
REVIEW

Oligodendroglial GABAergic Signaling: More Than Inhibition!

Xianshu Bai1 • Frank Kirchhoff1
• Anja Scheller1

Received: 10 October 2020 /Accepted: 22 November 2020 / Published online: 29 April 2021

� The Author(s) 2021

Abstract GABA is the main inhibitory neurotransmitter in

the CNS acting at two distinct types of receptor: ligand-

gated ionotropic GABAA receptors and G protein-coupled

metabotropic GABAB receptors, thus mediating fast and

slow inhibition of excitability at central synapses.

GABAergic signal transmission has been intensively

studied in neurons in contrast to oligodendrocytes and

their precursors (OPCs), although the latter express both

types of GABA receptor. Recent studies focusing on

interneuron myelination and interneuron-OPC synapses

have shed light on the importance of GABA signaling in

the oligodendrocyte lineage. In this review, we start with a

short summary on GABA itself and neuronal GABAergic

signaling. Then, we elaborate on the physiological role of

GABA receptors within the oligodendrocyte lineage and

conclude with a description of these receptors as putative

targets in treatments of CNS diseases.

Keywords GABA � GABAA receptor � GABAB receptor �
OPC � Oligodendrocyte lineage

Introduction

GABA (c-aminobutyric acid), besides glycine, is the main

inhibitory neurotransmitter in the central nervous system

(CNS) [1]. The existence of GABA in the brain was first

detected in 1950 [2], without knowing its biological

function. Seven years later, studies found that GABA

was the ‘‘I factor’’, the inhibitory neurotransmitter of the

mammalian CNS [3]. Thereafter, GABA and GABAergic

signaling on neurons were extensively studied [1]. GABA

binds to two classes of receptor in the CNS, GABAA and

GABAB receptors, and exerts fast or slow inhibition at

synaptic terminals. Decades later, since 1978 [4], glial

GABA signaling started to attract interest and is now a

major research focus while new roles of glial cells are

emerging. Oligodendrocytes (OLs) are the myelinating

cells of CNS making them indispensable for fast and

efficient action potential conduction. They differentiate

from precursor cells (OPCs) [5–8]. Despite lifelong

ongoing differentiation into OLs, OPCs maintain a certain

cell density due to continuous self-renewal [9–12]. Prolif-

eration and differentiation of OPCs are modulated by

growth factors [13–15], as well as by communication

between OPCs and axons [16–18]. OPCs are the only glial

cells receiving direct synaptic input mediated by glutamate

and GABA from excitatory and inhibitory synapses,

respectively [17, 19–23]. Furthermore, the myelination of

interneurons by mature OLs appears to be a direct

consequence of GABA-based interneuron-OPC communi-

cation [24–26].

GABA Synthesis, Release, and Uptake in the Brain

GABA availability in the CNS is either ensured by

synthesis from glutamate by the glutamic acid decarboxy-

lase enzymes (GAD) 67 and GAD65 [27, 28] or by

monoacetylation of putrescine [29, 30]. Synthesis by GADs

in the glutamine-glutamate cycle (GGC) is the most

common pathway and GABA level are mostly determined

by the activity of GADs. Briefly, in the GGC, glutamate is
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transformed into glutamine by glutamine synthetase of

astrocytes (Fig. 1A, B). Glutamine is released by several

types of glutamine transporter and taken up by neurons,

where it is converted into glutamate. The latter is finally

processed by GADs to produce GABA in GABAergic

neurons [31] (Fig. 1B). Although GAD67 and GAD65

share a large similarity of their genes (GAD1 and GAD2,

respectively), their expression pattern and functions are

quite disparate. GAD67 is uniformly distributed in the

whole cell while GAD65 is mainly found in the axonal

terminals [32]. In addition, GAD67 is already expressed

during early development while GAD65 is more prominent

in later stages (reviewed by [27]). These spatial and

temporal differences are highly related to their functions.

GABA produced by GAD67 mainly functions as a

neurotrophic factor and is independent of neurotransmis-

sion, e.g., involved in synaptogenesis during development

(reviewed by [27]). GAD65, however, is responsible for

synaptic neurotransmission. Therefore, it is not surprising

that GAD67-null mice cannot survive longer than a day

after birth, while GAD65-null mice are born with slowly

developing spontaneous seizures [33, 34]. Although these

deficits are highly likely attributable to disordered neuronal

GABA synthesis, the GABA contribution from glial cells

must not be neglected. GAD65 and GAD67 are both

expressed in glial cells [35]. Astrocytes of the olfactory

bulb, hippocampus, thalamus, and cerebellum (i.e., Berg-

mann glia) release GABA to inhibit neighboring neuronal

activity [36–39]. Recently, GAD65/67 and monoamine

oxidase B, as well as GABA were found in OPCs and

oligodendrocytes in vitro [40]. These findings suggest the

potential of autocrine or paracrine GABAergic signaling

pathways for oligodendrocyte (OL) development and/or

neural circuit formation. Besides astrocytes, OLs also

express glutamine synthetase in caudal regions and the

spinal cord [41], providing a potential source of glutamine

for axons via myelin-axon communication (Fig. 1A, C). In

the case of inhibitory axons, glutamine is further trans-

formed into GABA (Fig. 1C). More studies are required to

confirm the functional GABA synthesis, release, and

uptake in cells of the OL lineage.

GABA-containing transmitter vesicles (vGAT) are filled

in synaptic terminals (Fig. 1B) and released in a Ca2?-

dependent manner. The general mechanism of vesicular

exocytosis, membrane fusion, and release of anchored

GABA vesicles is triggered by Ca2? influx through

cFig. 1 GABA cycling between interneurons, cells of the oligoden-

drocyte (OL) lineage, and astrocytes. A In the central nervous system,

interneurons form an intricate signaling network with cells of the OL

lineage, i.e., myelinating OLs and their precursors (OPCs), and with

perisynaptic as well as perinodal processes of astrocytes. B In the

synaptic microenvironment, extracellular glutamate is converted into

glutamine in astrocytes by glutamine synthetase (GS). After release,

glutamine is taken up by interneurons and transformed into GABA by

the glutamate decarboxylases GAD65 and/or GAD67. Upon action

potential arrival, GABA is released into the synaptic cleft by vesicles

expressing GABA transporters (vGAT). After binding to postsynaptic

neuronal GABAA and/or GABAB receptors, GABA induces postsy-

naptic neuronal hyperpolarization. But neuron-released GABA can

also act on the GABA receptors of OPCs modulating axonal

myelination. In addition, extrasynaptic GABA is taken up by neuronal

GAT1 and astroglial GAT3 transporters. Both transporters, however,

are also expressed by OPCs, but functional studies are still required to

determine their roles. C Also, OLs can express GS to produce

glutamine. The latter might be transported to myelinated axons, where

it can be converted into GABA. Additional experiments are still

required to test this hypothesis.
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voltage-gated Ca2? channels (VGCCs). In addition, GABA

can reach the extracellular space via reversal of GABA

transporters (GATs), called non-vesicular release [42–44].

Previously, GATs were mainly considered to be responsi-

ble for GABA uptake from the synaptic cleft. For this

GABA uptake, GATs utilize the chemical Na? gradient,

aided by a Cl- gradient; e.g., neuronal GAT1 co-transports

two Na? and one Cl- together with one GABA molecule.

This transport not only increases the intracellular levels of

GABA, Na?, and Cl-, it also depolarizes the neuron.

Under baseline conditions, GATs operate near equilibrium

[43]. Therefore, upon moderate depolarization evoked by a

short series of action potentials, transporter reversal occurs

[45, 46]. However, during excessive network activity and

enhanced synaptic GABA release, elevated levels of

extracellular GABA favor GABA uptake by GATs [47].

Therefore, how the operation of GATs, including their

reversal, is exactly controlled and how this process is

related to physiological functions is yet unclear.

As a very complex but highly precise organ, our brain

keeps a balance of excitatory and inhibitory signals to

control proper behavioral performance. As reported, both

vGAT-null (little, if any, GABA release) [48] and GAT1-

null (no GABA clearance) mice cannot survive beyond

birth [49]. Therefore, it is critical to maintain GABA

homeostasis in the extracellular space by synchronized

regulation of GABA release and uptake. In the brain, two

different GATs fine-tune the neuronal excitability: GAT1

(SLC6A1) on presynaptic terminals and GAT3 (SLC6A11)

on perisynaptic astroglial processes (Fig. 1B). Transcrip-

tome studies have revealed that astroglial GAT3 dominates

over GAT1. In addition to neurons, OPCs and OLs express

functional GAT1, though at rather low levels [35, 40, 50]

(Fig. 1B). However, functional studies demonstrating the

biological impact of GAT1 for cells of the OL lineage are

still missing. In addition to GAT1 and 3, some GAT2

(SLC6A13) immunoreactivity has been observed on CNS

blood vessels [51]. GAT2 mainly permits efflux of GABA

and taurine from the brain to the circulating blood stream

[51]. Therefore, GAT2-deficient mice have slightly

increased taurine in the brain [52]; however, they perform

normally under physiological conditions. Transcriptome

data suggest GAT2 expression by OPCs, though at a low

level. This is interesting in respect to the current notion that

OPCs can also contribute to the blood-brain barrier (BBB)

while migrating along blood vessels during development

[53]. Taken together, these findings suggest a potential

novel function of OPCs in neural circuits, by either taking

up GABA from extracellular space or by being associated

with the overall GABA efflux through the BBB to the

periphery. Nevertheless, more functional studies are

required to identify the role of GAT2 in OPCs. In juvenile

rats, GAT1 and GAT3 have also been detected in OLs [40],

however, it is yet elusive whether and how both GATs

function in OL GABA circulation.

GABA Receptors and Their Biological Actions
on Neurons

To exert inhibition, GABA binds to two distinct receptors:

GABAA and GABAB. GABAA receptors are ligand-gated

ionotropic transmembrane receptors, permeating Cl– ions

in both directions [54]. To date, a plethora of 19 GABAA

receptor subunits have been identified in the mammalian

CNS: a1–6, b1–3, c1–3, d, e, h, p, and q1–3 [55]. In

general, the pentameric receptor assembly is composed of

two a, two b and one c subunit (Fig. 2A, B). Due to various
subunit compositions and distinct regional distributions,

GABAA receptors exhibit tremendous diversity in terms of

biophysical properties and dynamic regulation [55, 56].

Since the subunits q1–3 form complexes with themselves

only, and not with other subunits, they are designated as

GABAC or GABAA-q receptors. However, they are similar

to GABAA receptors in structure, function, and mechanism

of action [57].

The GABAA receptor is permeable to Cl- anions in both

directions depending on the difference between extra- and

intracellular Cl- concentrations. In general, extracellular

Cl- is above its equilibrium potential. Therefore, upon

postsynaptic GABAA receptor activation, a fast Cl- influx

generates neuronal hyperpolarization. This raises the

threshold for postsynaptic action potentials and thereby

decreases excitatory neurotransmitter release, i.e., inhibi-

tory neurotransmission [58, 59] (Fig. 2A). Notably,

GABAA receptors are also expressed at extra-synaptic

regions. These receptors can be activated by GABA

spillover, leading to tonic inhibition [55].

GABAB receptors are metabotropic G-protein-coupled

receptors. Two major GABAB receptor isoforms (GABAB1

and GABAB2) and various splice variants (GABAB1a–g)

have been described [60, 61]. GABAB1 and GABAB2 are

co-expressed, generating functional receptors in a hetero-

dimeric assembly [62–64], although some functional

homodimers have been described as well [65]. The

ligand-binding B1 subunit remains in the endoplasmic

reticulum through a retention signal until assembly with the

B2 subunit [66]. Only the assembled receptor dimers reach

the cell surface and function. GABA activation occurs via a

Venus flytrap domain of the B1 subunit [60, 67].

Neuronal GABAB receptors are located in both pre- and

postsynaptic membranes. Its G protein activation triggers

dissociation of Ga and Gbc subunits. Binding of Gbc to

VGCCs leads to reduced presynaptic Ca2? influx prevent-

ing vesicular release (Fig. 2A) [68, 69], while decreased

postsynaptic Ca2? current suppresses neuronal excitability
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[70, 71]. In addition, postsynaptically, Gai/o inhibits

adenylyl cyclase, thereby reducing cAMP levels, while

Gbc activates G protein-gated inwardly-rectifying K?

channels, hyperpolarizing the postsynaptic membrane

(Fig. 2A). GABAB receptors regulate gene expression by

interacting with activating transcription factor 4 (ATF-4), a

member of the cAMP response element-binding protein

(CREB)/ATF family [60, 72, 73]. Disruption of GABAB

receptor-mediated responses has been associated with

several neuropathologies including epilepsy and hyperal-

gesia [74].

Apart from acting as an inhibitory neurotransmitter,

GABA is also considered to be a neurotrophic factor. In

cultured cerebellar granule cells, retinal neurons, and

neuroblastoma neurons, GABA promotes neurite growth

[75]. Another peculiar finding is that GABA can act as an

excitatory neurotransmitter in cortical and hippocampal

neurons during early postnatal days [76–78]. At this age,

the Nernst potential of Cl- is positive in respect to the

resting membrane potential due to higher activity of the

cation-chloride importer Na-K-Cl cotransporter in

comparison to the extruder K?-Cl- cotransporter 2, and

the opening of GABAA receptors results in Cl- efflux with

subsequent depolarization [79].

Expression of GABA Receptors in Cells
of the Oligodendrocyte Lineage

Already in 1984, GABA-evoked responses were reported

in a subpopulation of OLs from explant cultures of the

mouse spinal cord [54]. These cells were depolarized by

GABA (1 mmol/L, 4 mV depolarization). This depolar-

ization was sensitive to competitive as well as non-

competitive GABAA receptor antagonists [54]. These

experiments provided the first evidence of the functional

expression of GABAA receptors in OLs. A follow-up study

on cultured OPCs and OLs further demonstrated that the

GABA-induced depolarization (10-2 mmol/L, 30–680 pA

in 60% of the OL lineage cells) was due to Cl- efflux [80]

(Fig. 2B). Also, in acutely isolated slices of corpus

callosum and hippocampus, GABAA receptors evoked

Fig. 2 GABA receptor expres-

sion in neurons and OPCs.

A Activation of ionotropic

GABAA receptors induces Cl-

influx to hyperpolarize neurons.

The GABAB1 subunit confers

ligand-binding, while the B2

subunit transduces the GABA

signal into the cell. Activation

of the neuronal GABAB recep-

tor induces dissociation of Ga

and Gbc subunits. The Ga sub-

unit inhibits adenylyl cyclase

(AC), while Gbc activates G

protein-gated inwardly rectify-

ing K? channels and inhibits

voltage-gated Ca2? channels

(VGCCs), thereby reducing

neurotransmitter release. The

regulation of VGCCs can occur

pre- and postsynaptically.

B Different from neurons, in

OPCs, activation of GABAA

receptors causes a Cl- efflux

and depolarization based on the

higher levels of cytosolic Cl-.

GABAB receptors expressed in

OPCs are thought to transduce

signals via Ga with or without

association of Gbc; or via the Gq

pathway linked to phospholi-

pase C, further increasing intra-

cellular Ca2? release from the

endoplasmic reticulum.
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depolarization in OPCs (1 mmol/L GABA, 75 pA and

324 pA, respectively) [81, 82]. Notably, GABAA receptor

expression was found to be down-regulated during the

lineage progression from proliferating OPCs to myelinating

OLs. The current response to GABA as well as intracellular

Ca2? increases were drastically reduced in situ [80, 81, 83]

and in vitro [84]. In line with this, recent transcriptome

studies as well as single-cell qRT-PCR have shown a

decrease of all GABAA receptor subunits (a1–5, b1–3, and
c1–3) through OL development [35, 85, 86]. In particular,

the c2 subunit is only expressed in OPCs and not in OLs

[35, 85, 86]. Interestingly, the c2 subunit is specifically

detected at the postsynaptic OPC membranes of parvalbu-

min fast-spiking interneuron-OPC synapses [87], at levels

comparable to neuronal postsynaptic expression [88, 89].

Of note, the c2 subunit is required for the postsynaptic

clustering of GABAA receptor subunits [88]. From post-

natal week 2 to 4, the number of OPCs expressing a2, a5,
b1, and c2 is decreased while that of a3 and 4 is increased

[86]. Of interest, this is the exact age when the synaptic

transmission of OPCs switches to extra-synaptic commu-

nication [20]. However, the c2 subunit does not appear to

affect OPC proliferation and differentiation, which appears

unperturbed in mice with conditional deletion of the c2
subunit in OPCs [90].

While GABAA receptor levels are strongly reduced in

mature OLs [35, 80, 83, 84], axonal contacts trigger the

expression of a1 and a3 in vitro as well as in situ [83].

However, neuronal activity does not appear to be required,

since blocking it with tetrodotoxin did not alter the OL

response to GABA in neuron-OL co-cultures. It is not clear

yet whether these two subunits co-assemble in the same

GABAA receptor complex or whether they are components

of separate and distinct receptors. Additional studies are

required to address the functional role of a1 and a3, but
also of other GABAA receptor subunits in OPCs and OLs.

It will be exciting to learn how the spatial-temporal

pattern of each subunit, including its subcellular localiza-

tion, can be correlated with distinct functions in the various

subpopulations of the OL lineage. The heterogeneity of

OLs, in terms of anatomical location in the brain, was

already described at 1921 by del Rı́o Hortega [91]. A

century later, using the single-cell RNAseq approach,

studies have provided direct evidence for and confirmed an

even more complex heterogeneity of OL lineage cells

[92–94]. Reconsidering the early finding that only a

subpopulation of OLs respond to GABA [54], we are

now confronted with numerous subgroups of OLs that may

or may not express GABA receptors. And, even if they are

expressed, the pentameric composition of each receptor

might differ in each subgroup and result in a huge diversity

of GABA responses. So far, it is too early to speculate

about the exact role of each subunit.

The metabotropic GABA receptor subunits GABAB1

and GABAB2 are both expressed throughout the OL lineage

[35], from the subventricular zone [95] to the corpus

callosum [40] and spinal cord [65]. However, so far,

GABAB receptors have not been detected in compact

myelin structures [96]. Both B1 and B2 subunits were

found to be down-regulated during OPC differentiation to

OLs in vitro [95]. Intriguingly, the ratio of GABAB1 to

GABAB2 also changes with the differentiation of OPCs

into OLs, suggesting that B1 or B2 subunits can cooperate

with other elements, even forming homodimers with novel

functions as is known for some neurons [97, 98]. In the

hippocampus of GABAB2-null mice, an atypical electro-

physiological GABAB response has been recorded, sug-

gesting that GABAB2 is not indispensable for GABAB

receptor signaling [97]. In addition, several studies also

reported coupling of the GABAB2 subunit with other

G-protein-coupled, heptahelical receptors. The GABAB2

subunit is functionally paired with the M2 muscarinic

receptor in cortical neurons [98]. As well, functional

cooperation of GABAB2 subunits and somatostatin receptor

4 has been found in the non-perisynaptic processes of

astrocytes [99]. All these reports point to close interactions

of GABAB receptor subunits with other G-protein-coupled

receptors. However, additional studies are necessary to

determine whether this applies to OPCs and/or OLs and if

this might change with aging.

Physiological Functions of GABA Receptors
in the Lineage of Oligodendrocyte

Proliferation, Differentiation, and Myelination

While the sensitivity to GABA is largely reduced in mature

OLs [65, 81, 95], a pivotal role of GABA signaling has

been suggested during the origin of OPCs and the initial

stages of axon recognition and myelination [22, 100].

Systemic application of the GABAA receptor antagonist

bicuculline drastically increased OPC proliferation while

an increase of GABA evoked the opposite in cerebellar

white matter [22]. In addition, endogenous GABA bisected

the number of OPCs and mature OLs in organotypic slice

cultures of mouse cortex, and this was reversed by the

GABAA receptor blocker GABAzine [18], suggesting an

inhibitory role of GABAA receptor signaling on OPC self-

renewal and myelination [18]. However, it is still elusive

whether this occurs by direct activation of OPC GABAA

receptors or by a more complex process integrating the

activation of OPC GABAA receptors and signals from a

GABA-evoked neuronal response.

GABAergic signaling of the OL lineage seems to be

essential for interneuron myelination. First of all, in layers
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2/3 and 4 of cortex, the majority of myelinated axons are

interneurons [26]. Among these, parvalbumin (PV)-posi-

tive interneurons account for a large proportion. Secondly,

interneuron myelination is positively related to axonal

activity and caliber [24, 25]. Considering that PV neurons

are fast-spiking interneurons in the neocortex [101, 102],

these studies strongly suggest a putative GABAergic

communication between PV interneurons and OPCs.

Indeed, a recent study revealed that disruption of PV

interneuron-OPC interaction due to a loss of the c2 subunit

of GABAA receptors in OPCs results in hypomyelination

of PV neurons in the barrel cortex [103]. PV-OPC synaptic

structures were visualized by Tanaka et al. in 2009 [104].

A few years earlier, interneuron-OPC synapses were first

detected in acute hippocampal slice preparations by Lin

and Bergles [105]. CA1 interneurons directly release

GABA, acting on the postsynaptic GABAA receptors of

OPCs. These inhibitory neuron-OPC synaptic structures

have been subsequently confirmed in numerous studies

[20–22, 104] in both grey and white matter

[20–22, 86, 87, 90, 105, 106] (Fig. 3A). In cortex, for

instance, OPC synapses are *90% inhibitory [87]. This

synaptic transmission (via GABAA receptors) peaks at the

second postnatal week (p10), and is immediately followed

by a drastic increase in the OL population [20]. However,

the communication pattern switches to extra-synaptic until

the fourth postnatal week, when the GABAergic currents of

OPCs are mainly elicited by GABA spillover. Of note, at

this time point, the differentiation of cortical OLs is largely

completed, further suggesting that, in the early postnatal

cortex, synaptic interneuron-OPC contacts are essential for

OPC differentiation and interneuron myelination. Extra-

synaptic GABA level, however, could be involved in the

adaptive regulation of myelination. Indeed, forced

increases of GABAergic connectivity between interneurons

and first-wave OPCs favor deep layer myelination in the

somatosensory cortex [106]. It will be interesting to

investigate whether different waves of OPCs [107] form

synapses with impact on distinct neuronal network activity

or other biological processes. In addition, it is important to

state that GABA-mediated myelination might be very

different from glutamate-based processes, as indicated by

shortened nodes and internodes as well as higher myelin

basic protein expression of myelinated GABAergic axons

than in non-GABAergic axons [26].

To date, no direct evidence is available demonstrating a

decisive role of GABAergic signaling for the development

of OL lineage cells in vivo. In vitro, GABA application

fails to affect primary OPC proliferation [108, 109], while

selective activation of GABAB receptors with baclofen

promotes the proliferation of the OPC cell line CG-4 [95].

These results further suggest the manifold roles of GABA

when activating both GABAA and GABAB receptors

leading to a complex series of events. However, the

Fig. 3 Synaptic and non-synaptic neuron-OPC communication.

A Schematic of neuron-OPC communication in the brain, including

direct soma-soma (A1) and synaptic contact (A2). B–D OPC somata

(PDGFRa?, red) are in close contact with neuronal somata (NeuN?,

green) (arrows) in cortex (ctx, B and C) and hippocampus (hc, D).

Micrographs in B and C are from the cortex of NG2-CreERT2 9

Rosa26-CAG-lsl-tdTomato mice [6, 133]. Images were acquired by

confocal laser-scanning (LSM710, B and C) or automated epifluo-

rescence microscopy (AxioScan.Z1) (D) with appropriate filters and

objectives. Scale bars, 20 lm for B and 50 lm for D.
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expression and even the functions of GABA receptors

could differ between primary OPCs and stable cell lines.

Indeed, a recent in vitro study showed that GABAB

receptor activation favors primary OPC differentiation

rather than self-renewal and survival [40]. Nevertheless, an

in vivo investigation is necessary to clarify the exact

biological function of GABA receptors. In fact, the

conditional knockout of the GABAA receptor c2 subunit

during early development (p3–p5) does not influence OPC

proliferation and differentiation [90]. Absence of the c2
subunit reduces the number of OPCs without affecting

differentiation into OLs, suggesting that c2-mediated

interneuron-to-OPC synapses might be required for the

fine tuning of OPC self-maintenance [90].

Migration

OPCs maintain their density while migrating to either their

target areas followed by differentiation or into sites of

injury where they contribute to scar formation [9]. The

migration is partially modulated by GABAergic signaling

[95, 110], as has been shown for isolated primary OPCs

and OPCs in explant preparations. Furthermore, this impact

on migration appears to be more dominated by GABAA

than GABAB receptor signaling, since it is blocked by the

GABAA antagonist bicuculline, but not affected by

GABAB antagonists [110]. However, GABAB receptors

have been found to promote the migration of CG-4 cells

[95]. Again, such differences might be due to the distinct

properties of OPCs in vivo versus in vitro and changes in

stable cell lines. Receptor expression as well as the ratio of

GABAA/GABAB receptors might change during the isola-

tion and culturing processes. And most importantly, the

microenvironment, i.e., the three-dimensional tissue orga-

nization including the stiffness and composition of the

extracellular space, strongly influences migration. There-

fore, in vivo studies are inevitably needed to address the

impact of GABAergic signaling on OPC migration.

Monitoring Network Activity

OPCs receive GABAergic input in two non-exclusive

modes, either directly via neuron-OPC synapses, i.e.,

contact sites between OPC processes and neuronal com-

partments including nodes of Ranvier, or, more diffusely,

from GABA spillover from adjacent neuron-neuron

synapses [20]. Close contacts between neuronal somata

and OPCs have also been observed, although neurotrans-

mitter-based connectivity is absent at such locations

[111, 112] (Fig. 3A–D). About 40% of all cortical OPCs

are in close contact with *4% of all cortical neurons, and

these are mostly GABAergic. These anatomically close

pairs of neurons and OPCs do not communicate via

synaptic structures. However, these cell-cell contacts could

very well monitor neural network activity [113], similar to

the way astrocytes sense their adjacent environment [114].

In the hippocampus, the pairs of OPCs and neurons can

receive the same synaptic input from another neuron. OPCs

closely apposed to neurons exhibit strongly synchronized

excitatory postsynaptic currents [111]. Interestingly, in the

cortex, such anatomical proximity is increased when mice

are treated with the GABAB receptor agonist baclofen or

the GABAA receptor antagonist picrotoxin. OPCs can

sense presynaptic excitatory signals after positioning their

soma and synapse close to interneurons and thereby

regulate the local network. Considering the heterogeneity

of OPCs [115], it is also possible that a certain subpop-

ulation of OPCs favors this soma-soma communication.

However, more in vivo experiments are necessary to

address the cause and importance of such contacts.

Signaling Pathways of GABA Receptors in the OL
Lineage

In OPCs, the activation of GABAA receptors induces

membrane depolarization via Cl- efflux. Concomitantly,

AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazolepropi-

onic acid)-type glutamate receptor currents are inhibited

[105]. The activation of GABAA receptors also raises the

intracellular Ca2? concentration [20, 84, 104, 116, 117] via

at least two distinct pathways. (1) GABA-induced depo-

larization activates voltage-gated Na? channels expressed

by OPCs. Subsequently, increases of intracellular Na?

reverses the activity of the Na?-Ca2? exchanger and causes

Ca2? elevation in OPCs. This Ca2? signaling pathway,

without using VGCCs, is involved in the migration of

OPCs [110]. (2) In the adult mouse cortex, GABA-evoked

depolarization activates VGCCs, thereby directly elevating

[Ca2?]i. and promoting the release of BDNF (brain derived

neurotrophic factor) in the sensory-motor area and entorhi-

nal cortex [104].

In contrast, the activation of GABAB receptors nega-

tively regulates adenylyl cyclase via Gai/o proteins and

dampens the intracellular cAMP levels of OPCs [95].

Subsequently reduced protein kinase A activity suppresses

gene transcription for BDNF and AMPA receptors via

altered phosphorylation and the nuclear translocation of

transcription factors such as CREB protein, thereby

modulating synaptic and neural plasticity [118–120]. In

cultured OPCs, GABAB receptor-mediated differentiation

has also been shown to involve Src-family kinases, which

are known to be associated with myelination [40]. Again,

additional in vivo studies need to be carried out to elucidate
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the exact downstream pathways of OL GABAB receptors

(Gai/o and/or Gq) and the potential involvement of cAMP

and/or Ca2? (Fig. 2B).

GABA Signaling Under Pathological Conditions

As the major inhibitory neurotransmitter in the brain,

GABA plays crucial roles not only in physiological

processes but also in many neurological disorders

[121, 122]. To date, disturbances of GABAergic signaling

have been robustly studied, but significantly less is known

for the cells of the OL lineage.

In hypoxic regions associated with a stroke insult,

GABA release is drastically increased at the penumbra

[123, 124]. Counterintuitively, the GABAA receptor-me-

diated synaptic input to OPCs is reduced [22], but

accompanied by extensive proliferation of OPCs, delayed

OL maturation, and abnormal myelination [22]. This

coincides with the finding that under physiological condi-

tions GABA acts as neurotrophic factor. GABA via

GABAA (at least c2 subunit) receptors does not influence

OPC proliferation and myelination [108], while GABAB

receptor activation promotes myelination, at least in vitro

[40], suggesting an inhibitory function of GABAA recep-

tors in myelination. However, whether this communication

is synaptic or extrasynaptic is unclear. Upon GABAergic

stimulation, adult cortical OPCs produce neurotrophic

factors like BDNF, which are increased after stroke

[104]. BDNF, in turn, promotes OPC proliferation under

physiological and pathological conditions [13, 14].

Whether the newly generated OPCs participate in the

regeneration is unknown.

In a rat model of temporal lobe epilepsy, GABA-

mediated inhibition is reduced due to two processes: (1)

GABA synthesis is decreased mainly due to decreased

GAD65 levels and (2) inhibitory postsynaptic currents

(IPSCs) decline because of down-regulation of GABAA

(especially subunits a1, c, and d) and GABAB receptors.

However, GABAA-a5 and CREB are up-regulated [125]. As

an effector of CREB, BDNF expression is increased by

seizure activity, which in turn induces hyperexcitability in

hippocampal neurons [126]. In mice with mutant CREB,

epilepsy is suppressed, suggesting a potential therapeutic

option to target epilepsy [127]. However, whether and how

GABAA and GABAB receptor-CREB signaling pathways

in OPCs and OLs also contribute to epileptogenesis needs

further analysis.

Dysfunction of GABA-mediated OPC neurotransmis-

sion has not yet been demonstrated in multiple sclerosis

(MS), a disease with progressive demyelination. But

several reports suggest the importance of GABAergic

signaling during the course of MS. In the brain of MS

patients, both pre- and postsynaptic GABAergic neuro-

transmission are decreased [128, 129]. However, GABA

level are increased in the sensorimotor cortex of MS

patients but decreased in the hippocampus [130, 131]. With

the knowledge that both GABAA and GABAB receptors are

involved in OPC proliferation and differentiation under

physiological conditions [18, 95], GABAergic neurotrans-

mission of OPCs and OLs could also affect the disease

progression of MS. Indeed, a recent single-cell RNAseq

transcriptome study of mature OLs prepared from exper-

imental autoimmune encephalomyelitis (EAE) mice

revealed reduced levels of the GABAB1 subunit, but

unchanged levels of the GABAB2 and GABAA receptor

subunits [132]. As under physiological conditions, GABAB

receptors of OLs also influence myelination in EAE.

Interestingly, in these EAE mice, the expression of GABA

transporter GAT3 is down-regulated in OPCs, while GAT1

is increased in OLs. However, the mRNA level of the

transporter might not coincide with the respective transport

activity. Therefore, elevations or reductions of extracellular

GABA level cannot be inferred readily. In addition, under

pathological conditions, GATs can reverse-transport

GABA to the extracellular space. The scenario gets even

more complex in light of the according timeline: Are

expression changes of GATs a result of demyelination and

thereby ahead of the remyelination failure or rather a

consequence? Answering how GABAergic signaling in

cells of the OL lineage is involved in de- and remyelination

remains for the future.

Conclusion

GABA, a neurotransmitter as well as a neurotrophic factor,

is synthetized and taken up by OPCs and OLs. For a long

time, GABA has been recognized as the main mediator of

neuronal inhibition. Now, we have learnt that this trans-

mitter is broadly sensed by the OL linage, i.e., OL

precursor cells as well as mature OLs. In contrast to

neurons, however, in OPCs and OLs, GABA positively

stimulates signaling cascades, mainly leading to enhanced

Ca2? levels. Thereby, GABA promotes myelination as well

as neural recovery. GABAergic signaling in cells of the OL

lineage cells represents an exciting novel field of research,

especially the GABA-dependent interneuron-OPC commu-

nication. The concomitant analysis of OL differentiation

and the modulation of neuronal network activity by distinct

patterns of myelination will not only help to understand the

normal brain but will be pivotal in complex neuropatholo-

gies that depend on temporally precise neuronal firing and

transmission.
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59. Hübner CA, Holthoff K. Anion transport and GABA signaling.

Front Cell Neurosci 2013, 7: 177.

60. Bettler B, Kaupmann K, Mosbacher J, Gassmann M. Molecular

structure and physiological functions of GABAB receptors.

Physiol Rev 2004, 84: 835–867.

61. Bettler B, Tiao JY. Molecular diversity, trafficking and subcel-

lular localization of GABAB receptors. Pharmacol Ther 2006,

110: 533–543.

62. Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck

P, et al. GABAB-receptor subtypes assemble into functional

heteromeric complexes. Nature 1998, 396: 683–687.

63. Bowery NG, Bettler B, Froestl W, Gallagher JP, Marshall F,

Raiteri M, et al. International Union of Pharmacology. XXXIII.

Mammalian gamma-aminobutyric acid(B) receptors: structure

and function. Pharmacol Rev 2002, 54: 247–264.
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