Skip to main content
Log in

Clinical Decision on Disorders of Consciousness After Acquired Brain Injury: Stepping Forward

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Major advances have been made over the past few decades in identifying and managing disorders of consciousness (DOC) in patients with acquired brain injury (ABI), bringing the transformation from a conceptualized definition to a complex clinical scenario worthy of scientific exploration. Given the continuously-evolving framework of precision medicine that integrates valuable behavioral assessment tools, sophisticated neuroimaging, and electrophysiological techniques, a considerably higher diagnostic accuracy rate of DOC may now be reached. During the treatment of patients with DOC, a variety of intervention methods are available, including amantadine and transcranial direct current stimulation, which have both provided class II evidence, zolpidem, which is also of high quality, and non-invasive stimulation, which appears to be more encouraging than pharmacological therapy. However, heterogeneity is profoundly ingrained in study designs, and only rare schemes have been recommended by authoritative institutions. There is still a lack of an effective clinical protocol for managing patients with DOC following ABI. To advance future clinical studies on DOC, we present a comprehensive review of the progress in clinical identification and management as well as some challenges in the pathophysiology of DOC. We propose a preliminary clinical decision protocol, which could serve as an ideal reference tool for many medical institutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Giacino JT, Fins JJ, Laureys S, Schiff ND. Disorders of consciousness after acquired brain injury: The state of the science. Nat Rev Neurol 2014, 10: 99–114.

    Article  Google Scholar 

  2. Septien S, Rubin MA. Disorders of consciousness: Ethical issues of diagnosis, treatment, and prognostication. Semin Neurol 2018, 38: 548–554.

    Article  Google Scholar 

  3. Sanz LRD, Thibaut A, Edlow BL, Laureys S, Gosseries O. Update on neuroimaging in disorders of consciousness. Curr Opin Neurol 2021, 34: 488–496.

    Article  Google Scholar 

  4. Thibaut A, Schiff N, Giacino J, Laureys S, Gosseries O. Therapeutic interventions in patients with prolonged disorders of consciousness. Lancet Neurol 2019, 18: 600–614.

    Article  Google Scholar 

  5. Bai Y, Xia X, Li X, Wang Y, Yang Y, Liu YF. Spinal cord stimulation modulates frontal delta and gamma in patients of minimally consciousness state. Neuroscience 2017, 346: 247–254.

    Article  CAS  Google Scholar 

  6. Pan J, Xie Q, Qin P, Chen Y, He Y, Huang H, et al. Prognosis for patients with cognitive motor dissociation identified by brain-computer interface. Brain 2020, 143: 1177–1189.

    Article  Google Scholar 

  7. Pool JW, Siegert RJ, Taylor S, Dunford C, Magee W. Evaluating the validity, reliability and clinical utility of the Music therapy Sensory Instrument for Cognition, Consciousness and Awareness (MuSICCA): Protocol of a validation study. BMJ Open 2020, 10: e039713.

    Article  Google Scholar 

  8. Jiang T. Recent progress in basic and clinical research on disorders of consciousness. Neurosci Bull 2018, 34: 589–591.

    Article  Google Scholar 

  9. Edlow BL, Claassen J, Schiff ND, Greer DM. Recovery from disorders of consciousness: Mechanisms, prognosis and emerging therapies. Nat Rev Neurol 2021, 17: 135–156.

    Article  Google Scholar 

  10. Maxwell WL, Pennington K, MacKinnon MA, Smith DH, McIntosh TK, Wilson JTL, et al. Differential responses in three thalamic nuclei in moderately disabled, severely disabled and vegetative patients after blunt head injury. Brain 2004, 127: 2470–2478.

    Article  Google Scholar 

  11. Brown EN, Lydic R, Schiff ND. General anesthesia, sleep, and coma. N Engl J Med 2010, 363: 2638–2650.

    Article  CAS  Google Scholar 

  12. Schiff ND. Recovery of consciousness after brain injury: A mesocircuit hypothesis. Trends Neurosci 2010, 33: 1–9.

    Article  CAS  Google Scholar 

  13. Modolo J, Hassan M, Wendling F, Benquet P. Decoding the circuitry of consciousness: From local microcircuits to brain-scale networks. Netw Neurosci 2020, 4: 315–337.

    Article  Google Scholar 

  14. Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJF, Bruno MA, Boveroux P, Schnakers C, et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 2010, 133: 161–171.

    Article  Google Scholar 

  15. Fernández-Espejo D, Soddu A, Cruse D, Palacios EM, Junque C, Vanhaudenhuyse A, et al. A role for the default mode network in the bases of disorders of consciousness. Ann Neurol 2012, 72: 335–343.

    Article  Google Scholar 

  16. Rosazza C, Andronache A, Sattin D, Bruzzone MG, Marotta G, Nigri A, et al. Multimodal study of default-mode network integrity in disorders of consciousness. Ann Neurol 2016, 79: 841–853.

    Article  Google Scholar 

  17. Qin P, Wu X, Huang Z, Duncan NW, Tang W, Wolff A, et al. How are different neural networks related to consciousness? Ann Neurol 2015, 78: 594–605.

    Article  Google Scholar 

  18. di Perri C, Bahri MA, Amico E, Thibaut A, Heine L, Antonopoulos G, et al. Neural correlates of consciousness in patients who have emerged from a minimally conscious state: A cross-sectional multimodal imaging study. Lancet Neurol 2016, 15: 830–842.

    Article  Google Scholar 

  19. Coulborn S, Taylor C, Naci L, Owen AM, Fernández-Espejo D. Disruptions in effective connectivity within and between default mode network and anterior forebrain mesocircuit in prolonged disorders of consciousness. Brain Sci 2021, 11: 749.

    Article  Google Scholar 

  20. Lemaire JJ, Pontier B, Chaix R, El Ouadih Y, Khalil T, Sinardet D, et al. Neural correlates of consciousness and related disorders: From phenotypic descriptors of behavioral and relative consciousness to cortico-subcortical circuitry. Neuro-Chirurgie 2022, 68: 212–222.

    Article  Google Scholar 

  21. Weng L, Xie QY, Zhao L, Zhang RB, Ma Q, Wang JJ, et al. Abnormal structural connectivity between the basal ganglia, thalamus, and frontal cortex in patients with disorders of consciousness. Cortex 2017, 90: 71–87.

    Article  Google Scholar 

  22. Zhang J, Wei RL, Peng GP, Zhou JJ, Wu M, He FP, et al. Correlations between diffusion tensor imaging and levels of consciousness in patients with traumatic brain injury: A systematic review and meta-analysis. Sci Rep 2017, 7: 2793.

    Article  Google Scholar 

  23. Cunningham SI, Tomasi D, Volkow ND. Structural and functional connectivity of the precuneus and thalamus to the default mode network. Hum Brain Mapp 2017, 38: 938–956.

    Article  Google Scholar 

  24. Skandalakis GP, Komaitis S, Kalyvas A, Lani E, Kontrafouri C, Drosos E, et al. Dissecting the default mode network: Direct structural evidence on the morphology and axonal connectivity of the fifth component of the cingulum bundle. J Neurosurg 2020, 134: 1334–1345.

    Article  Google Scholar 

  25. Briand MM, Gosseries O, Staumont B, Laureys S, Thibaut A. Transcutaneous auricular vagal nerve stimulation and disorders of consciousness: A hypothesis for mechanisms of action. Front Neurol 2020, 11: 933.

    Article  Google Scholar 

  26. Vázquez JA, Adducci M, Godoy Monzón D, Iserson KV. Lactic dehydrogenase in cerebrospinal fluid may differentiate between structural and non-structural central nervous system lesions in patients with diminished levels of consciousness. J Emerg Med 2009, 37: 93–97.

    Article  Google Scholar 

  27. Conio B, Martino M, Magioncalda P, Escelsior A, Inglese M, Amore M, et al. Opposite effects of dopamine and serotonin on resting-state networks: Review and implications for psychiatric disorders. Mol Psychiatry 2020, 25: 82–93.

    Article  Google Scholar 

  28. Bagnato S, Andriolo M, Boccagni C, Sant’Angelo A, D’Ippolito ME, Galardi G. Dissociation of cerebrospinal fluid amyloid-β and tau levels in patients with prolonged posttraumatic disorders of consciousness. Brain Inj 2018, 32: 1056–1060.

  29. Bagnato S, Grimaldi LME, di Raimondo G, Sant’Angelo A, Boccagni C, Virgilio V, et al. Prolonged cerebrospinal fluid neurofilament light chain increase in patients with post-traumatic disorders of consciousness. J Neurotrauma 2017, 34: 2475–2479.

  30. Kondziella D, Menon DK, Helbok R, Naccache L, Othman MH, Rass V, et al. A precision medicine framework for classifying patients with disorders of consciousness: Advanced classification of consciousness endotypes (ACCESS). Neurocrit Care 2021, 35: 27–36.

    Article  Google Scholar 

  31. Brain Injury Interdisciplinary Special Interest Group American Congress of Rehabilitation Medicine, Seel RT, Sherer M, Whyte J, Katz DI, Giacino JT, et al. Assessment scales for disorders of consciousness: Evidence-based recommendations for clinical practice and research. Arch Phys Med Rehabil 2010, 91: 1795–1813.

  32. Giacino JT, Katz DI, Schiff ND, Whyte J, Ashman EJ, Ashwal S, et al. Practice guideline update recommendations summary: Disorders of consciousness: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology; the American Congress of Rehabilitation Medicine; and the National Institute on Disability, Independent Living, and Rehabilitation Research. Neurology 2018, 91: 450–460.

    Article  Google Scholar 

  33. Kondziella D, Bender A, Diserens K, van Erp W, Estraneo A, Formisano R, et al. European Academy of Neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur J Neurol 2020, 27: 741–756.

    Article  CAS  Google Scholar 

  34. Portaccio E, Morrocchesi A, Romoli AM, Hakiki B, Taglioli MP, Lippi E, et al. Score on coma Recovery Scale-Revised at admission predicts outcome at discharge in intensive rehabilitation after severe brain injury. Brain Inj 2018, 32: 730–734.

    Article  Google Scholar 

  35. Sun Y, Wang J, Heine L, Huang W, Wang J, Hu N, et al. Personalized objects can optimize the diagnosis of EMCS in the assessment of functional object use in the CRS-R: A double blind, randomized clinical trial. BMC Neurol 2018, 18: 38.

    Article  Google Scholar 

  36. Wang J, Hu X, Hu Z, Sun Z, Laureys S, Di H. The misdiagnosis of prolonged disorders of consciousness by a clinical consensus compared with repeated coma-recovery scale-revised assessment. BMC Neurol 2020, 20: 343.

    Article  Google Scholar 

  37. Izzy S, Mazwi NL, Martinez S, Spencer CA, Klein JP, Parikh G, et al. Revisiting grade 3 diffuse axonal injury: Not all brainstem microbleeds are prognostically equal. Neurocrit Care 2017, 27: 199–207.

    Article  Google Scholar 

  38. Wang L, Yang Y, Chen S, Ge M, He J, Yang Z, et al. White matter integrity correlates with residual consciousness in patients with severe brain injury. Brain Imaging Behav 2018, 12: 1669–1677.

    Article  Google Scholar 

  39. Ferraro S, Nigri A, Nava S, Rosazza C, Sattin D, Sebastiano DR, et al. Interhemispherical anatomical disconnection in disorders of consciousness patients. J Neurotrauma 2019, 36: 1535–1543.

    Article  Google Scholar 

  40. Zheng ZS, Reggente N, Lutkenhoff E, Owen AM, Monti MM. Disentangling disorders of consciousness: Insights from diffusion tensor imaging and machine learning. Hum Brain Mapp 2017, 38: 431–443.

    Article  CAS  Google Scholar 

  41. Snider SB, Bodien YG, Frau-Pascual A, Bianciardi M, Foulkes AS, Edlow BL. Ascending arousal network connectivity during recovery from traumatic coma. Neuroimage Clin 2020, 28: 102503.

    Article  Google Scholar 

  42. Edlow BL, Haynes RL, Takahashi E, Klein JP, Cummings P, Benner T, et al. Disconnection of the ascending arousal system in traumatic coma. J Neuropathol Exp Neurol 2013, 72: 505–523.

    Article  Google Scholar 

  43. Snider SB, Bodien YG, Bianciardi M, Brown EN, Wu O, Edlow BL. Disruption of the ascending arousal network in acute traumatic disorders of consciousness. Neurology 2019, 93: e1281–e1287.

    Article  Google Scholar 

  44. Song M, He J, Yang Y, Jiang T. Combination of biomedical techniques and paradigms to improve prognostications for disorders of consciousness. Neurosci Bull 2021, 37: 1082–1084.

    Article  Google Scholar 

  45. Monti MM, Vanhaudenhuyse A, Coleman MR, Boly M, Pickard JD, Tshibanda L, et al. Willful modulation of brain activity in disorders of consciousness. N Engl J Med 2010, 362: 579–589.

    Article  CAS  Google Scholar 

  46. Laureys S, Goldman S, Phillips C, Bogaert PV, Aerts J, Luxen A, et al. Impaired effective cortical connectivity in vegetative state: Preliminary investigation using PET. Neuroimage 1999, 9: 377–382.

    Article  CAS  Google Scholar 

  47. Laureys S, Faymonville ME, Luxen A, Lamy M, Franck G, Maquet P. Restoration of thalamocortical connectivity after recovery from persistent vegetative state. Lancet 2000, 355: 1790–1791.

    Article  CAS  Google Scholar 

  48. Bodien YG, Chatelle C, Edlow BL. Functional networks in disorders of consciousness. Semin Neurol 2017, 37: 485–502.

    Article  Google Scholar 

  49. Boly M, Faymonville ME, Schnakers C, Peigneux P, Lambermont B, Phillips C, et al. Perception of pain in the minimally conscious state with PET activation: An observational study. Lancet Neurol 2008, 7: 1013–1020.

    Article  Google Scholar 

  50. Aubinet C, Cassol H, Gosseries O, Bahri MA, Larroque SK, Majerus S, et al. Brain metabolism but not gray matter volume underlies the presence of language function in the minimally conscious state (MCS): MCS+ versus MCS neuroimaging differences. Neurorehabil Neural Repair 2020, 34: 172–184.

    Article  Google Scholar 

  51. Qin P, Wu X, Duncan NW, Bao W, Tang W, Zhang Z, et al. GABAA receptor deficits predict recovery in patients with disorders of consciousness: A preliminary multimodal [11C]Flumazenil PET and fMRI study. Hum Brain Mapp 2015, 36: 3867–3877.

    Article  Google Scholar 

  52. Stender J, Gosseries O, Bruno MA, Charland-Verville V, Vanhaudenhuyse A, Demertzi A, et al. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: A clinical validation study. Lancet 2014, 384: 514–522.

    Article  Google Scholar 

  53. Fischer DB, Boes AD, Demertzi A, Evrard HC, Laureys S, Edlow BL, et al. A human brain network derived from coma-causing brainstem lesions. Neurology 2016, 87: 2427–2434.

    Article  Google Scholar 

  54. Annen J, Frasso G, Crone JS, Heine L, Perri C, Martial C, et al. Regional brain volumetry and brain function in severely brain-injured patients. Ann Neurol 2018, 83: 842–853.

    Article  CAS  Google Scholar 

  55. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 2011, 106: 1125–1165.

    Article  Google Scholar 

  56. Demertzi A, Antonopoulos G, Heine L, Voss HU, Crone JS, de Los Angeles C, et al. Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients. Brain 2015, 138: 2619–2631.

    Article  Google Scholar 

  57. Threlkeld ZD, Bodien YG, Rosenthal ES, Giacino JT, Nieto-Castanon A, Wu O, et al. Functional networks reemerge during recovery of consciousness after acute severe traumatic brain injury. Cortex 2018, 106: 299–308.

    Article  Google Scholar 

  58. Crone JS, Schurz M, Höller Y, Bergmann J, Monti M, Schmid E, et al. Impaired consciousness is linked to changes in effective connectivity of the posterior cingulate cortex within the default mode network. Neuroimage 2015, 110: 101–109.

    Article  Google Scholar 

  59. di Perri C, Amico E, Heine L, Annen J, Martial C, Larroque SK, et al. Multifaceted brain networks reconfiguration in disorders of consciousness uncovered by co-activation patterns. Hum Brain Mapp 2018, 39: 89–103.

    Article  Google Scholar 

  60. Demertzi A, Tagliazucchi E, Dehaene S, Deco G, Barttfeld P, Raimondo F, et al. Human consciousness is supported by dynamic complex patterns of brain signal coordination. Sci Adv 2019, 5: eaat7603.

  61. Cao B, Chen Y, Yu R, Chen L, Chen P, Weng Y, et al. Abnormal dynamic properties of functional connectivity in disorders of consciousness. Neuroimage Clin 2019, 24: 102071.

    Article  Google Scholar 

  62. Crone JS, Lutkenhoff ES, Vespa PM, Monti MM. A systematic investigation of the association between network dynamics in the human brain and the state of consciousness. Neurosci Conscious 2020, 2020: niaa008.

  63. Hahn G, Zamora-López G, Uhrig L, Tagliazucchi E, Laufs H, Mantini D, et al. Signature of consciousness in brain-wide synchronization patterns of monkey and human fMRI signals. Neuroimage 2021, 226: 117470.

    Article  Google Scholar 

  64. Standage D, Areshenkoff CN, Nashed JY, Hutchison RM, Hutchison M, Heinke D, et al. Dynamic reconfiguration, fragmentation, and integration of whole-brain modular structure across depths of unconsciousness. Cereb Cortex 2020, 30: 5229–5241.

    Article  Google Scholar 

  65. Signorelli CM, Uhrig L, Kringelbach M, Jarraya B, Deco G. Hierarchical disruption in the cortex of anesthetized monkeys as a new signature of consciousness loss. Neuroimage 2021, 227: 117618.

    Article  Google Scholar 

  66. Wu X, Zou Q, Hu J, Tang W, Mao Y, Gao L, et al. Intrinsic functional connectivity patterns predict consciousness level and recovery outcome in acquired brain injury. J Neurosci 2015, 35: 12932–12946.

    Article  CAS  Google Scholar 

  67. Song M, Yang Y, He J, Yang Z, Yu S, Xie Q, et al. Prognostication of chronic disorders of consciousness using brain functional networks and clinical characteristics. eLife 2018, 7: e36173.

  68. Galanaud D, Perlbarg V, Gupta R, Stevens RD, Sanchez P, Tollard E, et al. Assessment of white matter injury and outcome in severe brain trauma: A prospective multicenter cohort. Anesthesiology 2012, 117: 1300–1310.

    Article  Google Scholar 

  69. Luppi AI, Golkowski D, Ranft A, Ilg R, Jordan D, Menon DK, et al. Brain network integration dynamics are associated with loss and recovery of consciousness induced by sevoflurane. Hum Brain Mapp 2021, 42: 2802–2822.

    Article  Google Scholar 

  70. Tan X, Gao J, Zhou Z, Wei R, Gong T, Wu Y, et al. Spontaneous recovery from unresponsive wakefulness syndrome to a minimally conscious state: Early structural changes revealed by 7-T magnetic resonance imaging. Front Neurol 2018, 8: 741.

    Article  Google Scholar 

  71. Tan X, Zhou Z, Gao J, Meng F, Yu Y, Zhang J, et al. Structural connectome alterations in patients with disorders of consciousness revealed by 7-tesla magnetic resonance imaging. Neuroimage Clin 2019, 22: 101702.

    Article  Google Scholar 

  72. Bedini G, Bersano A, D’Incerti L, Marotta G, Rosazza C, Rossi Sebastiano D, et al. Period3 gene in disorder of consciousness: The role of neuroimaging in understanding the relationship between genotype and sleep. A brief communication. J Neurol Sci 2017, 381: 220–225.

    Article  CAS  Google Scholar 

  73. Meiron O, Barron J, David J, Jaul E. Neural reactivity parameters of awareness predetermine one-year survival in patients with disorders of consciousness. Brain Inj 2021, 35: 453–459.

    Article  Google Scholar 

  74. Gosseries O, Schnakers C, Ledoux D, Vanhaudenhuyse A, Bruno MA, Demertzi A, et al. Automated EEG entropy measurements in coma, vegetative state/unresponsive wakefulness syndrome and minimally conscious state. Funct Neurol 2011, 26: 25–30.

    Google Scholar 

  75. Müller M, Rossetti AO, Zimmermann R, Alvarez V, Rüegg S, Haenggi M, et al. Standardized visual EEG features predict outcome in patients with acute consciousness impairment of various etiologies. Crit Care 2020, 24: 680.

    Article  Google Scholar 

  76. Ren S, Shao H, He S. Interaction between conscious and unconscious information-processing of faces and words. Neurosci Bull 2021, 37: 1583–1594.

    Article  Google Scholar 

  77. Boly M, Garrido MI, Gosseries O, Bruno MA, Boveroux P, Schnakers C, et al. Preserved feedforward but impaired top-down processes in the vegetative state. Science 2011, 332: 858–862.

    Article  CAS  Google Scholar 

  78. Kotchoubey B, Lang S, Mezger G, Schmalohr D, Schneck M, Semmler A, et al. Information processing in severe disorders of consciousness: Vegetative state and minimally conscious state. Clin Neurophysiol 2005, 116: 2441–2453.

    Article  CAS  Google Scholar 

  79. Daltrozzo J, Wioland N, Mutschler V, Kotchoubey B. Predicting coma and other low responsive patients outcome using event-related brain potentials: A meta-analysis. Clin Neurophysiol 2007, 118: 606–614.

    Article  CAS  Google Scholar 

  80. Steppacher I, Eickhoff S, Jordanov T, Kaps M, Witzke W, Kissler J. N400 predicts recovery from disorders of consciousness. Ann Neurol 2013, 73: 594–602.

    Article  Google Scholar 

  81. Sitt JD, King JR, El Karoui I, Rohaut B, Faugeras F, Gramfort A, et al. Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain 2014, 137: 2258–2270.

    Article  Google Scholar 

  82. Rosanova M, Fecchio M, Casarotto S, Sarasso S, Casali AG, Pigorini A, et al. Sleep-like cortical OFF-periods disrupt causality and complexity in the brain of unresponsive wakefulness syndrome patients. Nat Commun 2018, 9: 4427.

    Article  CAS  Google Scholar 

  83. Annen J, Mertel I, Xu R, Chatelle C, Lesenfants D, Ortner R, et al. Auditory and somatosensory P3 are complementary for the assessment of patients with disorders of consciousness. Brain Sci 2020, 10: 748.

    Article  Google Scholar 

  84. Estraneo A, Fiorenza S, Magliacano A, Formisano R, Mattia D, Grippo A, et al. Multicenter prospective study on predictors of short-term outcome in disorders of consciousness. Neurology 2020, 95: e1488–e1499.

    Article  Google Scholar 

  85. Calabrò RS, Chillura A, Billeri L, Cannavò A, Buda A, Molonia F, et al. Peri-personal space tracing by hand-blink reflex modulation in patients with chronic disorders of consciousness. Sci Rep 2020, 10: 1712.

    Article  Google Scholar 

  86. Bai Y, Lin Y, Ziemann U. Managing disorders of consciousness: The role of electroencephalography. J Neurol 2021, 268: 4033–4065.

    Article  Google Scholar 

  87. Höller Y, Thomschewski A, Bergmann J, Kronbichler M, Crone JS, Schmid EV, et al. Connectivity biomarkers can differentiate patients with different levels of consciousness. Clin Neurophysiol 2014, 125: 1545–1555.

    Article  Google Scholar 

  88. Stefan S, Schorr B, Lopez-Rolon A, Kolassa IT, Shock JP, Rosenfelder M, et al. Consciousness indexing and outcome prediction with resting-state EEG in severe disorders of consciousness. Brain Topogr 2018, 31: 848–862.

    Article  Google Scholar 

  89. Arnaldi D, Terzaghi M, Cremascoli R, de Carli F, Maggioni G, Pistarini C, et al. The prognostic value of sleep patterns in disorders of consciousness in the sub-acute phase. Clin Neurophysiol 2016, 127: 1445–1451.

    Article  Google Scholar 

  90. Thengone DJ, Voss HU, Fridman EA, Schiff ND. Local changes in network structure contribute to late communication recovery after severe brain injury. Sci Transl Med 2016, 8: 368re5.

  91. Claassen J, Doyle K, Matory A, Couch C, Burger KM, Velazquez A, et al. Detection of brain activation in unresponsive patients with acute brain injury. N Engl J Med 2019, 380: 2497–2505.

    Article  Google Scholar 

  92. Gui P, Jiang Y, Zang D, Qi Z, Tan J, Tanigawa H, et al. Assessing the depth of language processing in patients with disorders of consciousness. Nat Neurosci 2020, 23: 761–770.

    Article  CAS  Google Scholar 

  93. Giacino JT, Whyte J, Bagiella E, Kalmar K, Childs N, Khademi A, et al. Placebo-controlled trial of amantadine for severe traumatic brain injury. N Engl J Med 2012, 366: 819–826.

    Article  CAS  Google Scholar 

  94. Schnakers C, Hustinx R, Vandewalle G, Majerus S, Moonen G, Boly M, et al. Measuring the effect of amantadine in chronic anoxic minimally conscious state. J Neurol Neurosurg Psychiatry 2008, 79: 225–227.

    Article  CAS  Google Scholar 

  95. Ghalaenovi H, Fattahi A, Koohpayehzadeh J, Khodadost M, Fatahi N, Taheri M, et al. The effects of amantadine on traumatic brain injury outcome: A double-blind, randomized, controlled, clinical trial. Brain Inj 2018, 32: 1050–1055.

    Article  Google Scholar 

  96. Gao Y, Ma L, Liang F, Zhang Y, Yang L, Liu X, et al. The use of amantadine in patients with unresponsive wakefulness syndrome after severe cerebral hemorrhage. Brain Inj 2020, 34: 1084–1088.

    Article  Google Scholar 

  97. Gao Y, Zhang Y, Li Z, Ma L, Yang J. Persistent vegetative state after severe cerebral hemorrhage treated with amantadine: A retrospective controlled study. Medicine 2020, 99: e21822.

    Article  CAS  Google Scholar 

  98. Lee S, Lee HH, Lee Y, Lee J. Additive effect of cerebrolysin and amantadine on disorders of consciousness secondary to acquired brain injury: A retrospective case-control study. J Rehabil Med 2020, 52: jrm00025.

  99. DeMarchi R, Bansal V, Hung A, Wroblewski K, Dua H, Sockalingam S, et al. Review of awakening agents. Can J Neurol Sci 2005, 32: 4–17.

    Article  Google Scholar 

  100. Kim YW, Shin JC, An YS. Effects of methylphenidate on cerebral glucose metabolism in patients with impaired consciousness after acquired brain injury. Clin Neuropharmacol 2009, 32: 335–339.

    Article  CAS  Google Scholar 

  101. Martin RT, Whyte J. The effects of methylphenidate on command following and yes/no communication in persons with severe disorders of consciousness: A meta-analysis of n-of-1 studies. Am J Phys Med Rehabil 2007, 86: 613–620.

    Article  Google Scholar 

  102. Fridman EA, Calvar J, Bonetto M, Gamzu E, Krimchansky BZ, Meli F, et al. Fast awakening from minimally conscious state with apomorphine. Brain Inj 2009, 23: 172–177.

    Article  Google Scholar 

  103. Hughes AJ, Lees AJ, Stern GM. Apomorphine test to predict dopaminergic responsiveness in parkinsonian syndromes. Lancet 1990, 336: 32–34.

    Article  CAS  Google Scholar 

  104. Fridman EA, Krimchansky BZ, Bonetto M, Galperin T, Gamzu ER, Leiguarda RC, et al. Continuous subcutaneous apomorphine for severe disorders of consciousness after traumatic brain injury. Brain Inj 2010, 24: 636–641.

    Article  Google Scholar 

  105. Machado C, Estévez M, Rodriguez-Rojas R. Zolpidem efficacy and safety in disorders of consciousness. Brain Inj 2018, 32: 530–531.

    Article  Google Scholar 

  106. Whyte J, Myers R. Incidence of clinically significant responses to zolpidem among patients with disorders of consciousness: A preliminary placebo controlled trial. Am J Phys Med Rehabil 2009, 88: 410–418.

    Article  Google Scholar 

  107. Ciurleo R, Bramanti P, Calabrò RS. Pharmacotherapy for disorders of consciousness: Are ‘awakening’ drugs really a possibility? Drugs 2013, 73: 1849–1862.

    Article  CAS  Google Scholar 

  108. Sutton JA, Clauss RP. A review of the evidence of zolpidem efficacy in neurological disability after brain damage due to stroke, trauma and hypoxia: A justification of further clinical trials. Brain Inj 2017, 31: 1019–1027.

    Article  CAS  Google Scholar 

  109. Calabrò RS, Aricò I, de Salvo S, Conti-Nibali V, Bramanti P. Transient awakening from vegetative state: Is high-dose zolpidem more effective? Psychiatry Clin Neurosci 2015, 69: 122–123.

    Article  Google Scholar 

  110. Machado C, Estévez M, Rodríguez R, Pérez-Nellar J, Chinchilla M, DeFina P, et al. Zolpidem arousing effect in persistent vegetative state patients: Autonomic, EEG and behavioral assessment. Curr Pharm Des 2014, 20: 4185–4202.

    CAS  Google Scholar 

  111. Whyte J, Rajan R, Rosenbaum A, Katz D, Kalmar K, Seel R, et al. Zolpidem and restoration of consciousness. Am J Phys Med Rehabilitation 2014, 93: 101–113.

    Article  Google Scholar 

  112. Khalili H, Rakhsha A, Ghaedian T, Niakan A, Masoudi N. Application of brain perfusion SPECT in the evaluation of response to zolpidem therapy in consciousness disorder due to traumatic brain injury. Indian J Nucl Med 2020, 35: 315–320.

    Article  Google Scholar 

  113. Sripad P, Rosenberg J, Boers F, Filss CP, Galldiks N, Langen KJ, et al. Effect of zolpidem in the aftermath of traumatic brain injury: An MEG study. Case Rep Neurol Med 2020, 2020: 8597062.

    Google Scholar 

  114. Tucker C, Sandhu K. The effectiveness of zolpidem for the treatment of disorders of consciousness. Neurocrit Care 2016, 24: 488–493.

    Article  CAS  Google Scholar 

  115. Shou Z, Li Z, Wang X, Chen M, Bai Y, Di H. Non-invasive brain intervention techniques used in patients with disorders of consciousness. Int J Neurosci 2021, 131: 390–404.

    Article  Google Scholar 

  116. Bourdillon P, Hermann B, Sitt JD, Naccache L. Electromagnetic brain stimulation in patients with disorders of consciousness. Front Neurosci 2019, 13: 223.

    Article  Google Scholar 

  117. Thibaut A, Bruno MA, Ledoux D, Demertzi A, Laureys S. tDCS in patients with disorders of consciousness: Sham-controlled randomized double-blind study. Neurology 2014, 82: 1112–1118.

    Article  Google Scholar 

  118. Thibaut A, Chatelle C, Vanhaudenhuyse A, Martens G, Cassol H, Martial C, et al. Transcranial direct current stimulation unveils covert consciousness. Brain Stimul 2018, 11: 642–644.

    Article  Google Scholar 

  119. Mancuso M, Abbruzzese L, Canova S, Landi G, Rossi S, Santarnecchi E. Transcranial random noise stimulation does not improve behavioral and neurophysiological measures in patients with subacute vegetative-unresponsive wakefulness state (VS-UWS). Front Hum Neurosci 2017, 11: 524.

    Article  Google Scholar 

  120. Angelakis E, Liouta E, Andreadis N, Korfias S, Ktonas P, Stranjalis G, et al. Transcranial direct current stimulation effects in disorders of consciousness. Arch Phys Med Rehabil 2014, 95: 283–289.

    Article  Google Scholar 

  121. Thibaut A, Wannez S, Donneau AF, Chatelle C, Gosseries O, Bruno MA, et al. Controlled clinical trial of repeated prefrontal tDCS in patients with chronic minimally conscious state. Brain Inj 2017, 31: 466–474.

    Article  Google Scholar 

  122. Martens G, Lejeune N, O’Brien AT, Fregni F, Martial C, Wannez S, et al. Randomized controlled trial of home-based 4-week tDCS in chronic minimally conscious state. Brain Stimul 2018, 11: 982–990.

    Article  Google Scholar 

  123. Zhang Y, Song W, Du J, Huo S, Shan G, Li R. Transcranial direct current stimulation in patients with prolonged disorders of consciousness: Combined behavioral and event-related potential evidence. Front Neurol 2017, 8: 620.

    Article  Google Scholar 

  124. Martens G, Kroupi E, Bodien Y, Frasso G, Annen J, Cassol H, et al. Behavioral and electrophysiological effects of network-based frontoparietal tDCS in patients with severe brain injury: A randomized controlled trial. Neuroimage Clin 2020, 28: 102426.

    Article  Google Scholar 

  125. Lefaucheur JP, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol 2017, 128: 56–92.

    Article  Google Scholar 

  126. Piccione F, Cavinato M, Manganotti P, Formaggio E, Storti SF, Battistin L, et al. Behavioral and neurophysiological effects of repetitive transcranial magnetic stimulation on the minimally conscious state: A case study. Neurorehabil Neural Repair 2011, 25: 98–102.

    Article  Google Scholar 

  127. Pisani LR, Naro A, Leo A, Aricò I, Pisani F, Silvestri R, et al. Repetitive transcranial magnetic stimulation induced slow wave activity modification: A possible role in disorder of consciousness differential diagnosis? Conscious Cogn 2015, 38: 1–8.

    Article  Google Scholar 

  128. Cincotta M, Giovannelli F, Chiaramonti R, Bianco G, Godone M, Battista D, et al. No effects of 20 Hz-rTMS of the primary motor cortex in vegetative state: A randomised, sham-controlled study. Cortex 2015, 71: 368–376.

    Article  Google Scholar 

  129. Xia X, Liu Y, Bai Y, Liu Z, Yang Y, Guo Y, et al. Long-lasting repetitive transcranial magnetic stimulation modulates electroencephalography oscillation in patients with disorders of consciousness. Neuroreport 2017, 28: 1022–1029.

    Article  Google Scholar 

  130. He F, Wu M, Meng F, Hu Y, Gao J, Chen Z, et al. Effects of 20 Hz repetitive transcranial magnetic stimulation on disorders of consciousness: A resting-state electroencephalography study. Neural Plast 2018, 2018: 5036184.

    Article  Google Scholar 

  131. Xia X, Wang Y, Li C, Li X, He J, Bai Y. Transcranial magnetic stimulation-evoked connectivity reveals modulation effects of repetitive transcranial magnetic stimulation on patients with disorders of consciousness. Neuroreport 2019, 30: 1307–1315.

    Article  Google Scholar 

  132. Xia X, Bai Y, Zhou Y, Yang Y, Xu R, Gao X, et al. Effects of 10 Hz repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex in disorders of consciousness. Front Neurol 2017, 8: 182.

    Article  Google Scholar 

  133. Naro A, Russo M, Leo A, Bramanti P, Quartarone A, Calabrò RS. A single session of repetitive transcranial magnetic stimulation over the dorsolateral prefrontal cortex in patients with unresponsive wakefulness syndrome: Preliminary results. Neurorehabil Neural Repair 2015, 29: 603–613.

    Article  Google Scholar 

  134. Ge X, Zhang Y, Xin T, Luan X. Effects of 10 Hz repetitive transcranial magnetic stimulation of the right dorsolateral prefrontal cortex in the vegetative state. Exp Ther Med 2021, 21: 206.

    Article  CAS  Google Scholar 

  135. Jang SH, Kwon YH. Effect of repetitive transcranial magnetic stimulation on the ascending reticular activating system in a patient with disorder of consciousness: A case report. BMC Neurol 2020, 20: 37.

    Article  Google Scholar 

  136. Pape TLB, Rosenow JM, Patil V, Steiner M, Harton B, Guernon A, et al. RTMS safety for two subjects with disordered consciousness after traumatic brain injury. Brain Stimul 2014, 7: 620–622.

    Article  Google Scholar 

  137. Kletzel SL, Aaronson AL, Guernon A, Carbone C, Chaudhry N, Walsh E, et al. Safety considerations for the use of transcranial magnetic stimulation as treatment for coma recovery in people with severe traumatic brain injury. J Head Trauma Rehabil 2020, 35: 430–438.

    Article  Google Scholar 

  138. Schiff ND, Giacino JT, Kalmar K, Victor JD, Baker K, Gerber M, et al. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 2007, 448: 600–603.

    Article  CAS  Google Scholar 

  139. Lemaire JJ, Sontheimer A, Pereira B, Coste J, Rosenberg S, Sarret C, et al. Deep brain stimulation in five patients with severe disorders of consciousness. Ann Clin Transl Neurol 2018, 5: 1372–1384.

    Article  Google Scholar 

  140. Magrassi L, Maggioni G, Pistarini C, di Perri C, Bastianello S, Zippo AG, et al. Results of a prospective study (CATS) on the effects of thalamic stimulation in minimally conscious and vegetative state patients. J Neurosurg 2016, 125: 972–981.

    Article  Google Scholar 

  141. Chudy D, Deletis V, Almahariq F, Marčinković P, Škrlin J, Paradžik V. Deep brain stimulation for the early treatment of the minimally conscious state and vegetative state: Experience in 14 patients. J Neurosurg 2018, 128: 1189–1198.

    Article  Google Scholar 

  142. Giacino JT, Katz DI, Whyte J. Neurorehabilitation in disorders of consciousness. Semin Neurol 2013, 33: 142–156.

    Article  Google Scholar 

  143. Schiff ND, Fins JJ. Deep brain stimulation and cognition: Moving from animal to patient. Curr Opin Neurol 2007, 20: 638–642.

    Article  Google Scholar 

  144. Schiff ND. Central thalamic deep-brain stimulation in the severely injured brain: Rationale and proposed mechanisms of action. Ann N Y Acad Sci 2009, 1157: 101–116.

    Article  Google Scholar 

  145. Gonzalez-Escamilla G, Muthuraman M, Ciolac D, Coenen VA, Schnitzler A, Groppa S. Neuroimaging and electrophysiology meet invasive neurostimulation for causal interrogations and modulations of brain states. Neuroimage 2020, 220: 117144.

    Article  Google Scholar 

  146. Garcia-Rill E, Luster B, D’Onofrio S, Mahaffey S, Bisagno V, Urbano FJ. Pedunculopontine arousal system physiology - Deep brain stimulation (DBS). Sleep Sci 2015, 8: 153–161.

    Article  Google Scholar 

  147. Yu YT, Yang Y, Wang LB, Fang JL, Chen YY, He JH, et al. Transcutaneous auricular vagus nerve stimulation in disorders of consciousness monitored by fMRI: The first case report. Brain Stimul 2017, 10: 328–330.

    Article  Google Scholar 

  148. Corazzol M, Lio G, Lefevre A, Deiana G, Tell L, André-Obadia N, et al. Restoring consciousness with vagus nerve stimulation. Curr Biol 2017, 27: R994–R996.

    Article  CAS  Google Scholar 

  149. Yu Y, Yang Y, Gan S, Guo S, Fang J, Wang S, et al. Cerebral hemodynamic correlates of transcutaneous auricular vagal nerve stimulation in consciousness restoration: An open-label pilot study. Front Neurol 2021, 12: 684791.

    Article  Google Scholar 

  150. Megha M, Harpreet S, Nayeem Z. Effect of frequency of multimodal coma stimulation on the consciousness levels of traumatic brain injury comatose patients. Brain Inj 2013, 27: 570–577.

    Article  CAS  Google Scholar 

  151. Cheng L, Cortese D, Monti MM, Wang F, Riganello F, Arcuri F, et al. Do sensory stimulation programs have an impact on consciousness recovery? Front Neurol 2018, 9: 826.

    Article  Google Scholar 

  152. Riganello F, Cortese MD, Arcuri F, Quintieri M, Dolce G. How can music influence the autonomic nervous system response in patients with severe disorder of consciousness? Front Neurosci 2015, 9: 461.

    Article  Google Scholar 

  153. Magliacano A, de Bellis F, Galvao-Carmona A, Estraneo A, Trojano L. Can salient stimuli enhance responses in disorders of consciousness? A systematic review. Curr Neurol Neurosci Rep 2019, 19: 98.

    Article  Google Scholar 

  154. Sullivan EG, Guernon A, Blabas B, Herrold AA, Pape TLB. Familiar auditory sensory training in chronic traumatic brain injury: A case study. Disabil Rehabil 2018, 40: 945–951.

    Article  Google Scholar 

  155. Padua L, Cuccagna C, Pazzaglia C. Novel sensory paradigms for neuromodulation in disorders of consciousness in traumatic brain injury. Curr Opin Neurol 2019, 32: 844–849.

    Article  Google Scholar 

  156. Gibson RM, Owen AM, Cruse D. Brain-computer interfaces for patients with disorders of consciousness. Prog Brain Res 2016, 228: 241–291.

    Article  CAS  Google Scholar 

  157. Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD. Detecting awareness in the vegetative state. Science 2006, 313: 1402.

    Article  CAS  Google Scholar 

  158. Charland-Verville V, Lesenfants D, Lee S, Noirhomme Q, Ziegler E, Chatelle C, et al. Detection of response to command using voluntary control of breathing in disorders of consciousness. Front Hum Neurosci 2014, 8: 1020.

    Article  Google Scholar 

  159. Lesenfants D, Habbal D, Chatelle C, Schnakers C, Laureys S, Noirhomme Q. Electromyographic decoding of response to command in disorders of consciousness. Neurology 2016, 87: 2099–2107.

    Article  Google Scholar 

  160. Stoll J, Chatelle C, Carter O, Koch C, Laureys S, Einhäuser W. Pupil responses allow communication in locked-in syndrome patients. Curr Biol 2013, 23: R647–R648.

    Article  CAS  Google Scholar 

  161. Wilhelm B, Jordan M, Birbaumer N. Communication in locked-in syndrome: Effects of imagery on salivary pH. Neurology 2006, 67: 534–535.

    Article  CAS  Google Scholar 

  162. Pistoia F, Sacco S, Sarà M, Franceschini M, Carolei A. Intrathecal baclofen: Effects on spasticity, pain, and consciousness in disorders of consciousness and locked-in syndrome. Curr Pain Headache Rep 2015, 19: 466.

    Article  Google Scholar 

  163. Carboncini MC, Piarulli A, Virgillito A, Arrighi P, Andre P, Tomaiuolo F, et al. A case of post-traumatic minimally conscious state reversed by midazolam: Clinical aspects and neurophysiological correlates. Restor Neurol Neurosci 2014, 32: 767–787.

    CAS  Google Scholar 

  164. Lanzillo B, Loreto V, Calabrese C, Estraneo A, Moretta P, Trojano L. Does pain relief influence recovery of consciousness? A case report of a patient treated with ziconotide. Eur J Phys Rehabil Med 2016, 52: 263–266.

    Google Scholar 

  165. Monti MM, Schnakers C, Korb AS, Bystritsky A, Vespa PM. Non-invasive ultrasonic thalamic stimulation in disorders of consciousness after severe brain injury: A first-in-man report. Brain Stimul 2016, 9: 940–941.

    Article  Google Scholar 

  166. Yamamoto T, Watanabe M, Obuchi T, Kobayashi K, Oshima H, Fukaya C, et al. Spinal cord stimulation for vegetative state and minimally conscious state: Changes in consciousness level and motor function. Acta Neurochir Suppl 2017, 124: 37–42.

    Article  Google Scholar 

  167. Vanzan S, Wilkinson D, Ferguson H, Pullicino P, Sakel M. Behavioural improvement in a minimally conscious state after caloric vestibular stimulation: Evidence from two single case studies. Clin Rehabil 2017, 31: 500–507.

    Article  Google Scholar 

  168. Ng H, King A. A systematic review of head-up tilt to improve consciousness in people with a prolonged disorder of consciousness. Clin Rehabil 2021, 35: 13–25.

    Article  Google Scholar 

  169. Bender Pape TL, Herrold AA, Livengood SL, Guernon A, Weaver JA, Higgins JP, et al. A pilot trial examining the merits of combining amantadine and repetitive transcranial magnetic stimulation as an intervention for persons with disordered consciousness after TBI. J Head Trauma Rehabilitation 2020, 35: 371–387.

    Article  Google Scholar 

  170. Delargy M, O’Connor R, McCann A, Galligan I, Cronin H, Gray D, et al. An analysis of the effects of using Zolpidem and an innovative multimodal interdisciplinary team approach in prolonged disorders of consciousness (PDOC). Brain Inj 2019, 33: 242–248.

    Article  Google Scholar 

  171. Kurz EM, Wood G, Kober SE, Schippinger W, Pichler G, Müller-Putz G, et al. Towards using fNIRS recordings of mental arithmetic for the detection of residual cognitive activity in patients with disorders of consciousness (DOC). Brain Cogn 2018, 125: 78–87.

    Article  Google Scholar 

  172. Guller Y, Giacino J. Potential applications of concurrent transcranial magnetic stimulation and functional magnetic resonance imaging in acquired brain injury and disorders of consciousness. Brain Inj 2014, 28: 1190–1196.

    Article  Google Scholar 

  173. Bodart O, Gosseries O, Wannez S, Thibaut A, Annen J, Boly M, et al. Measures of metabolism and complexity in the brain of patients with disorders of consciousness. Neuroimage Clin 2017, 14: 354–362.

    Article  Google Scholar 

  174. Straudi S, Bonsangue V, Mele S, Craighero L, Montis A, Fregni F, et al. Bilateral M1 anodal transcranial direct current stimulation in post traumatic chronic minimally conscious state: A pilot EEG-tDCS study. Brain Inj 2019, 33: 490–495.

    Article  Google Scholar 

  175. Zhang Y, Yang Y, Si J, Xia X, He J, Jiang T. Influence of inter-stimulus interval of spinal cord stimulation in patients with disorders of consciousness: A preliminary functional near-infrared spectroscopy study. Neuroimage Clin 2017, 17: 1–9.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shanghai Municipal Science and Technology Major Project (2018SHZDZX01), ZJ Lab, Shanghai Center for Brain Science and Brain-Inspired Technology, and National Major Pre-Research Project (pilot project) (IDF151042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Hai Wu or Ying Mao.

Ethics declarations

Conflict of interest

The authors claim that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, RZ., Qi, ZX., Wang, Z. et al. Clinical Decision on Disorders of Consciousness After Acquired Brain Injury: Stepping Forward. Neurosci. Bull. 39, 138–162 (2023). https://doi.org/10.1007/s12264-022-00909-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-022-00909-7

Keywords

Navigation