used in the clinical treatment of osteoporosis, and 
they can bind to hydroxyapatite and preferentially localize 
to the site of active bone remodeling, reducing the process 
of bone resorption by inhibiting osteoclast activity [158]. 
In a small number of PFBC patients, oral bisphosphonate 
administration has been reported to improve symptoms, 
but brain calcification was not reduced, as indicated by CT 
imaging. Loeb described a middle-aged patient treated with 
disodium etidronate, a bisphosphonate, which produced a 
twofold improvement in his speech and gait rate but without 
affecting spasticity, dystonia, ataxia, or brain calcification 
[159]. In addition, Loeb et al. reported that two patients 
treated with disodium etidronate presented with a significant 
reduction in seizure frequency and headaches but no reduc-
tion in calcium deposit size, as determined by CT imaging 
[160]. Recently, Oliveira et al. reported 7 patients treated 
with alendronate, another bisphosphonate, and reported 
improvements and stability without obvious side-effects in 
some of these patients, particularly younger patients, but no 
specific change in brain calcification was identified by CT 
imaging [161]. Although the effectiveness of bisphospho-
nates for PFBC needs to be confirmed with more evidence, 
they may be potentially effective drug options for the non-
specific treatment of PFBC conditions.

Speculation on Potential Prevention and Treatment

Hypovitaminosis D was reported in a PFBC patient carry-
ing an SLC20A2 mutation [162], and vitamin D receptor 
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(VDR) knockout in mice resulted in symmetrical thalamic 
calcification [163], suggesting that deficient vitamin D or its 
receptor is associated with brain calcification. Furthermore, 
SLC20A2 expression is positively regulated by vitamin D, 
which reduces calcification in vitro [164]. Thus, vitamin D 
may be a potential treatment for PFBC patients, but the det-
rimental effects of high levels of vitamin D should be noted.

In general, the frequency of nonsense variants in 
SLC20A2, PDGFRB, PDGFB, XPR1, MYORG, and JAM2 
reaches 13.2% [9]. Considering that PFBC patients carry 
these variants, Peters et al. suggested that ataluren, an agent 
with the potential for treating a broad range of genetic dis-
eases caused by nonsense variants [165], might be a poten-
tial option [166].

PDGFR-β is a tyrosine kinase receptor, and its activa-
tion further activates many downstream signaling pathways. 
Considering this, Lemos et al. speculated that PDGFRB 
might be an interesting therapeutic target for PFBC patients 
with PDGFB or PDGFRB mutations and that drugs modu-
lating the PDGF-B/PDGFR-β signaling pathways might be 
potential treatments [156]. However, animal experiments 
and case studies to confirm this possibility are lacking, and 
the mechanism by which the downstream pathways affected 
by PDGF-B/PDGFR-β impairment cause calcification also 
needs further study.

Analyses of the genetic etiology of PFBC have prompted 
the hypothesis that cerebral Pi dyshomeostasis may be a 
common cause of PFBC. In addition, in SLC20A2-deficient 
brains of both humans and mice, significant elevation of 
CSF Pi levels has been detected and is increasingly accepted 
as a marker for PFBC [40, 42, 53]. Thus, we inferred that a 
high level of brain Pi might be a therapeutic target for PFBC 
prevention. Reducing Pi intake through reasonable dietary 
intervention or restoring the normal Pi transport by supple-
mentation of PiT2 expression with viral vectors and gene 
editing technology in the brain may be promising research 
directions.

Cell ossification occurs in PFBC and seems to be a 
common process. Reactive microglia have been shown to 
be beneficial for inhibiting pathological brain calcifica-
tion, possibly through matrix degradation mediated by the 
TREM2-dependent protein cathepsin K (Fig. 4). Hence, 
inhibiting cell ossification and increasing bone resorption-
promoting protein release might be interesting lines of 
research for exploring PFBC treatment.

Here, we have summarized the current research pro-
gress of prevention and treatment for PFBC in two aspects, 
reported treatment cases and potential prevention and 
treatment.

Conclusions and Perspectives

In conclusion, the studies analyzed three aspects of PFBC 
research mainly based on functional research on the 
reported causative genes in the past decade. First, two char-
acteristics of the genetic etiology of PFBC are classified: 
Pi imbalance and NVU dysfunction in the brain; in addi-
tion, cerebral Pi dyshomeostasis seems to be a common 
cause of PFBC that can be directly influenced by mutations 
in SLC20A2 and XPR1 and may be indirectly influenced 
by mutations in PDGFRB, PDGFB, MYORG, and JAM2. 
Second, based on studies of the composition of calcified 
nodules, cell ossification induced by increased Pi levels in 
the brain seems to be a common process of calcification 
in PFBC. Third, the current research status of PFBC treat-
ment is summarized as follows: no specific prevention or 
treatment is available, and we highlight several potential 
prevention/treatment options and therapeutic targets: (1) 
bisphosphonates target calcification and may be effective 
against some PFBC symptoms; (2) vitamin D may be effec-
tive for PFBC patients with SLC20A2 mutations and hypo-
vitaminosis D because it increases SLC20A2 expression; 
(3) ataluren is an agent with the potential for suppressing 
nonsense mutations and may be effective for PFBC patients 
with nonsense mutations; (4) as an interesting therapeutic 
against PDGFR-β, drugs modulating PDGF-B/PDGFR-β 
signaling may be potential treatments for PFBC patients 
with PDGFB or PDGFRB mutations; (5) as a therapeutic 
target to re-establish cerebral Pi homeostasis, reducing Pi 
intake or restoring the normal Pi transport in the brain may 
be interesting research directions; and (6) inhibiting the 
process of cerebral cell ossification may be an interesting 
therapeutic option to inhibit calcification in PFBC (Fig. 5).

To effectively control the progress of brain calcification 
and accompanying brain insults, more studies are needed. 
First, the genetic basis in ~40% of PFBC patients remains 
unclear [9, 26–39, 167]; the application of novel genetic 
sequencing technology is critical to identify new causative 
genes to expand the genetic spectrum of PFBC. Second, 
dissection of the cellular and molecular mechanisms under-
lying brain calcification requires inter-disciplinary col-
laborative efforts to establish a systematic understanding, 
especially of the signaling network of PFBC-associated 
genes and the osteogenic hypothesis. Third, in addition to 
mouse models of PFBC, novel animal models, especially 
large animal models (e.g., rat and monkey), are needed 
for the simulation of PFBC pathogenesis and translational 
research. Fourth, more studies on the mechanism of action 
of potential drugs and the identification of the targets of 
potential drugs will help apply the treatment of mono-
genic PFBC to the treatment of common brain calcifica-
tion treatments.
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