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Introduction

Neuropathic pain is a chronic condition that results in pain 
hypersensitivity and allodynia (pain responses to normally 
innocuous stimuli) after nerve damage that can occur after a 
host of insults, such as physical injury, diabetes, or autoim-
mune diseases [1]. When tissue damage has healed, however, 
neuropathic pain does not resolve [2]. A growing body of 
evidence indicates that microglia, as central nervous sys-
tem (CNS) resident immune cells, play an important role in 
the pathogenesis of neuropathic pain [3–5]. Indeed, specific 
ablation or inhibition of microglia prevents the development 
of neuropathic pain [6–8]. In addition, recent progress high-
lights intimate microglia-neuron interactions in chronic pain 
[5, 9].

Microglia undergo functional changes during chronic 
pain states. In homeostatic conditions, microglia dynami-
cally respond to changes in the microenvironment with their 
remarkably motile processes [10–13]. However, in response 
to peripheral nerve injury, microglia become activated and 
promote chronic pain. A major known mechanism for micro-
glia to contribute to this process is through the release of 
cytokines and other mediators, such as interleukin-1 beta 
(IL-1β), IL-6, tumor necrosis factor alpha (TNFα), pros-
taglandin  E2, brain-derived neurotrophic factor, and reac-
tive oxygen species. These signals can lead to chronic pain 
[5, 14]. In addition to diffusible molecules, microglia also 
contribute to chronic pain hypersensitivity by adopting new 
functional roles, such as altered transcriptional activation 
and phagocytosis [9]. However, it is important to note that 
microglial activation during chronic pain states is not always 
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detrimental because they are indeed heterogeneous [15, 
16]. Recent findings identified a subpopulation of activated 
microglia playing a beneficial role in resolving chronic pain 
after peripheral nerve injury [17].

The cellular mechanisms of microglia in chronic pain 
have been investigated through pharmacological approaches. 
For example, systemic inhibition of microglia and mac-
rophages by the broad inhibitor minocycline attenuates 
pain hypersensitivity [7, 8]. However, minocycline also 
has inhibitory effects on other cells, such as neurons, astro-
cytes, and T-cells [18–20]. Inhibitors of microglia through 
the colony-stimulating factor 1 receptor (CSF-1R), such as 
PLX5622 [21, 22] and neutralizing colony-stimulating fac-
tor 1 (CSF-1) antibody, also reduce microglial activation 
and proliferation in the spinal dorsal horn after nerve injury 
and alter pain responses [21, 23]. Specifically, mechanical 
allodynia and thermal hyperalgesia are attenuated in CSF-1 
inhibitor-treated mice with chronic pain [21, 23–26]. How-
ever, CSF-1R inhibition induces off-target effects in other 
peripheral immune cells expressing the receptor [22, 27].

The importance of spinal microglia in the development 
of chronic pain has also been demonstrated by using genetic 
approaches to remove key microglial genes such as P2X4 
[28], P2X7 [29], CX3CR1 [30], TRPM2 [31], P2Y12 [32], 
and Hv1 [33]. In addition, multiple Cre lines including 
CX3CR1 [34], Sal1 [35], TMEM119 [36], HexB [37], and 
P2Y12 [38] have been developed to target microglia. How-
ever, the development of advanced tools that provide tem-
poral accuracy and spatial specificity is still needed. In the 
past few years, precise and selective methods for manipu-
lating microglia have been used to study their involvement 
in chronic pain. Here, we introduce recent advances in how 
microglia control the pathophysiology of pain by using 
chemogenetic and optogenetic approaches.

Chemogenetic Approaches in Microglia

Chemogenetic approaches refer to the expression and acti-
vation of DREADDs [39, 40]. DREADDs allow the selec-
tive interrogation of multiple G-protein-coupled receptor 
(GPCR) signaling cascades, including Gq, Gi, and Gs in var-
ious cell types [40]. DREADDs can be specifically activated 
in a cell type of choice by locally or systemically applying 
a specific ligand, such as clozapine N-oxide (CNO), with 
minimal off-target effects. Chemogenetic approaches have 
historically been used in neurons to interrogate the neuronal 
circuitry underlying behaviors [41–43]. Similarly, numerous 
studies have also applied DREADD approaches in astrocytes 
to investigate their physiological alterations in GPCR-medi-
ated  Ca2+ signaling [44], memory [45–47], neuroinflamma-
tion [48], and pain [49, 50]. Microglia express a number of 
GPCRs that are important for various microglial functions 

[51]. In particular, the microglial signature P2Y12 receptor 
is a Gi-coupled GPCR involved in the chemotaxis of pro-
cesses towards ATP/ADP, which can occur after injury [52] 
and during the development of neuropathic pain [32, 53, 54]. 
Of the available chemogenetic GPCRs, Gi- (e.g. hM4Di) and 
Gq-signaling (e.g. hM3Dq) DREADDs have been used to 
investigate the functions of microglia in the CNS (Fig. 1).

Chemogenetic Manipulation of CNS Microglia

Several studies have used chemogenetic approaches in 
microglia (Table 1). The Watkins’s lab was the first to use Gi 
and Gq DREADDs in rat microglia by viral expression [55, 
56]. Spinal microglia were transfected with adeno-associ-
ated virus (AAV) 9 containing DREADDs driven under the 
CD68 promoter. AAVs have been successfully used to target 
various cell types in the CNS. However, microglial transduc-
tion in vivo is complicated, and it may not achieve robust 
transfection levels [57]. However, in the Watkins studies, 
microglial DREADD transfection by AAV led to functional 
DREADD expression in the spinal cord. Microglial Gi DRE-
ADD activation can attenuate pro-inflammatory signaling 
including through the nuclear factor of the kappa light poly-
peptide gene enhancer in B-cell inhibitor alpha, NLR family 
pyrin domain-containing 3 (NLRP3), and IL-1β [55]. On the 
other hand, Gq DREADDs mediate microglial activation and 
cytokine release [58, 59], potentially through the mobiliza-
tion of intracellular  Ca2+. Thus, Gq DREADD activation 
induces pro-inflammatory mediator production, while Gi 
DREADD activation inhibits lipopolysaccharide- (LPS) and 
chemokine (C-C motif) ligand 2-induced inflammatory sign-
aling in vitro [56]. One potential confounder in these studies 
is the possibility that microglia might react with an immune 
response to AAV transfection [57]. However, it has been 
reported that AAV vectors (in contrast to adenovirus-based 
vectors) cause minimal immune reactions [60]. Nonethe-
less, careful use of adequate controls (DREADD expression 
without DREADD ligand administration) is essential to dis-
tinguish the effects of chemogenetic manipulation from the 
side effects of immune reaction to viral infection.

Other studies have more commonly applied gene knock-
in approaches to selectively express Gi/Gq DREADD in 
microglia [61–63]. The C-X3-C motif chemokine receptor 
1 (CX3CR1) is highly expressed by microglia in the CNS 
and cells of mononuclear origin in the periphery [64]. The 
use of constitutive Cx3cr1cre/+:R26LSL-hM4Di/+ mice results 
in Gi DREADD expression in all CX3CR1-expressing 
cells including microglia and monocytes [61]. To exclu-
sively express Gi DREADD in microglia but not peripheral 
monocytes, researchers have used inducible Cx3cr1creER/+:R
26LSL-hM4Di/+ mice [63]. Due to the fact that blood  CX3CR1+ 
cells have rapid turnover while microglia are longer-lived, 
it is possible to achieve greater microglial specificity by 
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waiting for cell turnover after tamoxifen administration [34]. 
Indeed, DREADDs are expressed and co-localized only with 
 Iba1+ microglia in the spinal cord and brain 4 weeks after 
tamoxifen injection [63]. Using these genetic knock-in mice 
expressing Gi/Gq DREADDs in microglia, further studies 
have interrogated their function and underlying mechanisms 
in chronic pain (Fig. 2) [61–63].

In addition to pain research, chemogenetic methods were 
also recently applied to microglia to investigate their func-
tions in inflammation, vascular interaction, and aversive 
behaviors. For example, inducible Cx3cr1creER/+:R26LSL-

hM3Dq/+ mice were used for the functional expression of 
microglial Gq DREADDs [65]. Gq DREADD activation 
induced intracellular  Ca2+ elevation and the phagocytosis of 
FluoSpheres in primary microglia. Unexpectedly, chronic Gq 
DREADD activation attenuated the LPS-induced increase of 
pro-inflammatory cytokines, including TNFα, IL-1β, and 
IL-6 in the mouse brain. In line with these results, chronic 
Gq DREADD activation in microglia robustly increased 
social exploration 2 h after LPS-induced inflammation [65]. 
Recently, a Cre-inducible lentiviral vector has been used to 
express DREADDs in dorsal striatal microglia of Cx3cr-
1creER/+ mice [66]. Using this approach, both microglial Gq 
DREADD activation in naïve mice or LPS administration led 
to conditioned place aversion. Interestingly, microglial Gi 
DREADD activation before LPS administration prevents the 
development of conditioned place aversion without affect-
ing markers of systemic inflammation [66]. Chemogenetic 
methods have been also applied to microglia to investigate 

neurovascular coupling changes [67]. Cx3cr1creER/+:R26LSL-

hM3Dq-CGaMP5g–tdTomato/+ mice were used for the expression of 
microglial Gq DREADDs. Activation of Gq DREADDs in 
microglia that interact with arterioles and microvessels in 
the cortex led to the withdrawal of perivascular microglial 
processes around arterioles and reduced the cerebral blood 
flow in response to whisker stimulation. Taken together, 
these bi-directional chemogenetic approaches have proven 
to be powerful tools in interrogating microglial function in 
the brain.

Chemogenetic Manipulation of Microglia in Chronic 
Pain

The first study applying chemogenetic approaches through 
the viral expression of DREADDs in microglia studied the 
contribution of microglia to morphine-induced persistent 
sensitization in rats [55]. While opiates have been regu-
larly used for pain treatment, they paradoxically induce 
nociceptive sensitization known as opioid-induced hyper-
algesia [68]. Exposure to opioids in healthy individuals 
has been demonstrated to lead to hyperalgesia in many 
clinical studies, although large-scale trials cannot be per-
formed in human subjects for ethical reasons [69, 70] 
Morphine-induced persistent sensitization is associated 
with microglial inflammasome activation in the spinal 
cord [55]. Microglial Gi DREADD activation reduces pro-
inflammatory signaling and prevents morphine-induced 
persistent sensitization. Similar to microglial Gi DREADD 

Fig. 1  Chemogenetic and optogenetic approaches in microglia. A 
Viral-vector-mediated (e.g. AVV) or gene knock-in approaches (e.g. 
Cx3cr1cre) introduce DREADDs or opsins specifically in microglia. B 
Activation of DREADDs (chemogenetics) or opsins (optogenetics) in 
microglia by a DREADD ligand (e.g. CNO) or specific light stimula-

tion. C In microglia, a DREADD ligand binds to hM3Dq or hM4Di, 
to activate Gq- or Gi-coupled signaling; light stimulation of opsins 
opens non-selective cation channels (such as ReaChR or ChETA) or 
proton pumps (such as ArchT)
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activation, pharmacological blockade of toll-like receptor 
4, P2X7, or the inflammasome can all independently block 
morphine-induced sensitization [55]. Thus, the mechanism 
underlying the action of Gi DREADD in microglia may be 
related to Gi inhibition of  Ca2+ elevation for pro-inflam-
matory cytokine production or release [58, 71].

Using viral expression of both Gq and Gi DREADD 
specifically in microglia, the group further studied the role 
of microglia in chronic pain in rats [56]. Gi DREADD 
activation in microglia rapidly reversed allodynia in neu-
ropathic pain conditions. Mechanistically, microglial Gi 
DREADD activation attenuated the level of inflammatory 
mediators including nitric oxide (NO) and IL-1β. Micro-
glial Gq DREADD activation, on the other hand, was able 
to induce allodynia in naïve male rats and increased the 
expression of pro-inflammatory mediators, such as NO, 
TNFα, Il-1β, and IL-6 [56].

After Cre-inducible DREADD mice were generated 
in 2016 [72], both Kiguchi’s group and our group inves-
tigated microglial function in chronic pain in mice selec-
tively expressing DREADDs in microglia. Using consti-
tutive Cx3cr1cre/+:R26LSL-hM4Di/+ mice, Kiguchi’s group 
showed that microglia expressing Gi DREADDs in the 
spinal cord, upon activation, alleviate pain sensitization 
after partial sciatic nerve ligation (PSL) [61]. Using induc-
ible Cx3cr1creER/+:R26LSL-hM4Di/+ mice, we showed that Gi 
DREADDs are specifically expressed in microglia in adult 
mice [63]. Microglial Gi DREADD activation 3 days before 
L4 spinal nerve transection (SNT) delayed the development 
of allodynia while activation 3 days after SNT attenuated 
mechanical allodynia [63].

Several potential mechanisms underlying microglial Gi 
DREADD in pain attenuation have been proposed [63]. 
First, activation of microglial Gi DREADD signaling 

Table 1  Chemogenetic applications in microglia

CNO, clozapine N-oxide; AAV, adeno-associated virus; DREADD, designer-receptor-exclusively-activated-by-designer-drug; i.t., intrathecal; 
i.p., intraperitoneal; LPS, lipopolysaccharide; PSL, partial sciatic nerve ligation; SNT, spinal nerve transection; DCZ, deschloroclozapine

References DREADD expression DREADD type DREADD ligand administration 
(CNO)

Effects

Grace et al. [55] hM4Di DREADDs via CD68-
driven AAV9 (Spinal cord)

Gi 20 μg/h i.t. for 5.5 d Prevention of morphine-induced 
central sensitization

20 μg/h i.t. for 7 d Attenuation of pro-inflammatory 
signaling

Grace et al. [56] hM4Di DREADDs via CD68-
driven AAV9 (Spinal cord)

Gi 1 mg/kg i.p. or 60 μg i.t. Inhibition of pro-inflammatory 
signaling and reversal of neuro-
pathic pain

hM3Dq DREADDs via CD68-
driven AAV9 (Spinal cord)

Gq 1 mg/kg i.p. or 60 μg i.t. Induction of pro-inflammatory 
signaling and induction of 
chronic pain

Binning et al. [65] Cx3cr1creER/+:R26LSL-hM3Dq/+ Gq 1 mg/kg i.p. Increase in phagocytic activity
1 mg/kg i.p. daily for 4 d Attenuation of LPS-induced pro-

inflammatory signaling
Saika et al. [61] Cx3cr1cre/+:R26LSL-hM4Di/+ Gi 10 mg/kg i.p. or 20 nmol i.t. Attenuation of neuropathic pain 

after PSL
Saika et al. [62] Cx3cr1cre/+:R26LSL-hM3Dq/+ Gq 1 mg/kg i.p. or 2 nmol i.t. Induction of chronic pain
Yi et al. [63] Cx3cr1creER/+:R26LSL-hM4Di/+ Gi 5 mg/kg i.p. daily for 3 d Delayed development of neuro-

pathic pain (DREADD activation 
3 d prior to SNT)

Attenuation of neuropathic pain 
(DREADD activation 3 d after 
SNT)

Klawonn et al. [66] Cx3cr1creER/+:R26LSL-hM4Di/+ Gi 2 mg/kg i.p. Prevention of LPS-induced place 
aversion

hM3Dq DREADDs via Cre-
inducible lentivirus (Dorsal 
striatum)

Gq 2 mg/kg i,p, Induction of place aversion

Császár et al. [67] Cx3cr1creER/+:R26LSL-hM3Dq- 

CGaMP5g–tdTomato/+
Gq 0.5 mg/kg i.p. or 1 μg/kg i.p. 

(DCZ)
Increase in microglial intracellular 

 Ca2+

Withdrawal of microglial processes 
around arterioles
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prevents microglial proliferation, known as the main source 
of microgliosis in neuropathic pain [4, 23]. Second, SNT-
upregulated expression of interferon regulatory factor (IRF) 
8, a transcription factor implicated in microglial transition 
to a reactive state [73], is prevented by Gi DREADD activa-
tion. Similarly, Il-1β as a critical mediator of neuropathic 
pain [73, 74], is also decreased by microglial Gi DREADD 
activation. Third, C-fiber-evoked field potentials in vivo are 
reduced upon activation of microglial Gi DREADD. These 
results complement and expand previous findings that selec-
tive microglial activation in the spinal cord promotes syn-
aptic strengthening and synaptic plasticity between primary 
afferent C-fibers and spinal neurons [25, 75]. Together, these 
results indicate that Gi DREADD manipulation in microglia 
attenuates chronic pain by inhibiting microglial proliferation, 
neuroinflammation, and synaptic potentiation (Fig. 2A).

Microglial function in chronic pain was further investi-
gated by using Gq DREADD in constitutive Cx3cr1cre/+:
R26LSL-hM3Dq/+ mice [62]. After Gq DREADD activation, 
naïve male mice displayed allodynia and hyperalgesia. Fur-
ther analysis showed that Gq DREADD activation led to a 
significant upregulation of inflammatory mediators (IL-1β, 
TNFα, CCL3, and CCL4) and microglial markers (Iba1, 
CD11b, IRF5, and IRF7). Importantly, these results point to 
a sex-specific mechanism, as both the behavioral correlates 
of pain and their potential underlying inflammation occurred 
in male but not female mice. After microglial ablation by 

PLX3397, an inhibitor of CSF1-R, Gq DREADD activation 
by CNO administration does not induce chronic pain hyper-
sensitivity or the upregulation of inflammatory markers in 
male mice, further providing evidence that the chemogenetic 
activation of microglia is necessary for the development of 
chronic pain.

These findings are part of a larger literature finding an 
interesting sex-dependent microglial function in chronic 
pain. Although microglial activation (microgliosis) devel-
ops in both sexes in neuropathic pain models, emerging 
reports suggest that microglial inhibition resolves pain only 
in male mice. For example, microglia-targeted inhibitors 
(minocycline as well as inhibitors of TLR4, P2X4, or p38 
mitogen-activated protein kinases) are effective in attenuat-
ing neuropathic pain in male but not female rodents [76–78]. 
One potential explanation is the involvement of T-cells in the 
development of chronic pain in females only, while males 
depend on microglia-related mechanisms [76]. In line with 
this idea, activation of Gi DREADD in  CX3CR1+ cells 
attenuates mechanical allodynia after PSL only in male mice 
[61]. While Gq DREADD microglia can initiate sex-depend-
ent differences in pain responses, we have recently found 
that microglial Gi DREADD activation attenuates neuro-
pathic pain in both male and female mice after SNT [63]. 
This discrepancy might be explained by different genetic 
manipulations (constitutive Cx3cr1cre/+ versus inducible 
Cx3cr1creER/+ mouse lines impacting different sets of cell 

Fig. 2  Mechanisms underlying chronic pain regulation by chemo-
genetic and optogenetic manipulation of microglia. A Chemogenetic 
activation of Gi DREADD attenuates neuropathic pain after periph-
eral nerve injury. After L4 spinal nerve transection (SNT) (1), CNO 
activation of Gi DREADD-expressing microglia (2) leads to micro-
glial inhibition. Subsequently, SNT-induced microglial upregulation 
of IRF8 and IL-1β is inhibited (3). Thus, chemogenetic inhibition 

of microglia normalizes neuronal hyperactivity (4) and attenuates 
chronic pain behaviors after SNT (5). B Optogenetic activation of 
spinal microglia triggers chronic “microgliogenic” pain. Optogenetic 
stimulation of spinal microglia expressing ReaChR with red light 
(625 nm) (1) activates microglia and increases the  Ca2+-dependent 
release of IL-1β (2), which sensitizes neuronal activity (3), leading to 
chronic pain behaviors (4)
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classes) or different CNO dose paradigms (one time-point 
only at 10 mg/kg vs three times at 5 mg/kg/day). Further, no 
sex differences have been reported in chronic pain attenua-
tion after  CX3CR1+ cells are genetically ablated [6]. Future 
studies are needed to understand these potential discrepan-
cies and determine the circumstances under which microglia 
may engage in sex-dependent chronic pain responses.

Optogenetic Approaches in Microglia

Optogenetics fuse genetic and optical procedures to allow 
the manipulation of specific cell populations, conferring 
the unique capability to sense and respond to light through 
light-sensitive proteins in behaving animals [79]. All known 
organisms express photon-sensitive receptor proteins, called 
rhodopsins. The main types of opsins found in microorgan-
isms are bacteriorhodopsins and halorhodopsins, which are 
light-driven ion pumps/channels such as channelrhodopsins 
(ChRs), and sensors such as sensory rhodopsin [80]. Optoge-
netic approaches have been widely used to drive the depolar-
ization or hyperpolarization of selected neurons in response 
to specific wavelengths of light, allowing scientists to inter-
rogate complex circuits underlying behavior [81, 82] includ-
ing pain sensation [83]. Recent advances have also enabled 
optogenetic approaches to be applied to glial cells such as 
astrocytes and microglia [84–87]. For example, optogenetic 
approaches have been used to dissect astrocyte functions 
in breathing [84], memory [45], and epilepsy [85]. Fur-
thermore, a recent study used ChR2, a non-selective, depo-
larizing cation channel, to selectively activate astrocytes. 
Depolarized spinal astrocytes elicited chronic pain behaviors 
by inducing ATP release [86]. In the periphery, optogenetic 
activation of ChR2-expressing macrophages in the heart 
improves the electrical connections underlying conduction 
[88]. Here, we introduce how optogenetics has been applied 

to microglia to dissect their function in the CNS, with a 
particular focus on chronic pain (Fig. 1).

Optogenetic Manipulation of CNS Microglia

Ionotropic signaling is an overlook mechanism underlying 
microglial interactions with the brain microenvironment 
[89]. Unlike neurons, microglia have few voltage-gated 
 Na+ or  Ca2+ channels in vivo. Microglia mediate ionic fluxes 
using multiple ion channels including  K+ channels [90, 91], 
proton channels [92], transient receptor potential channels 
[93], pannexin-1 [94, 95], and purinergic ionotropic recep-
tors [96]. The changes in microglial membrane potential in 
response to ion channel activation under pathological condi-
tions are associated with the reactive microglial transition. 
For instance, prolonged increased  K+ channel conductance 
often precedes the reactive state transition [51, 97].  K+ chan-
nels are also essential for microglial process surveillance 
and chemotactic responses to extracellular ATP/tissue injury 
[91, 98, 99]. However, it is not known whether the changes 
in membrane potential are either necessary or sufficient for 
microglial activation. Recent advances applying optogenetic 
approaches to microglia allow us to address these early ques-
tions [87, 100].

Only a few studies have used optogenetic approaches 
in microglia so far (Table 2). In a proof-of-concept study 
by Yamanaka’s group, ChR2 was expressed specifically in 
microglia by using transgenic Iba1-tTA:tetOChR2(CS128S)-
EYFP mice [101]. Blue light stimulation depolarized micro-
glia indicating its functional expression, but no further 
studies were conducted using these mice. For the first time, 
red-activated ChR (ReaChR) was expressed in microglia 
using Cx3cr1creER/+:R26LSL-ReaChR/+ mice [87]. The advan-
tage of using ReaChR (a newer generation of non-selective 
cation channels) compared with ChR2 is its activation by red 
light, which has better penetration deeper into tissue with 

Table 2  Optogenetic applications in microglia

ChR2, channelrhodopsin-2; ReaChR, red-activated channelrhodopsin; IL-1β, interleukin-1 beta ChETA a modified form of channelrhodopsin-2; 
ArchT, archaerhodopsin

References Opsin Expression Opsin Type Light Stimulation Effects

Tanaka et al. [101] Iba1-tTA:tetOChR2(CS128S)-EYFP ChR2 50 mW blue laser
500 ms pulses at 1 s intervals

Microglial depolarization

Yi et al. [87] Cx3cr1creER/+:R26LSL-ReaChR/+ ReaChR 625 nm, red LED
45 ms light on,
5 ms light off,
20 Hz for 30 min

Microglial depolarization
Increased microglial IL-1β expression
Induction of chronic pain

Laprell et al. [100] Cx3cr1creER/+:R26LSL-ChETA-tdTomato/+ ChETA 480 nm, blue LED
1 Hz light flashes for 20 min

Microglial depolarization
Slowed chemotaxis response to laser 

burn
Cx3cr1creER/+:R26LSL-ArchT-EGFP/+ ArchT 575 nm, yellow/green LED Microglial hyperpolarization

No effect on chemotaxis response to laser 
burn
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less light scatter than the blue/green light for ChR2 activa-
tion. In addition, the ReaChR current can be maintained with 
far less inactivation occurring during light stimulation [102]. 
Selective microglial ReaChR expression can be achieved 
using Cx3cr1creER/+:R26LSL-ReaChR/+ mice. In the spinal cord, 
rhodopsin protein is only co-localized with  Iba1+ microglia 
[87]. ReaChR expression is also functional as red-light stim-
ulation induces inward currents in spinal microglia, result-
ing in their depolarization. In addition, pro-inflammatory 
cytokines such as IL-1β are secreted by primary microglia 
after red-light stimulation and this requires extracellular 
 Ca2+ influx [87]. Thus, optogenetic depolarization of spinal 
microglia is sufficient for  Ca2+-dependent cytokine release.

Similarly, ChETA (a modified form of ChR2) 
was expressed in microglia using Cx3cr1creER/+:R2
6LSL-ChETA-tdTomato/+ mice [100]. ChETA activated by blue-
light induced microglial depolarization and slowed the 
chemotaxis of processes in response to laser-induced tissue 
damage [100]. Microglia rapidly hyperpolarize when sens-
ing ATP or neuronal hyperactivity [103]. Indeed, P2Y12-
coupled  K+ channel activation is part of the mechanism for 
rapid chemotactic reactions to laser injury or basal motil-
ity [91, 98, 99]. A slower chemotaxis response induced by 
optogenetic microglial depolarization indicates that ATP-
mediated hyperpolarization is not only a concomitant phe-
nomenon of microglial activation but is required for the 
rapid expansion of microglial processes towards injury. 
One caveat of using blue light stimulation is the potential 
off-target effects. For instance, a study showed that micro-
glia alter inflammatory-related gene expression with differ-
ent levels of blue light stimulation [104]. Nevertheless, the 
results using ChETA indicate a potential correlation between 
the membrane potential and the chemotaxis of microglial 
processes. The light-activated proton pump archaerhodop-
sin (ArchT) has also been expressed in microglia using 
Cx3cr1creER/+:R26LSL-ArchT-EGFP/+ mice [100]. Unlike ChR2 
and its variants, ArchT activation by yellow/green light 
results in hyperpolarization. However, the ArchT-mediated 
hyperpolarization of microglia does not alter the electro-
physiological responses of microglial to laser-induced tissue 
damage, nor does it affect chemotactic responses.

Microglia sense neuronal activity and the brain environ-
ment via  Ca2+ signaling [59, 105]. Indeed, increased  Ca2+ in 
microglia is strongly correlated with pathophysiological acti-
vation such as neuroinflammation [106], seizures [59], stroke 
[107], and neurodegeneration [108]. Since ChR2 and its deriv-
atives are  Ca2+-permeable ion channels [109], optogenetic 
activation of microglia allows for the direct manipulation of 
 Ca2+ influx. As a result, ReaChR activation of microglia leads 
to  Ca2+-independent cytokine release [87]. On the contrary, 
in  Ca2+-free extracellular solutions, microglial chemotaxis to 
damage sites is significantly slowed, similar to the increased 
ionic influx during ChETA activation [100]. Therefore, these 

results suggest that optogenetic depolarization of microglia 
inhibits  Ca2+ elevation, thus slowing the chemotaxis of micro-
glial processes. The underlying mechanism might be due to 
the reduction of the driving force for  Ca2+ during depolariza-
tion in microglia. Interestingly, previous studies found that the 
removal of extracellular  Ca2+ alone induces the convergence 
of microglial processes, similar to that reported in seizures 
and stroke [110, 111]. Future experiments using in vivo  Ca2+ 
imaging are needed to directly investigate whether optogenetic 
activation of microglia increases or decreases microglial  Ca2+ 
signaling.

Optogenetic Manipulation of Microglia in Chronic Pain

By using Cx3cr1creER/+:R26LSL-ReaChR/+ mice to exclusively 
express ReaChR in microglia, spinal microglia can be depo-
larized in real time to examine their function in pain behav-
iors (Fig. 2B). Red-light stimulation can be delivered locally 
to the lumbar spinal cord through optic fibers. After light 
stimulation (30 min at 20 Hz,) mechanical allodynia is evi-
dent one hour after stimulation and lasts for up to one week 
in mice [87]. These results are remarkable in that short-term 
optogenetic stimulation of spinal microglia alone induced 
long-lasting pain behaviors. The mere stimulation of spinal 
microglia through optogenetics in the absence of any inflam-
matory challenge, or nerve damage-elicited chronic pain [87, 
112], suggests the intriguing possibility of “microgliogenic” 
pain that originates from microglial activation in the CNS.

Mechanistically, optogenetic stimulation of microglial 
ReaChR increases microglial proliferation, neuronal activ-
ity, and nociceptive transmission [87]. For example, C-fiber-
evoked field potentials and neuronal C-fos expression in 
the dorsal horn are significantly increased after microglial 
optogenetic stimulation. Interestingly, IL-1β expression 
is increased 1–3 days after light stimulation of microglial 
ReaChR, which could be due to increased expression of 
NLRP3 inflammasome components and caspase-1. The IL-1 
receptor antagonist IL-1ra is sufficient to prevent increased 
C-fiber-evoked field potentials by light stimulation and alle-
viate light-induced mechanical allodynia. Thus, optogenetic 
stimulation of spinal microglia triggers IL-1β release, which 
increases the neuronal activity underlying chronic pain 
behaviors (Fig. 2B). In sum, optogenetics allows specific and 
temporally-controlled manipulation of microglia to study 
their function in pain. This may provide additional benefit 
over chemogenetic approaches in that the optical stimulation 
has better spatial and temporal resolution.

Conclusions and Outlook

Chemogenetics and optogenetics are two emerging 
approaches recently applied in the field of microglia 
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research. DREADDs and opsin expression can be limited 
to microglia either by viral injection (e.g., AAV) or by 
promoter-driven conditional expression (e.g., CX3CR1). 
Unless activated, these proteins have no biological effects. 
Upon activation, existing DREADDs and opsins allow 
for a range of modulatory effects on microglia, includ-
ing depolarization, hyperpolarization, and GPCR signal 
transduction. Chemo- and optogenetic manipulations of 
microglia are able to inhibit nerve injury-induced neuro-
pathic pain or directly trigger chronic “microgliogenic” 
pain. However, it is important to note the limitations of 
chemo- and optogenetic approaches, as both use artifi-
cially-engineered proteins activated by designed stimuli. 
With chronic DREADD approaches, it has been suggested 
that repeated administration of CNO may lead to clozapine 
accumulation, which may have side effects unrelated to 
DREADDs [113]. The optogenetic stimulation of micro-
glia might be unnaturally strong. In addition, it should be 
noted that effects may vary depending on the type of opsin 
and the frequency/intensity of light stimulation.

Here, we highlight the future of investigations of 
microglia by applying chemo- and optogenetic tools. (1) 
Microglia play a central role in many pathophysiologi-
cal processes, such as in epilepsy [114], stroke [115], 
neurodegeneration [116, 117], depressive-like behaviors 
[118], memory deficits [119], and autoimmune neurol-
ogy [120]. These new microglial tools will help illumi-
nate the microglial mechanisms of neurological disorders. 
(2) Supraspinal microglial activation is also implicated in 
chronic pain [121–123]. Future studies will apply micro-
glial tools to study their function in pain sensation, aver-
sion, and comorbidities during chronic pain conditions. (3) 
Given the heterogeneity of microglia in neuropathic pain 
[15, 16] and their beneficial role in resolving chronic pain 
[17], it is unknown whether this heterogeneity also occurs 
when manipulating microglia using chemo- or optoge-
netic tools. Future studies will apply microglial tools to 
harness the beneficial function of alternatively-activated 
microglia during chronic pain conditions. (4) The ability 
of chemo- and optogenetic tools to directly manipulate 
 Ca2+ levels allows the investigation of the role of  Ca2+ 
signaling in microglia. Interrogation of the downstream Gi 
and Gq signaling in microglia is also made possible. Thus, 
the recent advances in microglial chemo- and optogenetic 
manipulations highlight the importance and novelty of 
these emerging tools in studying the function of micro-
glia in neurological diseases, particularly in chronic pain.
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