Skip to main content
Log in

Three-Dimensional Heterogeneity of Cerebellar Interposed Nucleus-Recipient Zones in the Thalamic Nuclei

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The cerebellum is conceptualized as a processor of complex movements and is also endowed with roles in cognitive and emotional behaviors. Although the axons of deep cerebellar nuclei are known to project to primary thalamic nuclei, macroscopic investigation of the characteristics of these projections, such as the spatial distribution of recipient zones, is lacking. Here, we studied the output of the cerebellar interposed nucleus (IpN) to the ventrolateral (VL) and centrolateral (CL) thalamic nuclei using electrophysiological recording in vivo and trans-synaptic viral tracing. We found that IpN stimulation induced mono-synaptic evoked potentials (EPs) in the VL but not the CL region. Furthermore, both the EPs induced by the IpN and the innervation of IpN projections displayed substantial heterogeneity across the VL region in three-dimensional space. These findings indicate that the recipient zones of IpN inputs vary between and within thalamic nuclei and may differentially control thalamo-cortical networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brooks JX, Carriot J, Cullen KE. Learning to expect the unexpected: Rapid updating in primate cerebellum during voluntary self-motion. Nat Neurosci 2015, 18: 1310–1317.

    Article  CAS  Google Scholar 

  2. De Zeeuw CI, Ten Brinke MM. Motor learning and the cerebellum. Cold Spring Harb Perspect Biol 2015, 7: a021683.

  3. Tsai PT, Hull C, Chu YX, Greene-Colozzi E, Sadowski AR, Leech JM. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 2012, 488: 647–651.

    Article  CAS  Google Scholar 

  4. Wang SS, Kloth AD, Badura A. The cerebellum, sensitive periods, and autism. Neuron 2014, 83: 518–532.

    Article  CAS  Google Scholar 

  5. Bodranghien F, Bastian A, Casali C, Hallett M, Louis ED, Manto M, et al. Consensus paper: Revisiting the symptoms and signs of cerebellar syndrome. Cerebellum 2016, 15: 369–391.

    Article  Google Scholar 

  6. Igelström KM, Webb TW, Graziano MSA. Functional connectivity between the temporoparietal cortex and cerebellum in autism spectrum disorder. Cereb Cortex 2017, 27: 2617–2627.

    PubMed  Google Scholar 

  7. Stoodley CJ, D’Mello AM, Ellegood J, Jakkamsetti V, Liu P, Nebel MB, et al. Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat Neurosci 2017, 20: 1744–1751.

    Article  CAS  Google Scholar 

  8. Carta I, Chen CH, Schott AL, Dorizan S, Khodakhah K. Cerebellar modulation of the reward circuitry and social behavior. Science 2019, 363: eaav0581.

  9. Kelly E, Meng FT, Fujita H, Morgado F, Kazemi Y, Rice LC, et al. Regulation of autism-relevant behaviors by cerebellar-prefrontal cortical circuits. Nat Neurosci 2020, 23: 1102–1110.

    Article  CAS  Google Scholar 

  10. Fujita H, Kodama T, du Lac S. Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. Elife 2020, 9: e58613.

  11. Kebschull JM, Richman EB, Ringach N, Friedmann D, Albarran E, Kolluru SS, et al. Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set. Science 2020, 370: eabd5059.

  12. Sathyanesan A, Zhou J, Scafidi J, Heck DH, Sillitoe RV, Gallo V. Emerging connections between cerebellar development, behaviour and complex brain disorders. Nat Rev Neurosci 2019, 20: 298–313.

    Article  CAS  Google Scholar 

  13. Herkenham M. Laminar organization of thalamic projections to the rat neocortex. Science 1980, 207: 532–535.

    Article  CAS  Google Scholar 

  14. Gao ZY, Davis C, Thomas AM, Economo MN, Abrego AM, Svoboda K, et al. A cortico-cerebellar loop for motor planning. Nature 2018, 563: 113–116.

    Article  CAS  Google Scholar 

  15. Herrero MT, Barcia C, Navarro JM. Functional anatomy of thalamus and basal ganglia. Childs Nerv Syst 2002, 18: 386–404.

    Article  Google Scholar 

  16. Dillingham CM, Milczarek MM, Perry JC, Vann SD. Time to put the mammillothalamic pathway into context. Neurosci Biobehav Rev 2021, 121: 60–74.

    Article  Google Scholar 

  17. Teune TM, van der Burg J, van der Moer J, Voogd J, Ruigrok TJH. Topography of cerebellar nuclear projections to the brain stem in the rat. Prog Brain Res 2000, 124: 141–172.

    Article  CAS  Google Scholar 

  18. Sawyer SF, Young SJ, Groves PM, Tepper JM. Cerebellar-responsive neurons in the thalamic ventroanterior-ventrolateral complex of rats: In vivo electrophysiology. Neuroscience 1994, 63: 711–724.

    Article  CAS  Google Scholar 

  19. Gornati SV, Schäfer CB, Eelkman Rooda OHJ, Nigg AL, De Zeeuw CI, Hoebeek FE. Differentiating cerebellar impact on thalamic nuclei. Cell Rep 2018, 23: 2690–2704.

    Article  CAS  Google Scholar 

  20. Stanton GB. Topographical organization of ascending cerebellar projections from the dentate and interposed nuclei in Macaca mulatta: An anterograde degeneration study. J Comp Neurol 1980, 190: 699–731.

    Article  CAS  Google Scholar 

  21. Kyuhou S, Matsuzaki R, Gemba H. Cerebello-cerebral projections onto the ventral part of the frontal cortex of the macaque monkey. Neurosci Lett 1997, 230: 101–104.

    Article  CAS  Google Scholar 

  22. Amino Y, Kyuhou S, Matsuzaki R, Gemba H. Cerebello-thalamo-cortical projections to the posterior parietal cortex in the macaque monkey. Neurosci Lett 2001, 309: 29–32.

    Article  CAS  Google Scholar 

  23. Buzsáki G. Large-scale recording of neuronal ensembles. Nat Neurosci 2004, 7: 446–451.

    Article  Google Scholar 

  24. Sloan DM, Zhang DX, Bertram EH 3rd. Increased GABAergic inhibition in the midline thalamus affects signaling and seizure spread in the hippocampus-prefrontal cortex pathway. Epilepsia 2011, 52: 523–530.

    Article  Google Scholar 

  25. Shao Z, Burkhalter A. Different balance of excitation and inhibition in forward and feedback circuits of rat visual cortex. J Neurosci 1996, 16: 7353–7365.

    Article  CAS  Google Scholar 

  26. Kumaravelu K, Oza CS, Behrend CE, Grill WM. Model-based deconstruction of cortical evoked potentials generated by subthalamic nucleus deep brain stimulation. J Neurophysiol 2018, 120: 662–680.

    Article  CAS  Google Scholar 

  27. Zingg B, Peng B, Huang JX, Tao HW, Zhang LI. Synaptic specificity and application of anterograde transsynaptic AAV for probing neural circuitry. J Neurosci 2020, 40: 3250–3267.

    Article  CAS  Google Scholar 

  28. Zhang GW, Shen L, Tao C, Jung AH, Peng B, Li Z, et al. Medial preoptic area antagonistically mediates stress-induced anxiety and parental behavior. Nat Neurosci 2021, 24: 516–528.

    Article  CAS  Google Scholar 

  29. Angaut P, Cicirata F, Serapide F. Topographic organization of the cerebellothalamic projections in the rat. An autoradiographic study. Neuroscience 1985, 15: 389–401.

    CAS  PubMed  Google Scholar 

  30. Haroian AJ, Massopust LC, Young PA. Cerebellothalamic projections in the rat: An autoradiographic and degeneration study. J Comp Neurol 1981, 197: 217–236.

    Article  CAS  Google Scholar 

  31. Li A, Gong H, Zhang B, Wang QD, Yan C, Wu JP, et al. Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science 2010, 330: 1404–1408.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Core Facilities of Zhejiang University Institute of Neuroscience for technical assistance and Dr. IC Bruce for reading this manuscript. This work was supported by grants from the National Natural Science Foundation of China (81625006, 31970923, and 31820103005) and the China Postdoctoral Science Foundation (2019M662025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Shen.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 396 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, KY., Cai, XY., Wang, XT. et al. Three-Dimensional Heterogeneity of Cerebellar Interposed Nucleus-Recipient Zones in the Thalamic Nuclei. Neurosci. Bull. 37, 1529–1541 (2021). https://doi.org/10.1007/s12264-021-00780-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-021-00780-y

Keywords

Navigation