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Abstract A large number of putative risk genes for autism

spectrum disorder (ASD) have been reported. The func-

tions of most of these susceptibility genes in developing

brains remain unknown, and causal relationships between

their variation and autism traits have not been established.

The aim of this study was to predict putative risk genes at

the whole-genome level based on the analysis of gene co-

expression with a group of high-confidence ASD risk genes

(hcASDs). The results showed that three gene features –

gene size, mRNA abundance, and guanine-cytosine content

– affect the genome-wide co-expression profiles of

hcASDs. To circumvent the interference of these features

in gene co-expression analysis, we developed a method to

determine whether a gene is significantly co-expressed

with hcASDs by statistically comparing the co-expression

profile of this gene with hcASDs to that of this gene with

permuted gene sets of feature-matched genes. This method

is referred to as ‘‘matched-gene co-expression analysis’’

(MGCA). With MGCA, we demonstrated the convergence

in developmental expression profiles of hcASDs and

improved the efficacy of risk gene prediction. The results

of analysis of two recently-reported ASD candidate genes,

CDH11 and CDH9, suggested the involvement of CDH11,

but not CDH9, in ASD. Consistent with this prediction,

behavioral studies showed that Cdh11-null mice, but not

Cdh9-null mice, have multiple autism-like behavioral

alterations. This study highlights the power of MGCA in

revealing ASD-associated genes and the potential role of

CDH11 in ASD.

Keywords CDH11 � Autism spectrum disorder � Gene co-
expression analysis � Matched-gene co-expression analysis

Introduction

Autism spectrum disorder (ASD) is a heterogeneous

neurodevelopmental condition with a complex genetic

basis [1, 2]. A large number of putative risk genes have

been identified by genetic linkage analyses, genome-wide

association studies, whole-exome sequencing, or whole-

genome sequencing [3–5]. However, the functions of most

of these putative risk genes in the developing brain remain

unknown. For some novel risk genes, the genetic evidence

supporting their association with ASD is not sufficient.

Therefore, causal relationships between the variations of

many risk genes and autism traits have not been estab-

lished. In order to prioritize the investigation of genes and

signaling pathways of high relevance to ASD, a method to

determine the functional importance of a large group of

putative risk genes is vital.

The highly diverse ASD risk genes are believed to

functionally converge on several common molecular
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pathways closely related to ASD, such as the Wnt signaling

pathway, the mammalian target of rapamycin pathway, and

dendritic development and synaptic remodeling pathways

[3, 6]. Consistent with the functional convergence of ASD

risk genes, several studies have shown the convergence of

the developmental expression profiles of a large group of

risk genes [7, 8]. It is generally believed that genes with

similar expression profiles are co-regulated or have related

functions [7, 9]. The co-expression of genes within a

biological pathway is a strong indication of their shared

functions [9]. Based on this concept, computational

analyses of various brain transcriptomes have been con-

ducted to identify potential co-expression networks of ASD

risk genes and to discover brain circuits that may be

affected by risk genes [7, 8, 10, 11]. In these studies, the

correlation coefficient (CC) of a pair of genes is calculated

based on their expression levels in different brain regions

or at different developmental stages. Genome-wide gene

co-expression networks have been constructed by setting

an empirically determined CC threshold [7]. Genetic

mutation and protein interaction data have also been

incorporated into gene co-expression analysis (GCA) along

with novel data analysis algorithms, such as machine

learning, to predict putative ASD risk genes and the

molecular pathways on which they converge [12]. A major

limitation in most of these studies is the lack of ways to

overcome the potential effects of confounding factors, such

as the size, expression level (mRNA abundance), and

guanine-cytosine (GC) content of genes, on the results of

GCA [13]. Most ASD risk genes are large and have a

higher expression level in the brain than in other tissues

[14]. It is unclear whether the size or expression level of an

ASD gene affects its co-expression with other genes. It is

also unclear whether the convergent pattern of develop-

mental expression profiles is specific to ASD risk genes or

a common property of genes with similar features, such as

large size and high mRNA abundance [13]. Therefore, we

developed a new method called ‘‘matched-gene co-expres-

sion analysis’’ (MGCA) (Fig. 1) to examine whether a gene

exhibits significant co-expression with a group of high-

confidence ASD risk genes (hcASDs) independent of

confounding gene features.

Materials and Methods

Data Filtering and Computation of Co-expression

Coefficients

The human brain transcriptome dataset from BrainSpan

(www.brainspan.org) (RNA-Seq Gencode v10) was used

for GCA. This dataset contained 256 transcriptomes of 16

different brain regions. The developmental stages ranged

from post-conception week 8 (PCW8) to 40 years old

(40Y). Normalized mRNA expression values were repre-

sented by RPKM (reads per kilobase per million mapped

reads). The average mRNA expression level of each gene

in all tissues was considered to be the mRNA abundance

level of a gene. Gene lengths were determined based on

annotations provided by the National Center for Biotech-

nology Information. The GC content of a gene was

obtained from Ensembl Genome Browser. Based on sta-

tistical analyses of genetic data described previously, 101

risk genes that reached a genome-wide significance

threshold (false discovery rate, FDR B0.1) [15] were used

as the hcASD gene set (high confidence ASD risk gene set;

Table S1). Genes with an abundance level lower than the

lowest abundance level of hcASDs were filtered out

(Table S1). Perl scripts were written to run most calcula-

tions. Pair-wise Pearson’s CC was used to indicate the

tendency for co-expression of a gene pair. Heatmaps were

constructed with the software R based on the CC matrix of

1/100 evenly-distributed genes. The mean CC was defined

as the co-expression coefficient (CEC), which indicates the

tendency for co-expression of a gene with a specific set of

genes (CEC ¼ 1
M

PM
i¼1 CCi; i ¼ 1; 2; . . .;M; where M is the

total gene number of a gene set) or the tendency of co-

expression of two gene sets [CEC ¼ 1
N�MPN

k¼1 ð
PM

i¼1 CCkiÞ; k ¼ 1; 2; . . .;N; i ¼ 1; 2; . . .;M; where

M and N represent the total gene number of two different

gene sets].

Gene Set Definition

After data filtering, a total of 12,250 genes with available

information on gene length, mRNA level, and GC content

were identified and used for the study (Table S1). In

addition to the hcASD gene set, the following gene sets

were used: cASD (combined ASD genes), mRand

(matched random genes), Rand (random genes), TriM

(triple-matched genes), Top (top-ranked genes by CEC

value), TriM-only (genes only in the TriM gene set), and

Top-only (genes only in the Top gene set). The cASD gene

set was a combined set of ASD-associated genes containing

514 non-redundant genes from nine different sets of

previously-reported ASD-associated genes (Table S5)

[7, 15–21]. Each mRand gene set contained 101 genes,

and one of the three features of each gene was matched

with that of the corresponding hcASD gene in the hcASD

gene set. To generate the mRand gene sets, each feature-

matched gene was randomly selected within the ±50 range

of the corresponding hcASD gene in the ranked gene list

using a Perl Script. Each Rand gene set contained 101

genes randomly selected from the whole gene list using a

Perl Script without considering matched gene features.

123

30 Neurosci. Bull. January, 2022, 38(1):29–46

http://www.brainspan.org


Fig. 1 Flowchart of matched

gene co-expression analysis

(MGCA). Whole-genome genes

are ranked by their features,

creating various gene lists �.

For each gene in the hcASD set

(hcASD-1, hcASD-2, ��� to
hcASD-101), a feature-matched

gene is randomly selected from

the range of 50 genes above and

50 below (±50 range) this gene

in the ranked lists ` to generate

a matched random gene set

(mRand) ´. For each gene in

the whole genome, its co-ex-

pression coefficient (CEC) with

each of the mRand gene set

(CECi) is computed ˆ, and

100,000 permutations are con-

ducted (i = 1, 2, … 100,000).

Each CECi is compared to the

CEC of the same gene with the

hcASD gene set (CEChcASD).

The number of permutations

with CECi\CEChcASD (n starts

from 0 for each gene evaluated,

n ? 1 if CECi\CEChcASD) is

counted ˜. After 100,000 per-

mutations, genes with

n[99,990, which correspond to

a permutation P\ 0.0001, are

considered significantly co-ex-

pressed with hcASDs under a

feature-matched condition Þ.

Genes significantly co-ex-

pressed with hcASDs under all

three feature-matched condi-

tions are defined as Triple-

matched genes (TriM) þ.
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TriM was the set of genes revealed by matched-gene co-

expression analysis (MGCA) that exhibited significant co-

expression with the hcASD gene set under all three

matched conditions (Figs 1, 4A). The Top gene set

contained top-ranked genes with the highest CEC values

with hcASD. The TriM-only and Top-only gene sets

contained non-overlapped genes present only in the TriM

or the Top gene set.

Gene Ontology (GO) Analysis

GO analysis was performed using DAVID v6.8 (http://

david.ncifcrf.gov/tools.jsp), and the human whole-genome

genes provided by DAVID were used as the background

list. A corrected P-value of 0.05 (Benjamini–Hochberg

method) was used.

Pathway Enrichment Analysis

Metascape (http://metascape.org) was used for pathway

enrichment analysis and to draw heatmaps. Pairwise sim-

ilarities between any two significant terms were computed

based on Kappa-test scores. The enriched terms were then

hierarchically clustered into a tree with a kappa score of 0.3

as the threshold.

Ethics Approval

Animal care and handling were performed according to the

guidelines for the Care and Use of Laboratory Animals of

the National Institutes of Health. All animal experiments

were approved by the Animal Care and Use Committees of

Hussman Institute for Autism (06012015D), University of

Maryland School of Medicine (0515017), and East China

Normal University (m20190236).

Animals

Cdh9-null mice (Cdh9Laz, C57BL/6-ICR mixed back-

ground) [22] were provided by Dr. Joshua R Sanes at

Harvard University. Cdh11-null mice [23] were from the

Jackson Labs (Cdh11tm1Mta/HensJ, https://www.jax.org/

strain/023494, C57BL/6-129Sv-CD-1 mixed background).

All mice were housed in groups of five with free access to

food and water and kept on a 12-h light/dark cycle. Mice

were tattooed on the tail using fluorescent ink for identi-

fication. A UV flashlight was used to visualize the tattooed

identification numbers. All behavioral tests were conducted

during the daytime on mice 2–5 months of age. The

experimenter was blind to the genotype of the animal

during behavioral experiments. The surface of the appa-

ratus for behavioral tests was cleaned with 50% ethanol

between tests. At least 5 min between cleaning and the

next test was allowed for ethanol evaporation and odor

dissipation.

Genotyping

Genotyping of Cdh9-null mice was done by PCR as

previously described [22]. The PCR product for the wild-

type (WT) Cdh9 allele was 550 bp amplified with the

primer pair Cdh9-P1 (CCA CTA CAG GAA ACC TTT

GGG TT) and Cdh9-P3 (ATG CAA ACC ATC AGG TAT

ACC AAC C), and that of the mutant allele was 430 bp

amplified with the primer pair Cdh9-P1 and Cdh9-P2 (CGT

GGT ATC GTT ATG CGC CT). The annealing temper-

ature for Cdh9 PCRs was 63�C. For genotyping of Cdh11-

null mice, the primer pair Cdh11-P1 (CGC CTT CTT GAC

GAG TTC) and Cdh11-P2 (CAC CAT AAT TTG CCA

GCT CA) were used for amplification of the mutant allele,

and the primer pair Cdh11-P3 (GTT CAG TCG GCA GAA

GCA G) and Cdh11-P2 were used for the WT allele. The

annealing temperatures for PCR were 63.1�C and 56�C for

the mutant and WT alleles, respectively. The sizes of the

PCR products for the mutant and WT alleles were 500 bp

and 400 bp, respectively.

Behavioral Tests

Mice 3–5 months old were used for the behavioral tests.

Animals were handled before the test (10 min/day for 3

days). The general order of tests was the open field test,

elevated plus maze, sociability test, rotarod test, and

gripping force test. Animals rested for at least 3 days after

finishing one test. During all tests, the experimenter was

blind to mouse genotype. Three batches of mice were

analyzed, and data were pooled for analysis.

Open Field Test

The test mouse was allowed to freely explore the open field

arena (50 cm 9 50 cm) for 30 min. The movement was

videoed and tracked by an automated tracking system

(EthoVision XT 11.5, Noldus Information Technology,

Leesburg, USA), which also recorded rearing, hopping,

turning, self-grooming, movement time, total distance

moved, and time spent in the center of the arena (1/2 of

total size).

Elevated Plus Maze Test (EPM)

The standard EPM apparatus consisted of two open and

two closed arms, 30 cm 9 5 cm each, connected by a

central platform (5 cm 9 5 cm). The maze was 30 cm

above the floor. The test mouse was gently placed on the

central platform with its head facing one closed arm and
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was allowed to freely explore for 10 min. The time spent in

the open arms and the number of open arm entries were

recorded.

Grip Strength Test

The test mouse was placed on a metal grid on top of a

transparent chamber. The grid was quickly inverted, and

the time for the mouse to drop off the grid was noted. Five

consecutive trials were carried out, and the average

hanging time for each mouse was calculated. The maxi-

mum hanging time was set to 1 min, after which the trial

was stopped, and the hanging time was recorded as 1 min.

Horizontal Bar Test

The mouse was gently placed on a metal wire, with the two

forepaws gripping the wire. The time spent hanging on the

wire was recorded. The maximum hanging time was set to

1 min. The average hanging time was calculated from 5

consecutive trials.

Rotarod Test

Mice were habituated to the rotarod apparatus (Touch

Screen Rotarod, Harvard Apparatus, Holliston, USA) by

leaving them on the rod rotating at a low speed (4 r/min)

for 5 min each day for 3 days and tested on day 4 on the

accelerating rod. The time and the maximum rotation speed

at which the test mouse maintained balance on the rod were

measured. Each mouse completed five consecutive trials.

Social Preference Test

A modified three-chamber apparatus was used. The appa-

ratus comprised 3 rectangular chambers (25 cm 9 38 cm)

made of white Plexiglas with a 13-cm gate connecting the

two side chambers to the middle chamber. A 3-sided fence

(13 cm wide for each side) made of transparent Plexiglas

was placed inside each side-chamber facing the door of the

side-chambers, creating a 13 cm 9 13 cm square area

separated from the side chambers but connected to the

middle chamber through the door (Fig. 7A). The two side-

chambers were covered by transparent Plexiglas to mini-

mize odorant diffusion. The test mouse was placed inside

the middle chamber and freely explored the middle

chamber and the square zone in each side-chamber for 10

min. Three social partner mice were then placed into the

fenced area in one side-chamber, and the test mouse was

allowed to explore freely for another 10 min. Another 3

social partner mice were then placed in the other side-

chamber, and the behavior of the test mouse was tracked

for 10 min. The time that the test mouse spent in each

chamber was measured.

Experimental Design and Statistical Analysis

The effects of three different gene features on gene co-

expression profiles were first analyzed. MGCA (Fig. 1) was

then applied to determine the convergence in developmen-

tal expression profiles of hcASDs and detect genes that

were significantly co-expressed with hcASDs in the whole

genome. The effectiveness of MGCA in predicting putative

ASD-associated genes was analyzed by comparing its

results with those of GCA, which does not consider the

effects of three gene features. CDH11 and CDH9 were

selected as example genes, and behavioral experiments

were conducted in gene-knockout mice to test the findings

of MGCA.

Data are presented as the mean ± SEM. The upper fence

test and Grubbs’ test were used to evaluate whether the

hcASD–hcASD expression level (CEC value) was signif-

icantly higher than those of feature-matched (mRand–

mRand; hcASD–mRand) or non-matched, non-hcASD

gene sets (Rand–Rand; hcASD–Rand). Grubbs’ test was

done using the ‘‘grubbs.test’’ script in the R software

package. The FDR of a gene was determined by the

frequency of this gene significantly co-expressed (P \
0.001) with 5,000 mRand gene sets determined by MGCA.

The gene enrichment P-value was determined with the v2-
test. Pathway enrichment P-values were determined with

Metascape. Behavioral data were analyzed by Student’s t-

test and by one-way ANOVA followed by Dunnett’s t-test

as post hoc analysis using SPSS (IBM, Armonk, USA) or

GraphPad Prism (GraphPad Software, La Jolla, USA).

Availability of Data and Materials

Perl scripts for data analysis are available on GitHub

(https://github.com/wunan124/MGCA).

Results

Effects of Gene Features on Gene Co-expression

Profiles

The potential effect of the three gene features – mRNA

abundance, genomic DNA (gDNA) size, and GC content –

on gene co-expression profiles was first analyzed using the

BrainSpan human brain transcriptome dataset. This dataset

contains the transcriptomes of human (both sexes) brain

tissues from 16 different regions at various developmental

stages and ages (from PCW8 to 40Y). A total of 12,250

genes with information on all 3 features were placed in
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ascending order of mRNA abundance, gDNA size, or GC

content as ranked gene lists (Table S1). The CC of each

gene pair was calculated to reflect the co-expression level

of the two genes, and the results were displayed in pseudo-

color-coded matrices. In each of the CC matrices (Fig. 2A),

these 12,250 genes were placed in ascending order on both

x and y axes. All three CC matrices exhibited variable color

intensity in different areas with higher intensity corre-

sponding to higher CC values. The overall color intensity

was the highest in areas corresponding to medium mRNA

abundance, medium-to-large gDNA size, and low GC

content (Fig. 2A). This result suggests that all three gene

features affect gene co-expression profiles.

Most hcASDs are large genes with medium-to-large

mRNA abundance but with no apparent bias in GC content

(Fig. S1). To determine whether each of these three gene

features affects the co-expression of a gene with the

hcASD gene set as a whole, the CEC (mean CC between a

gene and each of the hcASD genes) of each of the 12,250

genes with the entire hcASD gene set was calculated (blue

dots in Fig. 2B; Table S1). In each of the 3 panels

(Fig. 2B), the 12,250 genes were placed in ascending order

(x-axis). A noise-reduced (by data averaging) CEC distri-

bution curve was then generated by plotting the average

CEC of a gene with its neighboring 20 (10 above and 10

below; ±10), 50 (±25), 100 (±50), or 200 (±100) genes in

the lists under each ranking condition. The results showed a

bell-shaped curve when genes were ranked by mRNA

abundance, suggesting that genes with medium expression

levels are more likely to be co-expressed with the hcASD

gene set (Fig. 2B, left panel). There was an overall positive

correlation between the gDNA size of a gene and its CEC

with the hcASD gene set (Fig. 2B, middle panel). The CEC

maintained a relatively high level (0.28–0.35) when the GC

content ranged from low to medium (approximately\45%,

x-axis\6000) and then gradually declined with increasing

GC content (Fig. 2B, right panel; Table S1).

With cubic regression, each noise-reduced CEC distri-

bution curve was found to have an R2-value[0.88 (Fig. S2;

Table S2), indicating a significant correlation between each

of these gene features and the tendency for co-expression

of a gene with the hcASD gene set. When the 12,250 genes

were placed in stochastic (random) order, CECs were

evenly distributed, and the noise-reduced CEC distribution

curves were largely flat (Fig. 2C).

Similar genome-wide gene co-expression profiles of the

hcASD gene set were found in the transcriptomes of early

(PCW8 to 2Y) and late (4Y–40Y) stages (Fig. S3A), both

sexes, and different brain regions (Fig. S3B, C). These

findings suggest that the co-expression profile of hcASD

genes is affected by all three gene features, regardless of

developmental stage, sex, and brain area. Similar effects of

these three features on the co-expression profiles of hcASD

genes were found when a set of 64 high-susceptibility

genes [24] were used as the hcASD gene set (Fig. S4).

Similar Co-expression Profiles of Feature-matched

Gene Sets

The genome-wide gene co-expression profile of the hcASD

gene set was then compared to the profiles of 200 feature-

matched non-hcASD gene sets. Each gene set comprised an

equal number (101) of randomly-selected and feature-

matched non-hcASD genes under the three different gene

ranking conditions (Fig. 3A). These gene sets were named

‘‘matched random’’ (mRand) sets (see Methods). In general,

the genome-wide CEC distribution of hcASDswas similar to

that of each of the 200 mRand sets under all three gene-

ranking conditions. These findings suggest that gene sets

with matched gene features have a genome-wide co-

expression profile similar to the hcASD gene set. However,

genes with low to moderate mRNA abundance (*1.2–30

RPKM, 1–10500 on the x-axis) had higher noise-reduced

CECs with the hcASD gene set than with any of the 200

mRand gene sets. In contrast, genes with high mRNA

abundance ([30 RPKM; 10500–12250 on the x-axis) had

lower noise-reduced CECs with the hcASD gene set than

with most mRand gene sets. Moreover, medium-to-large

genes had higher noise-reduced CECs with the hcASD gene

set than with most size-matched mRand gene sets. Apart

from those with the highest GC content, most genes had

higher noise-reduced CECs with the hcASD gene set than

with most GC content-matched mRand gene sets.

Co-expression of ASD Risk Genes

To determinewhether hcASDs exhibit a significant tendency

for co-expression with each other, the mean CEC of each of

the 101 hcASDs with the hcASD gene set as a whole

(hcASD–hcASD, see Methods) was compared to that of a

large number of permuted gene sets, each comprising an

equal number of feature-matched non-hcASD genes

(mRand–mRand) or randomly-selected non-hcASD genes

(Rand–Rand), and to the CEC between hcASD and mRand

(hcASD–mRand) or Rand (hcASD–Rand) gene sets. Two

hundred each of mRand and Rand gene sets were first

analyzed, and the results showed that feature-matched gene

sets (mRand) had overall higher CECs than randomgene sets

(Rand) under all three matched conditions (@@@ in Fig. 3B),

suggesting that geneswith similar features tend to co-express

with each other. The CEC of hcASD–hcASD (dashed line in

Fig. 3B) was beyond the 3 times interquartile range [Q3? 3

9 (Q3–Q1), 39 upper fence] of theCECs ofmRand–mRand,

Rand–Rand, hcASD–mRand, and hcASD–Rand gene sets.

The results of Grubbs’ test confirmed this tendency (*** in

Fig. 3B). These results suggest that hcASDs have a
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Fig. 2 Effect of gene features on genome-wide gene co-expression

profiles. A total of 12,250 genes with information on all 3 features

were identified, placed in Table S1 as lists, and used for analyses.

A Heatmaps of correlation coefficients (CCs) of genome-wide gene

pairs. Genes are ranked according to mRNA abundance, gDNA size,

or GC content. The CC of each gene with all genes is plotted and

displayed in pseudo-color-coded matrices. B Genome-wide distribu-

tion of CECs of each gene with the hcASD gene set under three

different gene ranking conditions. In each of the 3 matrix panels, the

12,250 genes are placed in ascending order on the x-axis, with 1 being

the lowest mRNA abundance and GC content or shortest gDNA and

12,250 being the highest in mRNA abundance and GC content or the

longest gDNA. Each blue dot represents the CEC of a gene with the

hcASD gene set. Purple, yellow, green, and red dots represent the

noise-reduced (average) CEC of a gene with its neighboring 20 (10

above and 10 below; ±10), 50 (±25), 100 (±50), or 200 (±100)

genes on the lists. Rods at the bottom of each panel show the locations

of hcASD genes on the ranked lists. C Genome-wide distribution of

CECs of each gene with the hcASD gene set when they are placed in

stochastic (random) order.
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significantly greater tendency for co-expression with each

other than with other feature-matched non-hcASD genes or

randomly-selected genes. To corroborate this finding, a

permutation test was conducted with 100,000 permuted sets

of genes with matched or non-matched features. The CEC of

hcASD–hcASD was again found to be significantly larger

(permutation P \ 0.00001) than that of hcASD–mRand,

mRand–mRand, hcASD–Rand, or Rand–Rand (### in

Fig. 3B), indicating a significant co-expression tendency of

hcASDs.

Significant co-expression of hcASDs was also found in

transcriptomes of brain tissue at both early (PCW8 to 2Y)

and late (4Y–40Y) stages (Fig. S5A, B), both sexes

(Fig. S5C, D), and different brain regions (Fig. S6A–C).

These results indicate a highly conserved co-expression

profile of hcASDs. Combined ranking of -log10(P-values)

of Grubbs’ test under all three matched conditions was then

performed to determine the relative significance level of

co-expression of hcASDs with each other in different brain

regions (Fig. S6D). The top four regions with the highest

significance levels were the cerebellum (CB), striatum

(STR), orbital frontal cortex, and dorsal frontal cortex;

these are regions previously implicated in ASD [25–32].

These results suggest that hcASDs play important roles in

the development and function of these ASD-relevant brain

regions.

Fig. 3 Convergent expression of hcASD genes determined by

MGCA. A Comparison of noise-reduced CEC distribution curves

between the hcASD gene set and 200 matched random gene sets

(mRand) under different gene-ranking conditions. The x-axis repre-

sents gene rank. B CECs of hcASD–hcASD, hcASD–mRand,

mRand–mRand, hcASD–Rand, and Rand–Rand gene set pairs. Two

hundred each of mRand and Rand gene sets were analyzed. Box plots

show ranges of CECs of hcASD–mRand, mRand–mRand, hcASD–

Rand, and Rand–Rand gene set pairs. In each box plot, the central

rectangles span the first quartile to the third quartile of 200 ranked

CEC values. The white bar inside the rectangle shows the median

CEC value, and whiskers above and below the box show the

maximum and minimum values, respectively. The dotted line

represents the CEC among hcASDs (hcASD–hcASD) in each panel.

Three statistical methods are used to determine whether the CEC of

hcASD–hcASD is significantly higher than that of hcASD–mRand,

mRand–mRand, hcASD–Rand, and Rand–Rand. Upper fence test: red

triangles stand for the boundaries of significant difference (39

fences). Grubbs’ test: ***P\ 0.001. Permutation test: ###P\ 0.001.

Student’s t-test was used to determine whether the CECs of hcASD–

mRand and mRand–mRand are significantly greater than those of

hcASD–Rand and Rand–Rand, respectively. @P \ 0.05; @@@P \
0.001.
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Fig. 4 Evaluation of TriM genes identified by MGCA. A Schematic

of TriM gene identification. B Fold enrichment (log2) of cASD (left)

and ‘‘True negative’’ (right) genes in different groups of TriM genes

(**P\0.01, ***P\0.001, v2-test). C Three-dimensional distribution

of TriM genes (P\ 0.0001) and an equal number (2370) of genes

with the highest CEC with hcASDs (top). The three axes are CEC

value, gDNA size (bp), and mRNA abundance (RPKM). Each dot

represents a gene (purple, TriM-specific; blue, Top-specific; black,

overlapped). D Gene Ontology (GO) analysis of TriM (P\ 0.0001)

and Top (2370) genes showing significantly enriched GO terms (P\
0.05, Benjamini–Hochberg correction). E Comparison of the enrich-

ment of cASD genes and ‘‘True negative’’ genes in TriM, Top,

EWML-identified, and DAWN-identified genes (***P\ 0.001, v2-
test).
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ASD-associated Genes and Pathways Identified

by MGCA

Genes for which the CECs with hcASDs were significantly

higher than with permuted gene sets composed of feature-

matched genes under each of the three matched conditions

were considered to be significantly co-expressed with

hcASDs (estimated FDR of each gene \1.25 9 10-4).

These were named TriM (triple-matched) genes (Figs 1,

4A; Table S3). TriM genes were then compared with a

gene set containing 514 non-redundant genes from nine

different sets of previously reported ASD-associated genes

(cASD, see Methods) and with a set of ‘‘True negative’’

ASD-associated genes, which were associated with non-

mental health diseases and not with ASD [12]. When the

permutation P-value was either\0.0001 or\0.00001, the

TriM set showed a significant enrichment of cASD genes

(P = 0.0027 and P\0.0001, respectively, v2-test; Fig. 4B).
This result suggests that at a permutation P-value\0.0001,

TriM genes have a high rate of positive prediction of being

ASD-associated genes. When the permutation P-value was

\ 0.00001, TriM genes exhibited a significant negative

enrichment of ‘‘True negative’’ genes (P = 0.0068, v2-test;
Fig. 4B), suggesting a significantly low false-positive rate

in the prediction of ASD-associated genes.

Altogether, MGCA revealed 2370 TriM genes with a

permutation P-value\ 0.0001. These genes (TriM-2370)

were compared with an equal number (2370) of genes that

had the highest CECs with the hcASD gene set (referred to

as the Top-2370 gene set, Table S3). The TriM-2370 and

Top-2370 gene sets had 1414 genes in common (over-

lapped), and each had 956 non-overlapped genes. These

two non-overlapped gene sets were named TriM-only and

Top-only, respectively (Fig. 4C; Table S3). Most Top-only

genes had a medium mRNA abundance, a large gene size,

and a high CEC value ([0.46), whereas TriM-only genes

had a broad range of mRNA abundance, gene size, and

CEC values (Fig. 4C). GO enrichment analysis of the

TriM-2370 gene set showed significant over-representation

of genes in molecular pathways closely related to ASD:

gene transcription regulation, homophilic cell adhesion,

axon guidance and axon extension, synapse assembly, Wnt

signaling pathway, neuron migration, covalent chromatin

modification, and protein polyubiquitination. Fewer path-

ways relevant to ASD were revealed in the Top-2370 gene

set by GO analysis: covalent chromatin modification,

transcription regulation, protein polyubiquitination, Wnt

signaling pathway, and negative regulation of autophagy

(Fig. 4D; Table S4). To investigate the functional rela-

tionship between cASD and TriM-2370 or Top-2370 gene

sets, the enriched molecular pathways of cASD, TriM-

only, Top-only, and overlapped gene sets were subjected to

pathway enrichment analysis [33] (Fig. S7). The results

showed that the TriM-only and Top-only sets converged on

different but complementary molecular pathways. The

molecular pathways of the cASD gene set were found to

cluster closer to those of the TriM-only set than to those of

the Top-only set, suggesting that TriM-only genes have a

closer functional relationship with cASD genes than with

Top-only genes. Some well-established ASD risk genes,

such as FOXP1, TBR1, SHANK2, SYNGAP1, and PCDH9,

were found in the TriM-only gene set, suggesting a better

performance of MGCA than conventional GCA in reveal-

ing molecular pathways relevant to ASD.

The effectiveness of MGCA in predicting genes relevant

to ASD was compared with that of GCA and two other risk

gene prediction algorithms. One was DAWN (detecting

association with networks), which has been used to analyze

the association between rare genetic variations and gene

co-expression in the mid-fetal prefrontal and somatosen-

sory cortex [34]. The other algorithm was EWML (evi-

dence-weighted machine learning) that has been used to

predict the probability of ASD association with whole-

genome genes based on data from gene co-expression,

genetic mutations, and protein-protein interactions [12].

The combined ASD risk gene set (cASD) and the ‘‘True

negative’’ gene set were used to conduct cross-comparisons

between the different algorithms. At a permutation P-value

of 0.0001 or 0.00001, TriM genes had higher enrichment of

cASD genes than an equal number of genes with the

highest CEC values (Top), an equal number of top-ranked

ASD-linked genes predicted by EWML, and network ASD

genes identified by DAWN (Fig. 4E). Furthermore, fewer

TriM genes overlapped with ‘‘True negative’’ genes than

those predicted by DAWN and EWML, which had

significant enrichment of ‘‘True negative’’ genes

(Fig. 4E), suggesting a lower rate of false-positive predic-

tion by MGCA than that by EWML and DAWN (Fig. 4E).

Thus, MGCA performs better than GCA by a higher

positive prediction rate and performs better than the

EWML and DAWN algorithms by both a higher positive

prediction rate and a lower prediction error.

Co-expression of Cadherin Genes with hcASDs

Consistent with previous findings [8], we found that

homophilic cell adhesion is the most significantly over-

represented pathway of TriM-2370 genes (Fig. 4D;

Table S4). Some cadherin family members in the TriM-

2370 gene set, such as PCDH19, are known to be high-risk

ASD genes (Table S6) that play important roles in brain

circuit development [35, 36]. Several cadherin family

members were also found in the TriM-2370 gene set,

including many members of the protocadherin b gene

cluster and dachsous cadherin-related 1 (DCHS1), suggest-

ing that these genes also participate in the development and
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function of brain circuits relevant to ASD. Some cadherin

genes were not significantly co-expressed with hcASDs

under any of the matched conditions; these genes were

referred to as tri-negative genes (TriN; Table S6). Several

recent genetic studies have implicated two type II cad-

herins, CDH11 and CDH9, in ASD and other psychiatric

diseases [37–41]. The CEC-values of CDH11 and CDH9

with hcASDs were ranked at 5244 and 9581, respectively,

among whole-genome genes. Therefore, neither of them

belonged to the top-ranked genes based on traditional

GCA. Using MGCA, we found that CDH11 and CDH9

belonged to the TriM and TriN gene sets, respectively. We

thus hypothesized that CDH11, but not CDH9, is more

likely to be associated with ASD.

Autism-like Traits of Cdh11-null Mice

To assess the functional relevance of CDH11 and CDH9 to

ASD, we investigated the behaviors of Cdh11- and Cdh9-

null mice. In the open field test, both male and female

Cdh11-null mice spent more time exploring the central area

of the open field arena than WT littermates (Fig. 5A, D).

Heterozygous littermates showed a similar but less signif-

icant pattern. Total distance moved and average velocity of

Cdh11-null mice were slightly lower than in WT litter-

mates (Fig. 5B, C). Both male and female Cdh9-null mice

were largely normal in this test (Fig. 5E–G).

In the elevated plus maze test, female Cdh11-null mice

visited the open arms more frequently and spent a

significantly longer time there. Heterozygous females spent

slightly but not statistically significantly more time in the

open arms (Fig. 5H, I). The increased time and frequency

of open arm exploration by female Cdh11-null mice is

consistent with the results of a previous study using the

same mouse line of mixed sex [42]. Male Cdh9-null mice

showed longer exploration of the open arms, but female

Cdh9-null mice did not, although female heterozygotes

showed an increased frequency of open arm entry (Fig. 5J,

K).

Individuals with ASD often have a weaker grip-strength

than age-matched controls [43]. The grip-strength test and

the horizontal bar test showed that both male and female

Cdh11-null mice exhibited significantly shorter hanging

duration than WT littermates (Fig. 6A, B), indicating a

reduced grip-strength or impaired motor coordination. The

grip-strength of Cdh9-null mice was normal (Fig. 6C).

The rotarod test was conducted to evaluate motor-

related functions of null mice. Since female and male

mutant mice displayed similar behaviors in most of the

above behavioral tests, only female mice were analyzed in

this test. Compared to WT littermates, Cdh11-null mice,

but not Cdh9-null mice, stayed longer on the rotarod and

endured a higher rotation speed in the initial trial (Fig. 6D–

G). In subsequent trials, Cdh11-null mice did not display

significant performance improvement (Fig. 6D, E), indi-

cating impaired motor learning. The enhanced performance

of Cdh11-null mice in the initial trial was similar to the

phenotype of several other well-characterized ASD mouse

models and suggested increased repetitive motion of these

mutant mice [44].

Repetitive behaviors were then evaluated by measuring

the duration and frequency of self-grooming within 10 min,

during which mice were placed in a novel or a relatively

familiar environment. During the first 10 min of exploring

a novel chamber, Cdh11-null mice exhibited a significantly

greater frequency of self-grooming than WT littermates,

indicating elevated repetitive behavior in a novel environ-

ment (Fig. 6H, I). Cdh11-null mice also showed a

significantly higher frequency of self-grooming than WT

littermates during the second 10-min period (Fig. 6J, K),

indicating elevated repetitive behavior even in a relatively

familiar environment. No such behavioral alteration was

observed in Cdh9-null mice (Fig. 6L, M).

The modified three-chamber social preference test was

conducted to evaluate the sociability of mutant mice. One

main modification was an enlargement of the area for

housing social partner mice to reduce their potential stress

and anxiety. Another major modification to the protocol

was using three mice instead of a single mouse as social

partners. This was done to increase the availability of

social cues and reduce the variability of test results caused

by differences in the sociability of individual social

partners (Fig. 7A). In addition, the top of the two side-

chambers was covered to slow the diffusion and mixing of

odorant cues. The results showed that female Cdh11-null

mice exhibited a significant preference for social partner

mice than for an object and a significant preference for

novel partners than for familiar ones (Fig. 7B, C).

However, compared to WT littermates, mutant mice spent

a significantly longer time in the middle chamber but a

significantly shorter time interacting with partner mice

(Fig. 7B, C), indicating reduced sociability. In contrast,

Cdh9-null mice did not show any abnormality in this test

(Fig. 7D, E).

Discussion

GCA is a powerful tool to find functionally convergent

genes. Several previous GCA studies have considered the

potential effect of gene size and GC content on the co-

expression of ASD risk genes [7]. In the present study, we

discovered that three gene features – mRNA abundance,

gDNA size, and GC content – affected the genome-wide

co-expression profiles in the brain. Although the mecha-

nisms by which different features affect co-expression are
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unknown, our findings suggest the importance of consid-

ering the effect of these gene features in GCA. As an

example of the potential influence of confounding gene

features on GCA, genes that are stably expressed in the

brain may have high CCs with each other. These randomly

high CCs of high-abundance genes do not mean a real co-

expression relationship of the genes of common molecular

pathways. One possible influence of gene size on GCA is

that large genes may have long noncoding regions that

could be regulatory elements. Thus, compared to small

genes, large genes may have more shared regulatory

elements, which means a higher chance of being co-

Fig. 5 Open field and elevated

plus maze tests of Cdh11- and
Cdh9-null mice. A Heatmaps

showing cumulative frequency

of locations visited by Cdh11-
null, heterozygotic (Het), and

WT mice in the open field

arena. B–G Distance moved,

velocity, and center exploration

time of Cdh11-null mice (B–
D) and Cdh9-null mice (E–
G) (male Cdh11-null: n = 21,

Het: n = 22, WT: n = 14; female

Cdh11-null: n = 21, Het: n = 22,

WT: n = 21; male Cdh9-null:
n = 14, Het: n = 15, WT: n = 12;

female Cdh9-null: n = 8, Het:

n = 15, WT: n = 12). H–K Time

spent in open arms and open

arm entries of Cdh11-null (H,

I) and Cdh9-null (J, K) mice

(male Cdh11-null: n = 14, Het:

n = 14, WT: n = 8; female

Cdh11-null: n = 15, Het n = 14,

WT n = 17; male Cdh9-null: n =

13, Het: n = 15, WT: n = 10;

female Cdh9-null: n = 9, Het:

n = 9, WT: n = 10). Data are the

mean ± SEM; ‘P\ 0.05, Stu-

dent’s t-test; *P\ 0.05, **P\
0.01, one-way ANOVA fol-

lowed by Dunnett’s t-test.
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regulated by common transcription factors. Considering

that most hcASD genes are large, they may have a higher

tendency for co-expression with large genes. Genes with

high GC content have greater mRNA stability and thus

have a greater chance of co-existence with each other.

However, that most hcASD genes have low-to-medium GC

Fig. 6 Grip-strength and repet-

itive behaviors of Cdh11- and
Cdh9-null mice. A, B Results of

grip test and horizontal bar test

for Cdh11-null mice (male

Cdh11-null: n = 21, Het: n = 23,

WT: n = 14; female Cdh11-null:
n = 12, Het: n = 14, WT: n =

12). C, Results of grip test for

Cdh9-null mice (male Cdh9-
null: n = 11, Het: n = 11, WT:

n = 7, female Cdh9-null: n = 5,

Het: n = 5, WT mice n = 4). D–
G Latency to fall (D, F) and
maximum speed (E, G) in the

rotarod test for female Cdh11-
and Cdh9-null mice (Cdh11-
null: n = 14, Het: n = 14, WT:

n = 17; Cdh9-null: n = 10, Het:

n = 12; WT: n = 9). Numbers

below the x-axis (1–5) represent
different trials of tests. H–K
Frequency and duration of self-

grooming of female Cdh11-null
mice during the first (stage 1, H,
I) and the second (stage 2, J, K)

10 min in the open field arena

(Cdh11-null: n = 8, Het: n = 7,

WT n = 7). L, M Frequency and

duration of self-grooming of

female Cdh9-null mice during

the first (stage 1) and second

(stage 2) 10 min in the open

field arena (Cdh9-null: n = 11,

Het: n = 17, WT: n = 14). Data

are the mean ± SEM; ‘P\0.05,

Student’s t-test; *P\ 0.05,

**P\ 0.01, ***P\ 0.001 vs
first trial; #P\0.05, ##P\0.01

vs WT littermates, one-way

ANOVA followed by Dunnett’s

t-test.
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content (Fig. 2B) may explain the overall negative

correlation between their GC content and their co-expres-

sion with hcASDs.

Almost all previous studies ignored these important

confounding factors and just selected high-CC gene pairs

to construct a gene co-expression network. Without

correcting for the effect of these factors, the effectiveness

of GCA would be compromised. Instead of setting a CC

threshold for GCA as in most other studies, we screened for

significant co-expression relationships by comparing the

CEC of a gene with the hcASD gene set to that with

permuted gene sets with matched gene features. Only genes

that had a CEC with the hcASD gene set significantly

higher than its CECs with permuted sets of feature-

matched genes were considered to be co-expressed with

hcASDs. This MGCA paradigm (Fig. 1) allowed the

demonstration of significant co-expression of hcASDs and

avoided the potential bias caused by an empirically

determined threshold for the CC of gene pairs in GCA.

Our results revealed that MGCA is more efficient in

predicting gene association than the pre-existing methods

DAWN, an algorism integrating genetic variants and gene

co-expression data, and EWML, a sophisticated machine-

learning algorithm with the integration of gene co-

Fig. 7 Modified three-chamber test of female Cdh11- and Cdh9-null
mice. A Schematics of standard and modified three-chamber tests. B–
E Results of sociability and social novelty preference tests of Cdh11-
null (B, C; Cdh11-null: n = 9, Het: n = 8; WT: n = 9) and Cdh9-null
mice (D, E; Cdh9-null: n = 13, Het: n = 5, WT: n = 10). Data are the

mean ± SEM; ‘P\ 0.05, Student’s t-test; *P\ 0.05, **P\ 0.01,

***P\ 0.001 vs time spent on the other side of the chamber; #P\
0.05 vs WT littermates, one-way ANOVA followed by Dunnett’s t-
test.
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expression, gene mutation databases, and protein–protein

interaction networks. We believe that the high performance

of MGCA could be attributed to the correction of three

confounding gene features in the determination of func-

tionally relevant gene co-expression. Although correlations

of these confounding features with the co-expression with

hcASDs have been considered [7], the potential interfer-

ence of these features on the construction of gene co-

expression networks was not considered in previous

studies. Therefore, MGCA will be an important comple-

ment to current gene association prediction algorithms

(Fig. 1). As MGCA is based solely on gene co-expression

data, future algorithms combining MGCA with genetic

mutation data and machine learning will further improve its

efficacy.

An important finding in this study is the plausible

association of CDH11 with ASD determined by MGCA.

Cadherins have been shown to accumulate in synaptic

junctions and regulate dendrite development and synapse

maturation [45–48]. Several cadherin family members,

such as some protocadherins in the FAT cadherin subfam-

ily, have been implicated in ASD [49–58]. A genetic

association study of a large cohort of ASD individuals and

matched controls revealed genes in the protocadherin-a
cluster (PCDHA) to be ASD risk genes [51]. Mutations in

the PCDH19 gene have been shown to cause early-onset

epilepsy, and many individuals with these mutations also

display autistic features [52–54]. Mutations in the cadherin

epidermal growth factor laminin G seven-pass G-type

receptor 2 gene (CELSR2) are thought to be responsible for

Joubert syndrome, a disease with a high degree of autistic

features [59, 60]. It is uncertain whether other cadherins are

also high-risk factors. Using MGCA, we found that a group

of cadherin superfamily members exhibited high co-

expression with hcASDs, suggesting shared functions with

hcASDs and a role in ASD etiology. Among them, several

protocadherins, mainly PCDHBs, exhibited significant co-

expression with hcASDs (Table S6). The functions of these

putative ASD-associated cadherins in the brain remain to

be determined. One such cadherin identified by MGCA

was CDH11. In this study, we found that Cdh11-null mice

had significantly increased repetitive behaviors. The neo-

cortex, CB, and STR are known to be involved in the

control of repetitive behaviors [61]. It is likely that

cadherins, Cdh11 in particular, play important roles in

mediating synapse formation during the wiring of circuits

in these brain areas. Consistent with this postulate, our

recent work showed Cdh11 expression in ASD-associated

sub-regions in the CB of the developing mouse brain [62].

In human studies, partial deletion of CDH11 has been

reported in a sporadic case of non-syndromic ASD, mild

intellectual disability, and attention deficit hyperactivity

disorder (ADHD) [37]. A case-control association study

revealed a high prevalence of the homozygous single

nucleotide variant rs7187376C/C of CDH11 in patients

with ASD [37]. Several other coding variants of CDH11

have also been discovered in individuals with ASD [37].

Behavioral changes that we have observed in Cdh11-null

mice, including reduced anxiety, increased repetitive

behavior, and reduced sociability, are highly consistent

with the non-syndromic ASD case with partial deletion of

CDH11 [37]. This finding supports the notion that loss-of-

function of a single gene, such as CDH11, is sufficient to

cause major autism traits. Recessive mutations have been

implicated in ASD, and bi-allelic disruption of recessive

neurodevelopmental genes in ASD has been reported [62].

We found that homozygous, but not heterozygous Cdh11-

null mice displayed autism-like behavioral deficits. This

suggests that CDH11 may be a recessive ASD gene [63].

However, clinical data from more families with CDH11

mutations are needed to determine whether this is true.

Behavioral phenotypes of ASD are highly heterogeneous.

Some individuals with ASD are hypoactive with elevated

anxiety, and some have ADHD but with reduced anxiety

[64–67]. The genetic and neurobiological mechanisms

underlying this behavioral heterogeneity have not been

fully determined. Further investigation with a larger cohort

of patient families is needed to determine whether loss-of-

function mutations of CDH11 are associated with ADHD.

Most genetic variants found in patients with ASD are

heterozygous. In some behavioral tests, heterozygous

Cdh11-null mice showed a trend of behavioral alterations

similar to homozygous null mice, but not at a statistically

significant level (Figs 6J, K, and 7C). As ASD has a

complex genetic basis and is affected by environmental

factors, it is conceivable that the haplodeficiency of a

single risk gene causes a relatively mild behavioral

phenotype in mice. More severe behavioral deficits may

result if the haplodeficiency of Cdh11 is combined with

other genetic or environmental factors. Our findings

suggest that CDH11 is significantly co-expressed with

hcASDs and that its mutations may have a causal effect on

autism traits. Cdh11-null mice could be very useful in

dissecting the circuit mechanisms underlying a subgroup of

ASD and in screening drugs targeting this subgroup of

ASD.

CDH9 plays a vital role in establishing specific synaptic

wiring in both the hippocampus and the retina [22, 68]. Its

association with ASD has been suggested by several

studies on exome sequencing [49, 69]. The primary

evidence linking CDH9 to ASD is the strong association

of the single nucleotide polymorphism rs4307059 located

in the intergenic region between CDH10 and CDH9 with

ASD [70]. However, this rs4307059 genotype is not

correlated with the expression of either CDH9 or CDH10

in the adult brain [70, 71], and whether a correlation exists
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in the fetal brain is unknown. Recently, an antisense

noncoding RNA of moesin pseudogene 1 (MSNP1AS) was

shown to be transcribed from the locus harboring

rs4307059. Alterations in this pseudogene have been

postulated to contribute to ASD [71–73]. Whether CDH9

deficiency is a causal factor for ASD remains undeter-

mined. Our MGCA showed that, unlike CDH11, CDH9

was not co-expressed with hcASDs. This is an indication

that CDH9 may not play an essential role in the wiring of

ASD-relevant circuits. Consistent with this notion, behav-

ioral tests showed that Cdh9-null mice exhibited a very

mild behavioral abnormality only in the elevated plus maze

test but not in any other tests. With recent findings by other

researchers [74], our results suggest that CDH9 deficiency

may not have a significant effect on autism traits.

In conclusion, this study revealed the importance of

considering matched gene features in the analysis of gene

co-expression and demonstrated the effectiveness of

MGCA in the identification of putative ASD-associated

genes and their convergent signaling pathways. The

application of MGCA led to the determination of CDH11

as a putative ASD-associated gene. Our results also showed

that Cdh11-null mice can be used to study the circuit

mechanisms of a subgroup of ASD and explore therapeutic

strategies for ASD.
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